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Differentiation and Passivity for Control of

Brayton-Moser Systems
Krishna Chaitanya Kosaraju, Michele Cucuzzella, Jacquelien M. A. Scherpen and Ramkrishna Pasumarthy

Abstract—This paper deals with a class of Resistive-Inductive-
Capacitive (RLC) circuits and switched RLC (s–RLC) circuits
modeled in the Brayton Moser framework. For this class of sys-
tems, new passivity properties using a Krasovskii-type Lyapunov
function as storage function are presented, where the supply-
rate is function of the system states, inputs and their first time
derivatives. Moreover, after showing the integrability property
of the port-variables, two simple control methodologies called
output shaping and input shaping are proposed for regulating the
voltage in RLC and s–RLC circuits. Global asymptotic stability
is theoretically proved for both the proposed control method-
ologies. Moreover, robustness with respect to load uncertainty is
ensured by the input shaping methodology. The applicability of
the proposed methodologies is illustrated by designing voltage
controllers for DC-DC converters and DC networks.

Index Terms—Brayton-Moser systems, passivity-based control,
RLC circuits, power converters, DC networks.

I. INTRODUCTION

In the recent years, passivity theory has gained renewed

attention because of its advantages and practicality in modeling

and control of multi-domain dynamical systems [1], [2]. In

general, a system is passive if there exists a (bounded from

below) storage function S : Rn → R+ satisfying

S(x(t))− S(x(0)) ≤
∫ t

0

u⊤ydt, (1)

where x ∈ R
n is the system state, u, y ∈ R

m are the input

and the output, also called port-variables and the product u⊤y
is commonly known as supply-rate [3], [4]. Naturally, one

can interpret the storage function as the total system energy,

and the supply rate as the power supplied to the system.

Consequently, inequality (1) implies that the newly stored

energy is never greater than the supplied one.

In order to analyze the passivity properties of a general

nonlinear system, it is usually required to be artful in designing

the storage function. For this reason, it is helpful to recast

the system dynamics into a known framework, such as the

port-Hamiltonian (pH) one [5], where the storage function,

also called Hamiltonian function, generally depends on the
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system energy. Another well known framework that has been

extensively explored for modeling of nonlinear Resistive-

Inductive-Capacitive (RLC) circuits, is the Brayton-Moser

(BM) framework [6], [7], where the storage function relies

on the system power (see [8] for further details on geometric

modeling of nonlinear RLC circuits).

Nowadays, power-converters play a prominent role in smart

grids. Conventional power-converters consist of (passive) sub-

systems interconnected through switches. In this paper, we

consider a large class of switched RLC (s–RLC) circuits,

which models the majority of the existing power converters

(e.g., buck, boost, buck-boost and Cúk). Although the anal-

ysis of s–RLC circuits has received a significant amount of

attention (see for instance [9]–[12] and the references therein),

we notice that results based on the passivity properties of

the open-loop system are still lacking. On the other hand,

a significant number of results have been published relying

on Passivity-Based Control (PBC) [13]–[19], where the main

idea is generally to passify the controlled system such that the

closed-loop storage function has a minimum at the desired

operating point [2]. However, the passivity properties and

the control techniques developed for pH systems cannot be

straightforwardly applied to s–RLC networks. Alternatively,

in [20] the authors formalize the use of the BM framework

for analyzing s–RLC circuits and also provide tuning rules

based on the well-known BM theorems.

A. Motivation and Main Contributions

Lyapunov theory is fundamental in systems theory. In order

to study the stability of a dynamical system, one generally

needs to find a suitable Lyapunov function. Krasovskii pro-

posed a simple and elegant candidate Lyapunov function,

where one needs to compute some point-wise conditions for

sufficiency of Lyapunov stability [21]. In a similar manner,

passivity theory hinges on finding candidate storage functions

satisfying (1). However, the candidate Lyapunov function pro-

posed by Krasovskii is not well explored as a storage function.

In [22]–[24], the authors presented a preliminary result on the

passivity property for a class of RLC circuits using such a

storage function, named Krasovskii storage function, i.e.,

S(x, ẋ) =
1

2
ẋ⊤M(x)ẋ, (2)

where M(x) > 0 ∈ R
n×n. By using such a storage function,

in this paper we present completely new passivity properties
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for a class of s–RLC circuits and for a class of RLC circuits

wider than the one considered in [22]–[24]∗.

The output port-variables associated with the above storage

function have integrability properties. It is well-established that

the integrated output port-variable can be used to shape the

closed-loop storage function. This leads to the development

of a new control technique, named output shaping. More

precisely, the above storage function allows to establish a

passivity property with supply-rate depending on the system

state x, input u and also their first time derivatives ẋ, u̇. This

enables us to develop a second control technique that we call

input shaping, which is radically new in PBC methodology.

More precisely, we use the integrated input port-variable

to shape the closed-loop storage function. Furthermore, a

Krasovskii storage function has the following advantages:

(i) Since the supply-rate is a function of the first time

derivative of the system state and input, the so-called

dissipation obstacle† problem [2] is avoided.

(ii) There are no parametric constraints that usually appear in

Brayton-Moser framework (see for instance [25, Theorem

1]).

(iii) The port-variables are integrable.

Below, we list the main contributions of this work:

(i) The use of a storage function similar to (2) for s–RLC

circuits leads to a new passive map useful for control

purposes.

(ii) We use the integrated port-variables to shape the closed-

loop storage function and propose two simple control

techniques: output shaping and input shaping. Both the

techniques are used for regulating the voltage in RLC and

s–RLC circuits.

(iii) The input shaping technique is robust with respect to load

uncertainty and requires less assumptions on the system

parameters/structure than the output shaping one.

The proposed techniques are finally illustrated with application

to buck, boost, buck-boost, Cúk DC-DC converters and DC

networks, which are attracting growing interest and receiving

much research attention [26]–[31]. Simulation results show

excellent performance.

Note that the BM framework adopted in this work to

model RLC and s–RLC circuits represents a larger class of

nonlinear gradient systems [32], [33]. For instance, in [1], the

BM equations are shown to be applicable to a wide class

of nonlinear physical systems, including lumped-parameter

mechanical, fluid, thermal, and electromechanical systems,

electrical power converters, mechanical systems with impacts

and distributed-parameter systems [34] (see also [9], [35]–

[37] for further applications). Moreover, a practical advantage

of using the BM framework is that the system variables

∗Note that in [22], the authors have only explored as a conclusive remark
(see [22, Section V]) the idea of using (2) as storage function for a particular
electrical example. Moreover, in [23] and [24], only a preliminary result on the
passivity property of only RLC circuits is established under some assumptions
that are more restrictive than the ones in this paper.

†For a system with non-zero supply-rate at the desired operating point,
the controller has to provide unbounded energy to stabilize the system. In
the literature, this is usually referred to as dissipation obstacle or pervasive

dissipation.

are directly expressed in terms of easily measurable physical

quantities, such as currents, voltages, velocities, forces, volume

flows, pressures, or temperatures. On the other hand, the

Lagrangian and Hamiltonian formulations normally involve

generalized displacement and momenta, which in many cases

cannot be measured directly. Furthermore, s–RLC circuits do

not generally inherit a standard pH structure because the

interconnection matrix is often a function of both the system

state and control input, rather than only the state [10]. As a

consequence, the existing passivity-based techniques may not

be useful for the analysis and control purpose.

