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Abstract
As the fault‐based attacks are becoming a more pertinent threat in today's era of edge
computing/internet‐of‐things, there is a need to streamline the existing tools for better
accuracy and ease of use, so that we can gauge the attacker's power and a proper
countermeasure can be devised in the long run. In this regard, we propose a machine
learning (ML) assisted tool that can be used in the context of a differential fault
attack. In particular, finding the exact fault location by analysing the output difference
(typically the XOR of the nonfaulty and the faulty ciphertexts) is somewhat nontrivial.
During the literature survey, we notice that the Pearson's correlation coefficient
dominantly is used for this purpose, and has almost become the defacto standard.
While this method can yield good accuracy for certain cases, we argue that an ML‐

based method is more powerful in all the situations we experiment with. We sub-
stantiate our claim by showing the relative performances (we choose the commonly
used multilayer perceptron as our ML tool) with two variants of Grain‐128a (a stream
cipher, and a stream cipher with authentication), the lightweight stream cipher LIZ-
ARD and the lightweight block cipher SIMON‐32 (where the faults are injected at the
fifth last rounds). Our results demonstrate that a common ML tool can outperform
the correlation with the same training/testing data. We believe that our work extends
the state‐of‐the‐art by showing how traditional cryptographic methods can be replaced
by a more powerful ML tool.

1 | INTRODUCTION

Fault attacks are a common type of techniques used in the
cryptanalysis of primitives. This technique works by injecting a
disturbance on a device while it is performing a cryptographic
operation [1]. Typically, this disturbance can be induced by
means of a power glitch, LASER shot etc. It has been shown in
the study that such disturbance can be injected by an inex-
pensive equipment with a high precision [2]. With rise and
spread of the internet‐of‐things/edge computing, small‐scale
devices performing cryptographic operations are almost
ubiquitous; the fault attacks are becoming an increasing
concern for the community.

Among all the fault attack techniques, the differential fault
attack (DFA) [1, Section 5.1] is one of the most common
techniques in the symmetric key cryptographic community.

Under this model, the injected fault is able to flip one bit or
more bits of the state of the cipher being carried out on the
target device. By taking the XOR of the nonfaulty and the
faulty outputs, the attacker can learn information about
the secret key of the system. Since its first appearance, DFA is
being used extensively to cryptanalyse a variety of ciphers,
which are considered secure against the classical attacks.

Generally, it is considered that the exact location of the bits
which are affected by the fault is not known to the attacker,
while the target round is known. In other words, the attacker
can precisely control the fault in the temporal domain but not
in the spatial domain. This is termed as the random fault model
[1, Section 2.3], and is generally more practical compared to the
model where the exact fault location is known directly/chosen
by the attacker. The problem of finding the exact location of
fault is sometimes solved by carefully analysing the XOR of the
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non‐faulty and the faulty outputs of the cipher, particularly
when the authors show a simulation instead of actually per-
forming the attack (e.g. [3,4]).

Generally, finding the exact fault location is more
complicated in case of stream ciphers and stream cipher‐based
designs where the usual attack can be conceptually thought to
be composed of two distinct phases, for example [4,5]. In the
first phase, the exact location of the fault injection is deter-
mined by analysing the effect of the fault propagation (termed
as, signature) typically by using the correlation coefficient. With
the information on the flipped bit, some automated tool
(typically, a SAT solver, e.g. in [3,5]) is used to model the state,
thereby recovering it. A similar attack procedure is applied
against block ciphers as well, for example in [6].

Since finding the location of fault typically constitutes the
first step of the attack and this is done mostly in an adhoc
manner (see, e.g. [5]), we believe that the generalisation and
automation of this step will be useful for future researchers.
This motivates us to revisit several existing research and look
for possible improvements. We observe that, finding the exact
location of fault can be done by the machine learning (ML)
tools–thus providing an edge compared to the existing corre-
lation‐based method; since ML tools are generally readily
available, generalised, robust and easy‐to‐use. We use a multi-
layer perceptron (MLP) [7] for our choice of the ML tool,
which is among the first and commonly used tools.

ML, although has found its application in a lot of areas of
computer science, is relatively rare when it comes to crypt-
analysis [8,9] (ML has found its application in the context of
side channel analysis, for example in [10]). Thus our work is
among the earliest that incorporates ML in cryptographic
applications.

