Header menu link for other important links
X
Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films
Biswas P.P., Thirmal C., ,
Published in American Institute of Physics Inc.
2018
Volume: 123
   
Issue: 2
Abstract
Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications. © 2018 Author(s).
About the journal
JournalData powered by TypesetJournal of Applied Physics
PublisherData powered by TypesetAmerican Institute of Physics Inc.
ISSN00218979
Open AccessNo