B. Outline

This paper is outlined as follows. In Section II, we recall the

BM representation of RLC and s–RLC circuits and formulate

the control objective after introducing the required assump-

tions. In Section III, we present the newly established passivity

property for the RLC and s–RLC circuits. Then, using these

properties, we propose two novel control techniques: output

shaping and input shaping. In Section IV and Appendix,

we illustrate the proposed techniques on buck, boost, buck-

boost, Cúk DC-DC converters and DC networks with buck

and boost converters interconnected through resistive-inductive

lines. Finally, we conclude and present some possible future

directions in Section V.

C. Notation

The set of real numbers is denoted by R. The set of positive

real numbers is denoted by R+. Let x ∈ R
n and y ∈ R

m.

Given a mapping f : Rn × R
m → R, the symbol ∇xf(x, y)

and ∇yf(x, y) denotes the partial derivative of f(x, y) with

respect to x and y respectively. Let K ∈ R
n×n, then K > 0

and K ≥ 0 denote that K is symmetric positive definite and

symmetric positive semi-definite, respectively. Assume K > 0,

then ||x||K :=
√
x⊤Kx and ||K||s denotes the spectral norm

of K. Let Q1 and Q2 denote square matrices of order m and

n respectively. Then diag{Q1, Q2} denotes a block-diagonal

matrix of order m+n with block entries Q1 and Q2. Given p ∈
R

n and q ∈ R
n, ‘◦’ denotes the so-called Hadamard product

(also known as Schur product), i.e., (p ◦ q) ∈ R
n with (p ◦

q)i := piqi, i = 1, . . . , n. Moreover, [p] := diag{p1, . . . , pn}.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we briefly outline the Brayton-Moser (BM)

formulation of RLC circuits and extend it to the case including

an ideal switching element.

A. Non-Switched Electrical Circuits

Consider the class of topologically complete RLC cir-

cuits [20] with σ inductors, ρ capacitors and m (current-

controlled) voltage sources us ∈ R
m connected in series
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with inductors. In [6], [7], Brayton and Moser show that the

dynamics‡ of this class of systems can be represented as

−Lİ = ∇IP (I, V )−Bus

CV̇ = ∇V P (I, V ),
(3)

where L ∈ R
σ×σ and C ∈ R

ρ×ρ are the inductances and

capacitances matrices, respectively. The state variables I ∈ R
σ

and V ∈ R
ρ denote the currents through the σ inductors and

the voltages across the ρ capacitors, respectively. The matrix

B ∈ R
σ×m is the input matrix with full column rank and P :

R
σ×ρ → R represents the so-called mixed-potential function,

given by,

P (I, V ) = I⊤ΓV + PR(I)− PG(V ), (4)

where Γ ∈ R
σ×ρ captures the power circulating across the

dynamic elements. The resistive content PR : Rσ → R and the

resistive co-content PG : Rρ → R capture the power dissipated

in the resistors connected in series to the inductors and in

parallel to the capacitors, respectively.

Remark 1 (Current sources). For the sake of simplicity, in (3)

we have not included current sources. However, the results

presented in this note can also be developed for current

sources in a straightforward manner.

According to the BM formulation, system (3) can compactly

be written as

Qẋ = ∇xP (x) + B̃us, (5)

where x = (I⊤, V ⊤)⊤, Q = diag{−L,C} and B̃ =
(−B⊤ O)⊤, O ∈ R

m×ρ being a zero-matrix. To permit the

controller design in the following sections, we introduce the

following assumptions:

Assumption 1 (Inductance and capacitance matrices). Matri-

ces L and C are constant, symmetric§ and positive-definite.

Assumption 2 (Resistive content and co-content). The resis-

tive content and co-content of current controlled resistors R
and voltage controlled resistors G are quadratic in I and V
respectively, i.e.,

PR(I) =
1

2
I⊤RI, PG(V ) =

1

2
V ⊤GV, (6)

where R ∈ R
σ×σ and G ∈ R

ρ×ρ are positive semi-definite

matrices.

Under Assumptions 1 and 2, it can be shown that system (3)

is passive with respect to the power-conjugate¶ port-variables

us, B⊤I and the total energy stored in the network as storage

function (see Remark 3).

‡For further details and a large number of examples, we suggest the
reading of the sidebar ‘History of the Mixed-Potential Function’ and section
‘The Brayton-Moser equations’ in [1].

§Matrices L and C can possibly capture mutual inductances and capac-
itances, respectively.

¶We use the expression power-conjugate to indicate that the product of
input and output has units of power.

Table I
DESCRIPTION OF THE USED SYMBOLS

State variables

I Inductor current
V Capacitor voltage

Parameters

L Inductance
C Capacitance
G Conductance
R Resistance

Inputs

us Control input (RLC circuits)
u Duty cycle (s–RLC circuits)
Vs Voltage source (s–RLC circuits)

B. (Average) Switched Electrical Circuits

We now consider the class of RLC circuits including an

ideal switch‖ (s–RLC). Let ud ∈ {0, 1} and Vs ∈ R
m

denote the state of the switching element, i.e., open or closed,

and the (current-controlled) voltage sources, respectively. To

describe the dynamics of s–RLC circuits we adopt the BM

formulation (3) with the mixed-potential function and input

matrix depending on the state of the switching element, i.e.,

P : {0, 1} × R
σ × R

ρ → R and B : {0, 1} → R
σ×m can be

expressed as

P (ud, I, V ) = udP1(I, V ) + (1− ud)P0(I, V )

B(ud) = udB1 + (1− ud)B0,
(7)

where P1(I, V ), B1 and P0(I, V ), B0 represent the mixed-

potential function and the input matrix of the s–RLC circuit

when ud = 1 and ud = 0, respectively. Under the rea-

sonable assumption that the Pulse Width Modulation (PWM)

frequency is sufficiently high, the state of the system can be

replaced by the corresponding average state representing the

average inductor currents and capacitor voltages, while the

switching control input is replaced by the so called duty cycle

of the converter [10]. For the sake of notational simplicity,

from now let I , V and u ∈ [0, 1] denote the average signals

of I , V and ud, respectively, throughout the rest of the paper.

Consequently, the average behaviour of a s–RLC electrical

circuit can be represented by the following BM equations

−Lİ = ∇IP (u, I, V )−B(u)Vs

CV̇ = ∇V P (u, I, V ).
(8)

Remark 2 (Resistive content and co-content structure). Note

that if the content and co-content structure is not affected by

the switching signal, the mixed-potential function in (7) can

be rewritten as follows

P (u, I, V ) = I⊤Γ(u)V + PR(I)− PG(V ), (9)

where the mapping Γ : [0, 1] → R
σ×ρ is defined as

Γ(u) = uΓ1 + (1− u)Γ0, (10)

‖For the sake of simplicity we restrict the analysis to RLC circuits
including only one switch. However, in Section IV-C we analyze a DC network
including an arbitrary number of switches.
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and Γ1,Γ0 capture the interconnection of the storage elements

(i.e., inductors and capacitors) when u = 1 and u = 0,

respectively.

In the following we consider that the resistive content and

co-content structure is not affected by the switching signal. As

a consequence, system (8) can be written as

−Lİ = RI + Γ(u)V −B(u)Vs

CV̇ = Γ⊤(u)I −GV.
(11)

The main symbols used in (3)–(11) are described in Table I.

Remark 3 (Total energy as storage function). It can be shown

that the RLC circuit (3) is passive with respect to the storage

function

Se(I, V ) =
1

2
I⊤LI +

1

2
V ⊤CV, (12)

and port-variables us and B⊤I (see for instance [2]). Con-

sider now the s–RLC circuit (11). The first time derivative of

the storage function (12) along the solutions to (11) satisfies

Ṡe ≤ I⊤B0Vs + uI⊤ (B1 −B0)Vs.