It can be mentioned that the scope of our work is limited in
finding the exact location of the fault in the DFA setting at the
state of the cipher (the round of the cipher at which the fault is
affected, is assumed known to the attacker). Following the
existing literature (e.g. [5]), we only consider that one bit is
flipped by the fault, though our method is likely capable to work
with multiple bit flip model as well. The next step in DFA is to
use this information to mount a state recovery and/or key re-
covery attack, which is omitted here for brevity (we recommend
to use already existing tools for this purpose, e.g. [4,5]). Also, we
only consider cryptographic faults, and as such natural faults (e.g.
due to ageing) are not within the scope. Furthermore, we keep
the discussion on DFA countermeasures out of scope for the
interest of brevity. In case DFA countermeasures are solicited;
one may refer to, for example, [11] or [1, Section 7].

Our results do not constitute the upper limit for the ML
tools. It is likely that with more training data and/or with more
sophisticated ML tool (e.g. a deeper network), the performance
can be further improved.

1.1 Our contribution

Generally the proponents of DFA assume the round, at which
the fault is injected, is known to the attacker, but the exact

location (at which a bit is flipped) is not known [12]. This
makes the attack model more practical. However, in order to
retrieve the secret information from the cipher, it becomes a
necessity to learn the exact location of the fault (i.e. which
location of the state is flipped because of the fault injection).

Thus, one fundamental problem with respect to DFA is
identifying the precise bit which is flipped as a result of the
fault injection. The current standard is, to use the correlation
coefficient, as can be seen from the existing literature [5,6,12].
While more discussion in this regard is given in Section 2.2, it
can be stated that, this method computes the mean of the
XOR of the nonfaulty and the faulty outputs over multiple
independent runs (the so‐called signature) during the offline
phase. Thus, the signature basically refers to a matrix, with
elements from [0, 1]. At the online phase (i.e. when the exact
location is to be found out), the XOR of faulty and nonfaulty
output is computed. This gives a vector of binary elements.
With each of the rows of the signature matrix, this vector is
used to compute the corresponding correlation coefficient.
The location (i.e. the row of the signature matrix) corre-
sponding to which the correlation is maximum, is taken as the
correct location of fault. It may be noted that this method is
somewhat similar to the correlation power analysis (CPA) [13],
which is used in the context of power/electromagnetic side
channel analysis. In CPA, the exact value is found by locating
the case for which the (absolute) correlation coefficient is
maximum. The same procedure (i.e. the maximum correlation
coefficient) is used in the identification of fault location too.

We propose to replace the correlation‐based method
(which comes as an adhoc approach) with a suitable supervised
ML tools for this problem. Based on simulations of fault, our
results (described in Section 3) show that an MLP, which is a
common and one of the earliest supervised learning tools, can
outperform the correlation‐based method (although the same
training/testing data are used) for a number of ciphers. We
choose two variants of the well‐studied GRAIN‐128A cipher,
one without authentication functionality and the other with
authentication [14], the lightweight stream cipher LIZARD
[15] and the lightweight block cipher SIMON‐32 [16]. For all
the ciphers, we show that an ML approach can outperform
correlation. Essentially, our work directly improves the results
of [5,6,12] among others, thus significantly contributing to the
advancement of the state‐of‐the‐art.

Note that, we assume the fault model that flips only one bit
of the state (similar to previous works like [4]), and the fault is
simulated. The effect of the fault propagation is then
computed from the XOR of the faulty and the nonfaulty
outputs.

2 | BACKGROUND

2.1 | Context of differential fault attack

Fault attacks have surely gained considerable attention of the
cryptographic research community in recent times. New types
of fault attack models, specialised countermeasures to thwart

18 - BAKSI ET AL.



those attacks, are being reported frequently, one may refer to
[1] for more details. Most, if not all ciphers are shown
vulnerable against fault attacks (unless equipped with a suitable
fault protection mechanism).

The DFA model is the earliest in the symmetric key setting
[17], and among the most commonly used models. A basic
workflow of DFA on symmetric key ciphers is shown in
Figure 1. Here the fault toggles a bit at a round (a nonfaulty
round is shown by F, and that of the faulty by F⋆) near the end
of the cipher execution [1, Section 5.1]. This creates a differ-
ence at the output (the difference is computed by C ⊕ C⋆,
where C is the nonfaulty output and C⋆ is the faulty output),
from which the secret information can be retrieved.

As noted already, generally it is assumed that the attacker is
not able to choose/decide the exact location for fault (i.e.
which particular bit will be flipped). Therefore, the attacker
attempts to find out the exact location of fault by analysing the
XOR of the nonfaulty and the faulty outputs. Thus our model
can be summarised by the following points:

� The attacker can inject a one‐bit fault, thereby flipping that
particular bit of the state. Such precision of fault location
can be achieved, for example, by LASER shot [2].

� Each bit of the state is equally likely be flipped as a result of
the fault, and the location of the fault injection is unknown
to the attacker.

� The attacker has precise control over the round of fault
injection.

2.2 | Correlation‐based method for
identifying fault location

Correlation‐based method to find fault location is the practical
standard for finding the location of the fault, as can be seen
from several research works [4,5,12,18]. For GRAIN‐128A,
LIZARD and SIMON‐32, previous results on correlation‐

based fault location identification are reported, respectively in
[5,6,12].

A summarised description for the correlation‐based dif-
ferential fault location identification is given here for
completeness, one may refer to, for example, [12] for more
information. The following notations are used:

� the fault‐free key‐stream sequence of length ℓ which the
adversary has access to: z0, z1, …, zℓ−1;

� the fault location, f;
� the ℓ‐length key‐stream obtained after injecting a fault

(faulty key‐stream): zð f Þ0 ; zð f Þ1 , …; zð f Þℓ−1.

The fault identification procedure can be roughly classified
into two phases, namely offline and online. Overall, the
attacker (Eve) at first computes the offline phase, which can be
done through simulation. We assume she can control the target
device so that she can perform the fault injection with preci-
sion. Being equipped with the information from this phase, the
attacker moves to the actual online phase of the attack.

2.2.1 Offline phase

The attacker precomputes the signature vector Q
ð f Þ for each

fault location f of the cipher. The signatures are prepared by
observing the probability of fault‐free key‐stream bits being not
equal to faulty key‐stream bits over several randomly generated
keys and nonces: Q

ðf Þ ¼ fqð f Þ0 ; qð f Þ1 ;…; qð f Þℓ−1g where qðf Þi ¼
Prðzi ≠ zð f Þi Þ.

2.2.2 Online phase

The attacker injects a fault in an unknown location g, and
calculates the trail Γ(g) of the fault location as follows:
ΓðgÞ ¼ fγ

ðgÞ
0 ; γ

ðgÞ
1 ;…; γ

ðgÞ
ℓ−1g where γ

ðgÞ
i ¼ Prðzi ≠ zðgÞi Þ.

Hence, the fault signature is a matrix of values in [0, 1]. The
number of columns of the matrix is the same as the number of
key‐stream bits and that of rows is the same as the number of
fault locations (typically the entire state).

The final goal for the attacker is to identify g. The value of f,
for which Q

ð f Þ best matches the trail Γ(g) obtained, and corre-
sponds to the correct fault location. For checking this, correla-
tion coefficient is shown to work with a good accuracy [12]. The
attacker calculates the correlation between the signature Q

ð f Þ

and trail Γ(g) for all possible values of f. This algorithm provides
the value of g with a reasonably high accuracy. The same algo-
rithm is repeated to identify fault location for all faulty key‐
stream sequences. The equations are then gathered and solved
using an automated tool, typically a SAT solver (e.g. [3]).

However, often the correct location does not have a
maximum correlation. It may so happen that the correlation
for the correct fault location is lower than that of some other
location. In this case, the location identified by the correlation‐

based method would be wrong. The rank metric measures the
number of locations where the correlation coefficients of those
locations are greater than or equal to the correlation coefficient
of the correct location. Hence, if the correlation coefficient of
the correct location is maximum, it has rank 1. Hence, if the
rank is small (close to 1), then the performance of the method
can be considered good. We also extend this notion of rank to
ML‐based fault location finding to have a comparison of
performances.