Consequently, system (11) is passive with respect to the storage

function (12) and supply rate uI⊤B1Vs if and only if B0 = 0
and B1 6= 0. However, if we consider for instance the model of

the boost converter (see Section IV-B), the conditions B0 = 0
and B1 6= 0 are not satisfied. Furthermore, even supposing

that the conditions B0 = 0 and B1 6= 0 hold, we notice that

the supply rate uI⊤B1Vs is generally not equal to zero at

the desired operating point, implying the occurrence of the

so-called ‘dissipation obstacle’ problem [2].

As a consequence of Remark 3, adopting the pH framework

(using the total energy as Hamiltonian) does not provide

any additional advantage compared to the BM framework.

Moreover, s–RLC circuits do not inherit a standard pH struc-

ture [10]:

Remark 4 (Port-Hamiltonian formulation for s–RLC circuits).

Generally, a standard port-Hamiltonian system has the follow-

ing structure

ẋ = [J(x)−R(x)]∇xH(x) + g(x)u, (13)

where x : R+ → R
n, u : R+ → R

m denote the state and

input, respectively, J(x) = −J(x)⊤, R(x) ≥ 0, H : Rn →
R+ is the Hamiltonian and g(x) the input matrix. The skew

symmetric matrix J(x) generally captures the interconnection

of the storage elements and R(x) describes the dissipation

structure of the system. As a result we have the following

dissipation inequality:

Ḣ ≤ u⊤y,

where y = g(x)⊤∇xH(x). However, s–RLC circuit do not

generally inherit this structure. To represent s–RLC circuits it

may be needed to modify (13) as follows (see [10] for some

examples):

ẋ = [J(x, u)−R(x)]∇xH(x) + g(x)Vs, (14)

where J(x, u) = J0(x) +
∑m

i=1 Ji(x)ui, Ji + J⊤
i = 0 for all

i ∈ {0, . . . ,m}, u and Vs denote the duty-ratio and the supply

voltage, respectively. This implies the following dissipation

inequality:

Ḣ ≤ V ⊤
s y, (15)

which may be not useful for control purpose, since Vs is

generally not controllable.

Alternatively, in [25, Theorem 1] it is shown, under some

assumptions, that system (3) is passive with respect to the

port-variables us, B⊤İ and the so-called transformed mixed-

potential function as storage function. However, finding the

transformed mixed-potential function is not trivial and often

requires that (sufficient) conditions on the system parameters

are satisfied. Differently, in this work we overcome these

issues by proposing a Krasovkii’s Lyapunov function similar

to (2) as storage function.

C. Problem Formulation

The main goal of this paper is to propose new passivity-

based control methodologies for regulating the voltage in RLC

and s–RLC circuits.

Before formulating the control objective and in order to

permit the controllers design in the next sections, we first make

the following assumption on the available information about

systems (3) and (11):

Assumption 3 (Available information). The state variables I
and V are measurable∗∗. The voltage source Vs in (11) is

known and different from zero.

Secondly, in order to formulate the control objective aiming

at voltage regulation, we introduce the following two assump-

tions on the existence of a desired reference voltage for both

RLC and s–RLC circuits, respectively:

Assumption 4 (Feasibility for RLC circuits). There exist a

constant desired reference voltage V ⋆ ∈ R
ρ
+ and a constant

control input us such that a steady state solution (I, V ⋆) to

system (3) satisfies

0 = ΓV ⋆ +RI −Bus

0 = Γ⊤I −GV ⋆.
(16)

Assumption 5 (Feasibility for s–RLC circuits). There exist a

constant desired reference voltage V ⋆ ∈ R
ρ
+ and a constant

control input u ∈ (0, 1) such that a steady state solution

(I, V ⋆) to system (11) satisfies

0 = Γ(u)V ⋆ +RI −B(u)Vs

0 = Γ⊤(u)I −GV ⋆.
(17)

We notice now that system (11) can be written as follows
[

−Lİ

CV̇

]

=

[

RI + Γ0V −B0Vs

Γ⊤
0 I −GV

]

+

[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤
I

]

u.

∗∗Note that, when needed, we also assume that İ and V̇ are available.
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Consequently, we introduce the following assumption for

controllability purposes:

Assumption 6 (Controllability necessary condition). There

exists (at least) an element in the column vector
[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤
I

]

that is different from zero for all (I, V ) ∈ R
σ×ρ and any t ≥ 0.

The control objective can now be formulated explicitly:

Objective 1 (Voltage regulation).

lim
t→∞

V (t) = V ⋆. (18)

Remark 5 (Robustness to load uncertainty). In power net-

works it is generally desired that Objective 1 is achieved

independently from the load parameters, which are indeed

often unknown (see also Assumption 3).

III. THE PROPOSED CONTROL APPROACHES

In this section, we present new passivity properties (akin to

differential passivity [38]) for the considered RLC circuits (3).

Then, we extend these properties to s–RLC circuits (11).

A. New passivity properties

Novel passive maps for a class of RLC circuits are presented

in [23]††, where the authors use a Krasovskii-type storage

function similar to (2), i.e.,

S(İ , V̇ ) =
1

2
‖İ‖2L +

1

2
‖V̇ ‖2C . (19)

The use of such a storage function enables to relax the con-

straints on the system parameters required in [25, Theorem 1].

Since the storage function (19) depends on İ and V̇ , we

consider the following extended-dynamics‡‡ of system (3)

−Lİ = ΓV +RI −Bus (20a)

CV̇ = Γ⊤I −GV (20b)

−LÏ = ΓV̇ +Rİ −Bυs (20c)

CV̈ = Γ⊤İ −GV̇ (20d)

u̇s = υs, (20e)

where (I, V, İ, V̇ , us) and υs ∈ R
m are the (extended) system

state and input, respectively. Then, inspired by [22]–[24], the

following result can be established.

Proposition 1 (Passivity of RLC circuit). Let Assumptions 1

and 2 hold. System (20) is passive with respect to the storage

function (19) and the port-variables ys = B⊤İ and υs.

Proof. The first time derivative of the storage function (19)

along the trajectories of (20) satisfies

Ṡ ≤ u̇⊤
s B

⊤İ = υ⊤
s ys. (21)

††The class of RLC circuits considered in [23] is a sub-class of the systems
analyzed in this paper. More precisely, in [23] the authors assume that L,C
are diagonal and R,G are positive definite. These assumptions are relaxed in
this paper (see Assumptions 1 and 2).

‡‡These dynamics are differentially extended with respect to time.

Remark 6. (Physical interpretation of (21)) The established

passivity property can be interpreted as the passivity property

derived from the total energy of the ‘dual’ circuit, which is

constructed by using capacitors as inductors, voltage sources

as current sources and vice-versa. This follows from consid-

ering VL as the voltage across the inductor and IC as the

current through the capacitor. As a consequence, the storage

function (19) can be rewritten as

S(IC , VL) =
1

2
‖VL‖2L−1 +

1

2
‖IC‖2C−1 . (22)

In (22), the term 1/2‖VL‖2L−1 represents the energy stored into

a capacitor with capacitance L−1 and charge qL = L−1VL.

Similarly, the term 1/2‖IC‖2C−1 represents the energy stored

into an inductor with inductance C−1 and flux φC = C−1IC .

Furthermore, let is denote the current source constructed from

a capacitor with capacitance L−1 and charge L−1Bus. As a

result, (21) becomes

Ṡ ≤ u̇⊤
s B

⊤L−1VL = i⊤s VL. (23)

Before presenting an analogous passive map also for s–

RLC circuits (11), similarly to (20) we consider the following

extended dynamics of system (11)

−Lİ = RI + Γ(u)V −B(u)Vs (24a)

CV̇ = Γ⊤(u)I −GV (24b)

−LÏ = Rİ + Γ(u)V̇ + ((Γ1 − Γ0)V − (B1 −B0)Vs) υ
(24c)

CV̈ = Γ⊤(u)İ + (Γ1 − Γ0)
⊤
Iυ −GV̇ (24d)

u̇ = υ, (24e)

where (I, V, İ, V̇ , u) and υ ∈ R are the (extended) system

state and input, respectively. Then, the following result can be

established.

Proposition 2 (Passivity of s–RLC circuit). Let Assumptions

1 and 2 hold. System (24) is passive with respect to the storage

function (19) and the port-variables υ and

y =
(

V̇ ⊤ (Γ1 − Γ0)
⊤
I − İ⊤ (Γ1 − Γ0)V

− İ⊤ (B0 −B1)Vs

)

.
(25)

Proof. The time derivative of the storage function (19) along

the trajectories of (24) satisfies

Ṡ = −İ⊤
(

(

(1− u)Γ0 + uΓ1

)

V̇ + u̇(Γ1 − Γ0)V

+Rİ − u̇(B1 −B0)Vs

)

+ V̇ ⊤
(

(

(1− u)Γ0

+ uΓ1

)

İ + u̇(Γ1 − Γ0)
⊤I −GV̇

)

= −İ⊤Rİ − V̇ ⊤GV̇ + u̇y

≤ u̇y = υy.

(26)
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Note that, if Vs is controllable, then the storage function

(19) along the extended dynamics of (11) satisfies

Ṡ =− İ⊤Rİ − V̇ ⊤GV̇ + u̇y + İ⊤B(u)V̇s

≤υy + θ⊤φ.
(27)

where θ = V̇s and φ = B(u)⊤İ . Therefore the extended

dynamics of (11) are passive with port variables [υ, θ⊤]⊤

and [y, φ⊤]⊤.

Remark 7. (Insights on the storage function S) The storage

function (19) depends on the states İ , V̇ of system (20)

or (24). Consequently, S depends on the entire state of the

extended system (20) or (24). This follows from replacing İ , V̇
by the corresponding dynamics (20a)–(20b) or (24a)–(24b).

Moreover, we will show in Theorems 3 and 4 that designing

the controller by using the storage function (19) enables the

achievement of Objective 1 despite the load uncertainty (see

Remark 5). However, the cost of designing a robust controller

is the need of information about the first time derivative of the

signals I and V .

By using the passive maps presented in Propositions 1 and 2,

we propose in the next two subsections two different passivity-

based control methodologies for both RLC and s–RLC circuits,

respectively.

B. Output Shaping

The first methodology, which we call output shaping, relies

on the integrability property of the output port-variable. More

precisely, we use the integrated output port-variable to shape

the closed-loop storage function. In this subsection, we first

extend this methodology to a wider class of RLC circuits than

the one considered in [23]. Subsequently, we further extend

the output shaping methodology to s–RLC circuits.

Theorem 1 (Output shaping for RLC circuits). Let Assump-

tions 1–4 hold. Consider system (20) with control input υs
given by

υs =
(

µs − kiB
⊤
(

I − Ī
)

− kdys
)

, (28)

with ys = B⊤İ , kd > 0, ki > 0 and µs ∈ R
m. The following

statements hold:

(a) System (20) in closed-loop with control (28) defines a

passive map µs 7→ ys.

(b) Let µs be equal to zero. If any of the following conditions

holds

(i) R > 0 and G > 0,

(ii) G > 0 and Γ⊤ has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set
{(

I, V, İ, V̇ , us

)

: V̇ = 0, İ = 0, u̇s = 0, B⊤
(

I − I
)

= 0
}

.

(29)

Proof. We use the integrated output port-variable to shape the

desired closed-loop storage function, i.e.,

Sd = S +
1

2

∣

∣

∣

∣B⊤(I − I)
∣

∣

∣

∣

2

ki
, (30)

where S is given by (19). Then, Sd along the trajectories of

system (20) controlled by (28) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ + y⊤s
(

υs + kiB
⊤(I − I)

)

(31a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdy
⊤
s ys + µ⊤

s ys (31b)

≤ µ⊤
s ys, (31c)

where in (31a) we use the controller (28). This concludes

the proof of part (a). For part (b-i), let µs be equal to zero.

Then, from (31b), there exists a forward invariant set Π and

by LaSalle’s invariance principle the solutions that start in Π
converge to the largest invariant set contained in

Π ∩
{(

I, V, İ, V̇ , us

)

: İ = 0, V̇ = 0
}

. (32)

From (20c) it follows that Bυs = 0, i.e., υs = 0 (B has full

column rank). Moreover, from (28) it follows that B⊤(I −
I) = 0, concluding the proof of part (b-i). For part (b-ii), the

solutions that start in the forward invariant set Π converge to

the largest invariant set contained in

Π ∩
{(

I, V, İ, V̇ , us

)

: Rİ = 0, V̇ = 0, ys = 0
}

. (33)

On this invariant set, from (20d) we obtain Γ⊤İ = 0, which

implies İ = 0 (Γ⊤ has full column rank). This further implies

that, also in this case, the solutions starting in Π converge to

the set (32). The rest of the proof follows from the proof of

part (b-i).

Remark 8 (Alternative controller to (28)). The controller (28)

needs the information of the first time derivative of the inductor

current. This can be avoided by rewriting (28) as follows:

us = −
(

kiφ+ kdB
⊤I

)

φ̇ = − 1

ki
µs +B⊤

(

I − I
)

.
(34)

By using the storage function (30), the same results of Theorem

1 can be established analogously. Moreover, note that (28) can

be rewritten as in (34) because of the integrability of the port-

variables.

We now extend this methodology to s–RLC circuits (11).

One possible issue in extending this methodology to s–RLC

circuits may be the integrability of the output port-variable y
given by (25). In order to avoid this issue, we introduce the

following assumption:

Assumption 7 (Integrating factor). There exist m : Rσ×R
ρ →

R different from zero and γ : Rσ×R
ρ → R such that γ̇ = my.

It is however worth to mention that the second methodology

(i.e., input shaping) that we propose in Section III-C does not

need Assumption 7. Relying on Assumption 7, the following

lemma provides a new passive map with integrable output port-

variable for system (24).

Lemma 1 (Integrable output). Let Assumptions 1, 2 and 7

hold. System (24) is passive with port-variables
υ

m
and γ̇ =

my.

Proof. After multiplying and dividing the last line of (26) by

m, we obtain

Ṡ ≤ υy =
υ

m
γ̇.
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Theorem 2 (Output shaping for s–RLC circuits). Let Assump-

tions 1–3 and 5–7 hold. Consider system (24) with control

input υ given by

υ = m (µ− ki (γ − γ⋆)− kdγ̇) , (35)

with γ⋆ = γ(I, V ⋆), kd > 0, ki > 0 and µ ∈ R. The following

statements hold:

(a) System (24) in closed-loop with control (35) defines a

passive map µ 7→ γ̇.

(b) Let µ be equal to zero. If any of the following conditions

holds

(i) R > 0 and G > 0
(ii) G > 0, Γ⊤(u) has full column rank, and

(Γ1 − Γ0)V − (B1 −B0)Vs 6= 0, (36)

then the solution to the closed-loop system asymptotically

converges to the set
{(

I, V, İ, V̇ , u
)

| V̇ = 0, İ = 0, u̇ = 0, γ = γ⋆
}

. (37)

Proof. We use the integrated output port-variable γ (see

Lemma 1) to shape the desired closed-loop storage function,

i.e.,

Sd = S +
1

2
ki (γ − γ⋆)

2
, (38)

where S is given by (19). Then, Sd along the trajectories of

system (24) controlled by (35) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ +
υ

m
γ̇ + ki (γ − γ⋆) γ̇ (39a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdγ̇
2 + µγ̇ (39b)

≤ µγ̇, (39c)

where in (39a) we use Proposition 2, Lemma 1 and the

controller (35). This concludes the proof of part (a). For part

(b-i), let µ be equal to zero. Then, from (39b), there exists a

forward invariant set Π and by LaSalle’s invariance principle

the solutions that start in Π converge to the largest invariant

set contained in

Π ∩
{(

I, V, İ, V̇ , us

)

: İ = 0, V̇ = 0, γ̇ = 0
}

. (40)

On this invariant set, from (24c) and (24d) it follows that
[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤
I

]

υ = 0.

Then, according to Assumption 6, we have υ = 0, which

implies u̇ = 0. Moreover, from (35) it follows that γ = γ⋆,

concluding the proof of part (b-i). For part (b-ii), when only

G is positive definite, the solutions that start in the forward

invariant set Π converge to the largest invariant set contained

in

Π ∩
{(

I, V, İ, V̇ , us

)

: Rİ = 0, V̇ = 0, γ̇ = 0
}

. (41)

On this invariant set, from (24c) and (36) we obtain υ = 0.

Consequently, from (24d) we have Γ⊤(u)İ = 0, which implies

İ = 0 (Γ⊤(u) has full column rank). This further implies that,

also in this case, the solutions starting in Π converge to the

set (40). The rest of the proof follows from the proof of part

(b-i).

Remark 9 (Output shaping stability). Theorems 1 and 2 imply

that the integrated output port-variables converge to the cor-

responding desired values and the first time derivatives of the

state converge to zero. However, this generally does not imply

that the trajectories of the closed-loop system asymptotically

converge to the corresponding desired operating point§§. Fur-

thermore, for the buck, boost, buck-boost and Cúk applications

(see Section IV and Appendix), we will show that Theorems

1 and 2 also imply that all the trajectories of the closed-loop

system asymptotically converge to the corresponding desired

operating point. We also notice that for the input shaping

methodology that we present in next subsection, under some

mild and reasonable assumptions, the stability results will be

strengthened.

Remark 10 (Limitations of output shaping). Note that, if the

resistance R of a RLC circuit is negligible, then, in order to

establish the stability results presented in Theorem 2 part (b-

ii), condition (36) needs to be satisfied. More specifically, for

a buck converter (see Section IV-A), this is equivalent to have

Vs 6= 0, which is in practice true (see also Assumption 3).

Yet, for a boost converter (see Section IV-B), satisfying con-

dition (36) is equivalent to require V 6= 0, which generally

could be not always true. Moreover, the output shaping control

methodology relies on finding γ satisfying γ̇ = my, with

m 6= 0. This may not always be possible. Finally, design-

ing a controller based on the output shaping methodology

requires the information of I , which often depends on the load

parameters. Consequently, the output shaping methodology is

sensitive to load uncertainty (see Remark 5).

C. Input Shaping

The second methodology, which we call input shaping,

relies on the integrability property of the input port-variables

υs and υ (see Proposition 1 and Proposition 2), respectively.

Similarly to the output shaping technique, we use the inte-

grated input port-variable to shape the closed-loop storage

function such that it has a minimum at the desired operating

point (see Objective 1). Compared to the output shaping

methodology, the input shaping methodology has the following

advantages:

(i) Assumption 7 on the integrability of the output port-

variable is no longer needed;

(ii) the knowledge of ūs and ū, given by (16) and (17), re-

spectively, does not usually require the information of the

load parameters (see the examples in Subsections IV-A

and IV-B), making the input shaping control methodology

robust with respect to load uncertainty;

(iii) condition (36) is not required anymore and, in addition,

all the trajectories of the extended system converge to the

desired operating point.

§§If σ = m, the input matrix becomes a full rank matrix and, as
a consequence, in case of RLC circuits, asymptotic convergence to the
corresponding desired operating point can be proved.
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We now first present the input shaping methodology for

RLC circuits (3).

Theorem 3 (Input shaping for RLC circuits). Let Assump-

tions 1–4 hold. Consider system (20) with control input υs
given by

υs =
1

kd
(µs − ki (us − ūs)− ys) , (42)

with ys = B⊤İ , kd > 0, ki > 0 and µs ∈ R
m. The following

statements hold:

(a) System (20) in closed-loop with control (42) defines a

passive map µs 7→ u̇s (note that us is a state of the

extended system (20)).

(b) Let µs be equal to zero. If any of the following conditions

holds

(i) R > 0 and G > 0
(ii) R > 0 and Γ has full column rank

(iii) G > 0 and Γ⊤ has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set
{(

I, V, İ, V̇ , us

)

: V̇ = 0, İ = 0, u̇s = 0, us = us

}

.

(43)

(c) If any of the conditions in (b) holds and the matrix

As =

[

R Γ
Γ⊤ −G

]

(44)

has full-rank, then the solution to the closed-loop system

asymptotically converges to the desired operating point
(

I, V ⋆, 0, 0, us

)

, which is unique.

Proof. We use the integrated input port-variable to shape the

desired closed-loop storage function, i.e,

Sd = S +
1

2
||us − ūs||2ki

, (45)

where S is given by (19). Then, Sd along the trajectories of

system (20) controlled by (42) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ + u̇⊤
s (ys + ki (us − us)) (46a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdu̇
⊤
s u̇s + µ⊤

s u̇s (46b)

≤ µ⊤
s u̇s, (46c)

where in (46a) we use Proposition 1 and the controller (42).

This concludes the proof of part (a). For part (b-i), let µs

be equal to zero. Then, from (46b), there exists a forward

invariant set Π and by LaSalle’s invariance principle the

solutions that start in Π converge to the largest invariant set

contained in

Π ∩
{(

I, V, İ, V̇ , us

)

: İ = 0, V̇ = 0, u̇s = 0
}

. (47)

On this invariant set, İ = 0 and u̇s = 0 further imply ys = 0
and υs = 0, respectively. Consequently, from (42) it follows

that us = ūs, concluding the proof of part (b-i). For part (b-ii)

and (b-iii), the solutions that start in the forward invariant set

Π converge to the largest invariant set contained in

Π ∩
{(

I, V, İ, V̇ , us

)

: Rİ = 0, GV̇ = 0, u̇s = 0
}

. (48)

On this set, from (20c) and (20d) we get ΓV̇ = 0 and Γ⊤İ =
0, respectively. Consequently, if (b-ii) or (b-iii) holds, then

İ = 0 and V̇ = 0. This further implies that the solutions

that start in Π converge to the set (47). The rest of the proof

follows from the proof of part (b). For part (c), we first notice

that from (16) we have
[

I
V ⋆

]

= A−1
s

[

Bus

0

]

, (49)

implying that (I, V ⋆) is unique. Moreover, on the set (47),

from (20a) and (20b) we obtain
[

I
V

]

= A−1
s

[

Bus

0

]

. (50)

Then, from (49), I and V converge to I and V ⋆, respectively.

We now extend these results to s–RLC circuits (11).

Theorem 4 (Input shaping for s–RLC circuits). Let Assump-

tions 1–3, 5 and 6 hold. Consider system (24) with control

input υ given by

υ =
1

kd
(µ− ki (u− ū)− y) , (51)

with y given by (25), kd > 0, ki > 0 and µ ∈ R. The following

statements hold:

(a) System (24) in closed-loop with control (51) defines a

passive map µ 7→ u̇ (note that u is a state of the extended

system (24)).

(b) Let µ be equal to zero. If any of the following conditions

holds

(i) R > 0 and G > 0
(ii) R > 0 and Γ(u) has full column rank

(iii) G > 0 and Γ⊤(u) has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set
{(

I, V, İ, V̇ , u
)

| V̇ = 0, İ = 0, u̇ = 0, u = u
}

. (52)

(c) If any of the conditions in (b) holds and the matrix

A =

[

R Γ(u)
Γ⊤(u) −G

]

(53)

has full-rank, then the solution to the closed-loop system

asymptotically converges to the desired operating point
(

I, V ⋆, 0, 0, u
)

, which is unique.

Proof. We use the integrated input port-variable to shape the

desired closed-loop storage function, i.e.,

Sd = S +
1

2
ki (u− ū)

2
, (54)

where S is given by (19). Then, by using the storage function

(54), the proof is analogous to that of Theorem 3.

Remark 11 (Robustness property of input shaping method-

ology). Note that the controllers (42) and (51) proposed in

Theorems 3 and 4, respectively, require information of the

desired value of the control input. If R = 0, from the first

line of (16) and (17), it follows that us and u require only
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Figure 1. Electrical scheme of the buck converter.

information of the desired voltage V ⋆. This implies that the

input shaping methodology is robust with respect to load

uncertainty (see Remark 5).

Remark 12 (Initial conditions for us and u). The control

inputs u and us of systems (3) and (8) are states of the

extended systems (20) and (24), respectively. Moreover, we

proved that the closed-loop dynamics of these extended sys-

tems are asymptotically stable. Therefore, independently of

the initial conditions of u and us, the proposed dynamic

controllers stabilize the corresponding closed-loop systems to

their desired operating points.

Before showing the application of the proposed control

methodologies to power converters in the next section, we

notice that, under certain assumptions on Γ, the input shaping

methodology allows for R ≥ 0 or G ≥ 0. Differently,

the output shaping methodology allows only for R ≥ 0.

Furthermore, under certain assumptions on the steady state

equations, the input shaping methodology guarantees that all

the solutions to the extended system converge to the desired

operating point.

IV. APPLICATION TO DC-DC POWER CONVERTERS

In this section, we use the control methodologies proposed

in the previous section for regulating the output voltage of the

most widespread DC-DC power converters: the buck and the

boost converters¶¶, respectively.

A. Buck converter

Consider the electrical scheme of the buck converter in

Figure 1, where the diode is assumed to be ideal. Then, by

applying the Kirchhoff’s current (KCL) and voltage (KVL)

laws, the average governing dynamic equations of the buck

converter are the following:

−Lİ = V − uVs

CV̇ = I −GV.
(55)

Equivalently, system (55) can be obtained from (11) with Γ0 =
Γ1 = 1, B0 = 0, B1 = 1 and R = 0. By using Proposition 2,

the following passivity property is established.

¶¶Buck and boost converters describe in form and function a large family
of DC-DC power converters. Moreover, in Appendices A and B we also study
other two common types of DC-DC power converters: the buck-boost and Cúk
converters

Lemma 2 (Passivity property of the buck converter). Let

Assumptions 1 and 2 hold. System (55) is passive with respect

to the storage function (19) and the port-variables u̇ and İVs.

By virtue of the above passivity property, we can now use

the output shaping and input shaping control methodologies

to design voltage controllers.

Corollary 1 (Output shaping for the buck converter). Let

Assumptions 1–3 and 5 hold. Consider system (55) with the

dynamic controller

u̇ = −Vs

(

ki
(

I − I
)

+ kdİ
)

, (56)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.

Proof. For the buck converter (55), condition (36) is equiv-

alent to require Vs 6= 0, which holds by Assumption 3.

Consequently, Theorem 2 can be used by selecting m = 1,

γ = IVs and γ⋆ = IVs. In analogy with Theorem 2, the

solutions to the closed-loop system converge to the set

Π ∩
{

(I, V, u) : İ = 0, V̇ = 0
}

. (57)

By differentiating the first line of (55), on this invariant set we

get u̇ = 0. As a consequence, from (56) it follows that I = I
which further implies V = V ⋆ and u = u (see Assumption 5).

Corollary 2 (Input shaping for the buck converter). Let

Assumptions 1–3 and 5 hold. Consider system (55) with the

dynamic controller

u̇ = − 1

kd

(

ki (u− u) + Vsİ
)

, (58)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.

Proof. The proof is analogous to that of Theorem 4.

B. Boost converter

Consider now the electrical scheme of the boost converter

in Figure 2, where the diode is again assumed to be ideal. The

average governing dynamic equations of the boost converter

are the following:

−Lİ = (1− u)V − Vs

CV̇ = (1− u)I −GV.
(59)

Also in this case, system (59) can be obtained from (11) with

Γ0 = 1, Γ1 = 0, B0 = B1 = 1 and R = 0. By using

Proposition 2, the following passivity property is established.

Lemma 3 (Passivity property of boost converter). Let Assump-

tions 1 and 2 hold. System (59) is passive with respect to the

storage function (19) and the port-variables u̇ and İV − V̇ I .

Remark 13 (Integrable output port-variables for the boost

converter). Note that the output port-variable İV − V̇ I is

not integrable. It is however possible to find a different
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Figure 2. Electrical scheme of the boost converter.

Table II
PASSIVE MAPS FOR THE BOOST-CONVERTER

m(I, V ) Passive map γ(I, V )

1 u̇ 7→ İV − V̇ I

1

V 2
V 2u̇ 7→

d

dt

I

V

I

V

1

I2
I2u̇ 7→ −

d

dt

V

I
−
V

I

1

V 2 + I2
(V 2 + I2)u̇ 7→

d

dt
tan−1

(

I

V

)

tan−1

(

I

V

)

1

IV
(IV )u̇ 7→

d

dt
ln

(

I

V

)

ln

(

I

V

)

output port-variable that is indeed integrable (see Lemma 1).

More precisely, if we choose for instance m = 1/I2, we

obtain the passive map u̇I2 7→ − d
dt
(V/I) (see Table II for

different passivity properties corresponding to different choices

of (integrable) output port-variables).

By virtue of the above passivity property, we can now use

the output shaping and input shaping control methodologies

to design voltage controllers.

Corollary 3 (Output shaping for the boost converter). Let

Assumptions 1–3 and 5 hold. Moreover, let V (t) be different

from zero for any t ≥ 0. Consider system (55) with the

dynamic controller

u̇ = − 1

V 2

(

ki

(

I

V
− I

V ⋆

)

+ kd
d

dt

I

V

)

, (60)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.

Proof. For the boost converter (59), condition (36) is equiv-

alent to require V (t) 6= 0 for any t ≥ 0, which holds by

assumption. Consequently, Theorem 2 can be used by selecting

for instance m = 1/V 2, γ = I/V and γ⋆ = I/V ⋆. In

analogy with Theorem 2, the solutions to the closed-loop

system converge to the set

Π ∩
{

(I, V, u) : V̇ = 0, İ = 0
}

. (61)

By differentiating the first line of (59), on this invariant set

we get u̇ = 0. As a consequence, from (60) it follows that

γ = γ⋆. Then, from the second line of (59) it yields

u = 1−G
V

I
= 1−G

1

γ
= 1−G

V ⋆

I
= u, (62)

which further implies V = V ⋆ and I = I .

Corollary 4 (Input shaping for boost converter). Let Assump-

tions 1–3, 5 and 6 hold∗∗∗. Consider system (59) with the

dynamic controller

u̇ := − 1

kd

(

ki (u− ū) +
(

İV − V̇ I
))

, (63)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.

Proof. The proof is analogous to that of Theorem 4.

In Table IV we have summerized the passivity properties

derived in the pH [2], BM [25] and proposed framework,

respectively.

For the sake of completeness, we now show in Figures 3–6

the simulation results obtained by implementing the proposed

methodologies to control the output voltage of a buck and

boost converter, respectively. In order to verify the robustness

property of the proposed controllers with respect to the load

uncertainty, the value of the load is changed from G to

G + ∆G, with ∆G uncertain, at the time instant t = 1 s
(all the simulation parameters are reported at the end of

the caption of each figure). More precisely, Figures 3 and 5

show that after the load variation the voltage converges to a

steady state value different from the desired one. Controllers

(56) and (60) depend indeed on I = GV ⋆ and, therefore,

require the information of G. On the contrary, Figures 4

and 6 clearly show that the input shaping methodology is

robust with respect to load uncertainty (see also Remark 11).

Furthermore, for the sake of fairness, we compare the proposed

input shaping methodology with the Parallel Damping PBC

approach proposed in [20, Section V]. Figures 3 and 5 indicate

that Parallel Damping PBC approach is also robust with

respect to load variation. However, it is important to note that

the Parallel Damping PBC approach requires the information

of the filter inductance L and capacitance C.

C. DC Networks

In this subsection we consider a typical DC microgrid of

which a schematic electrical diagram is provided in Figure 7,

including a buck and boost DC-DC power converter intercon-

nected through resistive-inductive power lines. In the following

we adopt the subscripts α or β in order to refer to the buck

or boost type converter, respectively. The network consists of

nα buck converters and nβ boost converters, such that the

total number of converters is nα + nβ = n. The overall

network is represented by a connected and undirected graph

G = (Vα ∪ Vβ , E), where Vα = {1, . . . , nα} is the set of the

buck converters, Vβ = {nα +1, . . . , n} is the set of the boost

converters and E = {1, ...,m} is the set of the distribution

lines interconnecting the n converters. The network topology is

∗∗∗For the boost converter, Assumption 6 is equivalent to require that V
and I are not equal to zero at the same time (i.e., V can be equal to zero
when I is different from zero and vice versa). We note that to use the output
shaping methodology we need a stronger assumption, i.e., V different from
zero for any t ≥ 0 (see Corollary 3).
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Figure 3. (Output shaping for the buck converter) From the top: time evolution
of the voltage, current and duty cycle considering a load variation ∆G at the
time instant t = 1 s (Parameters: L = 1mH, C = 1mF, Vs = 400V, G =
0.04S, ∆G = 0.02S, V ⋆ = 380V, kd = 5× 105, ki = 1× 107).
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Figure 4. (Input shaping for the buck converter) From the top: time evolution
of the voltage, current and duty cycle considering a load variation ∆G at the
time instant t = 1 s. Input shaping for buck converter is plotted in blue color,
while Parallel Damping PBC approach proposed in [20] is plotted in red-
dashed. (Parameters: L = 1mH, C = 1mF, Vs = 400V, G = 0.04S,
∆G = 0.02S, V ⋆ = 380V, kd = 16× 105, ki = 8× 107, u = V ⋆/Vs

and gamma in [20, Equation (19)] is set to 0.97).

represented by its corresponding incidence matrix D ∈ R
n×m.

The ends of edge k are arbitrarily labeled with a + and a −,

and the entries of D are given by

Dik =











+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

According to (55), the average dynamic equations of the
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Figure 5. (Output shaping for the boost converter) From the top: time
evolution of the voltage, current and duty cycle considering a load variation
at the time instant t = 1 s (Parameters: L = 1.12mH, C = 6.8mF, Vs =
280V, G = 0.04S, ∆G = −0.02S, V ⋆ = 380V, kd = 5× 102, ki =
1× 106).
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Figure 6. (Input shaping for the boost converter) From the top: time evolution
of the voltage, current and duty cycle considering a load variation at the time
instant t = 1 s. Input shaping for boost converter is plotted in blue color, while
Parallel Damping PBC approach proposed in [20] is plotted in red-dashed.
(Parameters: L = 1.12mH, C = 6.8mF, Vs = 280V, G = 0.04S, ∆G =
0.02S, V ⋆ = 380V, kd = 1× 106, ki = 4× 107, u = 1 − Vs/V ⋆ and
gamma in [20, Equation (23)] is set to 0.1.)

buck converter i ∈ Vα become

−Liİi = Vi − uiVsi

CiV̇i = Ii −GiVi −
∑

k∈Ei

Ilk,
(64)

where Ei ⊂ E is the set of the distribution lines incident to the

node i, and Ilk denotes the current through the line k ∈ Ei.
On the other hand, according to (59), the average dynamic
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Figure 7. The considered electrical diagram of a (Kron reduced) DC network representing node i ∈ Vα and node j ∈ Vβ interconnected by the line k ∈ E .

equations of the boost converter i ∈ Vβ become

−Liİi = (1− ui)Vi − Vsi

CiV̇i = (1− ui)Ii −GiVi −
∑

k∈Ei

Ilk.
(65)

The dynamic of the current Ilk from node i to node j 6= i,
i, j ∈ Vα ∪ Vβ , is given by

− Llk İlk = −(Vi − Vj) +RlkIlk. (66)

Let V = [V ⊤
α , V ⊤

β ]⊤, with Vα = [V1, . . . , Vnα
] and Vβ =

[Vnα+1, . . . , Vn]. Analogously, let Iα = [I1, . . . , Inα
] and

Iβ = [Inα+1, . . . , In]. To study the interconnected DC net-

work, we write (64)-(66) compactly for all buses i ∈ Vα ∪Vβ

−Lαİα = Vα − uα ◦ Vsα (67a)

−Lβ İβ = (1nβ
− uβ) ◦ Vβ − Vsβ (67b)

−Llİl = DTV +RlIl (67c)

CαV̇α = Iα −GαVα +DαIl (67d)

CβV̇β = (1nβ
− uβ) ◦ Iβ −GβVβ +DβIl, (67e)

where Iα, Vα, Vsα, uα ∈ R
nα , Iβ , Vβ , Vsβ , uβ ∈ R

nβ , Il ∈
R

m. Moreover, Lα, Lβ , Ll, Cα, Cβ , Rl, Gα, Gβ , are positive

definite diagonal matrices of appropriate dimensions, e.g.

Lα = diag(L1, . . . , Lnα
), and 1nβ

∈ R
nβ denotes the vector

consisting of all ones. The matrices Dα ∈ R
nα×m and

Dβ ∈ R
nβ×m are obtained by collecting from D the rows

indexed by Vα and Vβ , respectively. Let I = [I⊤α , I⊤β , I⊤l ]⊤,

u = [u⊤
α , u

⊤
β ]

⊤, Vs = [V ⊤
sα, V

⊤
sβ ]

⊤, L = diag(Lα, Lβ , Ll)
and C = diag(Cα, Cβ). We notice that system (67) can be

expressed in the BM formulation (8) with

B(u) =





diag(uα) 0
nα×nβ

0
nβ×nα Inβ

0
m×nα 0

m×nβ



 , (68)

and

P (u, I, V ) = I⊤Γ(u)V +
1

2
I⊤l RlIl

− 1

2
V ⊤
α GαVα − 1

2
V ⊤
β GβVβ ,

(69)

where Γ ∈ R
(n+m)×n is given by

Γ(u) =





Inα
0
nα×nβ

0
nβ×nα Inβ

− diag(uβ)
DT

α DT
β



 , (70)

I being the identity matrix. By using now the storage function

in (19), the following passivity property for the considered DC

network (67) is established.

Lemma 4 (Passivity property of DC Networks). Let Assump-

tions 1 and 2 hold. System (67) is passive with respect to the

storage function (19) and the port-variables u̇ and

yDC =

[

İα ◦ Vsα

İβ ◦ Vβ − V̇β ◦ Iβ

]

. (71)

By virtue of the above passivity property, we can now

use the input shaping methodology to design a decentralized

control scheme for regulating the voltage of (67).

Proposition 3 (Input shaping for DC Networks). Let Assump-

tions 1–3, 5 and 6 hold. Consider system (67) with the dynamic

controller

u̇ = −K−1
d (Ki (u− ū) + yDC) , (72)

where Kd and Ki are positive definite diagonal matrices of

order nα + nβ , and yDC is given by (71). Then, the solution

(I, V, u) to the closed-loop system asymptotically converges

to the desired steady-state
(

I, V ⋆, u
)

.

Proof. Consider the storage function (19). We use the inte-

grated input port-variable to shape the desired closed-loop

storage function, i.e.,

Sd = S +
1

2
(u− ū)

⊤
Ki (u− ū) . (73)

Then, the first time derivative of Sd along the trajectories of

system (67) controlled by (72) satisfies

Ṡd = −İ⊤l Rlİl − V̇ ⊤GV̇ + u̇⊤yDC + u̇⊤Ki (u− u) (74a)

= −İ⊤l Rlİl − V̇ ⊤GV̇ − u̇⊤Kdu̇, (74b)

where we use Lemma 4 and the controller (72). Then, from

(74b) there exists a forward invariant set Π and by LaSalle’s

invariance principle the solutions that start in Π converge to

the largest invariant set contained in

Π ∩
{(

I, V, İ, V̇ , u
)

: İl = 0, V̇ = 0, u̇ = 0
}

. (75)

On this invariant set, by differentiating (67d) and (67e) we

get İ = 0. Moreover, from (72) it follows that u = u, which

further implies V = V ⋆ and I = I .

The proposed decentralized control scheme is now assessed

in simulation†††, considering a DC network comprising four

†††For the readers interested also in experimental results obtained by
implementing the input shaping control methodology in a real DC microgrid
comprising boost converters, we refer to [39].
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Table III
NETWORK PARAMETERS

Node 1 2 3 4

Li (mH) 1.8 1.12 3.0 1.12
Ci (mF) 2.2 6.8 2.5 6.8
Vsi (V) 400.0 280.0 450.0 320.0
V ⋆
i (V) 380.0 380.0 380.0 380.0

G (S) 0.08 0.04 0.05 0.07
∆G (S) 0.01 0.03 −0.03 0.01

1

2

4

3

Il1

Il4

Il2

Il3

Figure 8. Scheme of the considered network with 4 power converters: Nodes
1 and 3 have buck converters, Nodes 2 and 4 have boost converters.

power converters (i.e., two buck and two boost converters)

interconnected as shown in Figure 8. The parameters of the

converters and lines are reported in Table III and [31, Table

III], respectively. The controller gains for the buck converters

are kdα = 4× 105 and kiα = 4× 107, while for the boost

converters are kdβ = 1× 106 and kiβ = 4× 107. The most

significant electrical signals of the simulation results are shown

in Figure 9. In order to verify the robustness property of the

control scheme with respect to the load uncertainty, the value

of the load is changed from G to G+∆G at the time instant

t = 1 s (see Table III). One can appreciate that the input

shaping methodology is robust with respect to load uncertainty

(see Remark 11).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented new passivity properties

for a class of RLC and s–RLC circuits that are modeled using

the Brayton-Moser formulation. We use these new passivity

properties to propose two new control methodologies: output

shaping and input shaping. The key observations are:

(i) The output shaping methodology exploits the integrability

property of the output port-variable. The input shaping

technique instead exploits the integrability property of the

input port-variable.

(ii) The controllers based on the input shaping methodology

show robustness properties with respect to load uncer-

tainty.

Possible future directions include to incorporate nonlinear

loads (e.g. constant power loads [39], [40]), develop distributed

control schemes (e.g. for achieving load sharing [41]) and

extend such a new passivity concept to a wider class of

nonlinear systems [42], [43].
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Figure 9. (Input shaping for the DC network) From the top: time evolution
of the voltage of each node, current generated by each converter and duty
cycle of each converter, considering a load variation at the time instant t =
1 s.

APPENDIX

In this Appendix we use the input shaping methodology to

design voltage controllers for the buck-boost and Cúk con-

verters, respectively. The proofs of the following Corollaries

are analogous to those of Corollaries 2 and 4 presented in

Section IV.

A. Buck-boost Converter

The average governing dynamic equations of the buck-boost

converter are the following:

−Lİ = (1− u)V − uVs

CV̇ = (1− u)I −GV.
(76)

Equivalently, system (76) can be obtained from (11) with

Γ0 = 1, Γ1 = 0, B0 = 0, B1 = 1 and R = 0. By using

Proposition 2, the following passivity property is established.

Lemma 5 (Passivity property of the buck-boost converter).

Let Assumptions 1 and 2 hold. System (76) is passive with

respect to the storage function (19) and the port-variables u̇
and y = İV − V̇ I + Vsİ .
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Table IV
SUPPLY-RATES OF RLC AND S–RLC CIRCUITS

framework supply-rate

RLC s–RLC buck boost buck-boost

Port–Hamiltonian I⊤Bus I⊤B(u)Vs = I⊤B0Vs + uI⊤ (B1 −B0)Vs uIVs IVs uIVs

Brayton–Moser İ⊤Bus - uİVs - -

Proposed İ⊤Bu̇s u̇(V̇ ⊤(Γ1 − Γ0)⊤I − İ⊤(Γ1 − Γ0)V − İ⊤(B0 −B1)Vs) u̇İVs u̇
(

İV − V̇ I
)

u̇
(

İV − V̇ I + Vsİ
)

By virtue of the above passivity property, we can now use

the input shaping methodology to design a voltage controller.

Corollary 5 (Input shaping for the buck-boost converter). Let

Assumptions 1–3, 5 and 6 hold. Consider system (76) with the

dynamic controller

u̇ = − 1

kd

(

ki (u− u) +
(

İV − V̇ I + Vsİ
))

, (77)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.

B. Cúk Converter

The average governing dynamic equations of the Cúk con-

verter are the following:

−L1İ1 = (1− u)V1 − Vs (78a)

−L2İ2 = uV1 + V2 (78b)

C1V̇1 = (1− u)I1 + uI2 (78c)

C2V̇2 = I2 −GV2. (78d)

Equivalently, system (78) can be obtained from (8) with Γ0 =
[

1 0
0 1

]

, Γ1 =

[

0 0
1 1

]

, B0 = B1 = [1 0]⊤, PR(I) = 0

and PG(V ) = 1
2GV 2

2 . By using Proposition 2, the following

passivity property is established.

Lemma 6 (Passivity property of the Cúk converter). Let

Assumptions 1 and 2 hold. System (78) is passive with respect

to the storage function (19) and the port-variables u̇ and

y = V̇1 (I2 − I1)− V1

(

İ2 − İ1

)

.

By virtue of the above passivity property, we can now use

the input shaping methodology to design a voltage controller.

Corollary 6 (Input shaping for the Cúk converter). Let As-

sumptions 1–3, 5 and 6 hold. Consider system (76) with the

dynamic ocntroller

u̇ = − 1

kd

(

ki (u− u) + V̇1 (I2 − I1)− V1

(

İ2 − İ1

))

,

(79)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to

the closed-loop system asymptotically converges to the desired

steady-state
(

I, V ⋆, u
)

.
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