2.2.3 Visualisation of fault signatures

As signatures for a cipher are indeed a matrix with entries
from [0, 1], they can be pictorially represented. It can be

F I GURE 1 Basic idea of DFA
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mentioned that a signature works as a visual reference to the
level of diffusion the cipher achieves. For the ideal case, the
entries in the signature will be (close to) 0.5, significant de-
viation from that can be taken as an indication of low
diffusion.

Figure 2 shows examples with the ciphers. Note that, the
case for Figure 2(d), that is SIMON‐32with differential fault
being applied at the fifth last round is considered in [6].

To the best of our knowledge, the visualisation of the
signatures is done with three‐dimensional graphs throughout
the study (e.g. [4]). This makes it hard to interpret. Instead of
that, we use a two‐dimensional structure with heatmap so that
it is easier to interpret for the reader.

While it is hard to draw a direct conclusion based on the
signature, it can still be inferred that the overall nature (i.e. how
far or near entries are from 0.5) can play a role in the accuracy
of finding the exact fault location. For example, in Figure 2(c)
(which shows the case for LIZARD), most of the entries are
close to 0.5; in contrast to Figure 2(d) (the case for SIMON‐

32), where most of the entries are further away from 0.5. Thus
the performances for the correlation as well as ML‐based
methods (described in Section 3) are comparatively poor for
LIZARD than that of SIMON‐32.

2.3 | Fundamentals of artificial neural
network

ML can be loosely defined by a collection of various types of
algorithms, of which artificial neural networks (ANNs) [7] are
of particular interest. ANNs are algorithms used for fitting a
model to a given data that can perform efficiently tasks like
classification or regression, which are generally considered
difficult for a computer. ANNs are capable of finding inherent
characteristics of the training data by iterating through it
repeatedly and gradually adjusting its parameters, until these
parameters are finally stabilised. Once training is completed,
the model is validated against the testing data.

The basic processing unit of an ANN is termed as a
neuron, which is inspired from the biological neuron found in
brain cells. The neurons are arranged in a series of layers. More
depth of layers generally makes the ANN capable of handling
more complex data.

Here we use the basic forward propagation ANN. More
precisely, we use the MLP, which is among the oldest ANNs. In
anMLP, all the neurons at the previous layer are connected to all
the neurons at the next layer (those layers are known as, dense
layers). A schematic of an ANN can be found in Figure 3.

(a) (b)

(c) (d)

F I GURE 2 Visualisation of signatures
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3 | EVALUATION

3.1 | Details of machine learning model

We use a five‐layer neural network with TensorFlow1 as the
back‐end and Keras2 API. The layers can be briefly described
as:

� Layer 1. The first layer is a dense layer with a dropout rate
of 0.2 and activation function as rectifier (ReLU). The
number of neurons in the layer equals to the number of
output bits available for processing (e.g. the number of key‐
stream bits).

� Layers 2, 3, 4. The second, third and fourth layers are dense
layers with rectifier as activation functions. The number of
neurons is respectively 252, 202 and 160.

� Layer 5. The final layer is a dense layer with softmax acti-
vation (one‐hot encoding). The number of neurons in the
layer equals to the number of possible fault locations, that is
the state size in our case. The neuron with the maximum
firing rate is taken as the predictor of the class.

We compile the model with the Adam optimiser [19],
sparse categorical cross‐entropy as the loss function, accuracy
as the metric and with eight epochs3.

The hyperparameters are chosen somewhat arbitrarily, akin
to [8,9]. While it is possible to improve the accuracy by fine‐
tuning the hyperparameters, we leave it open for future
research.

3.2 | Results

For our experiment, we take 120 bits of the key‐stream from
starting of PRGA of GRAIN‐128A (for both with and without
authentication variants), and 128 bits for LIZARD. The fault in
each case is injected at the first round of PRGA. In case of
SIMON‐32 (unkeyed permutation), we assume that the fault is
injected at the fifth last round (similar to [6]).

Relative performances of the ML and correlation‐based
approaches with maximum and average ranks as the bench-
mark are presented in Figure 4 for GRAIN‐128A (without
authentication), in Figure 5 for GRAIN‐128A (with authenti-
cation), in Figure 6 for LIZARD and in Figure 7 for SIMON‐

32. Notice from Figure 7(a), the ML‐based method works with
full (1.0000) accuracy.

Some additional information is also shown in Table 1;
namely the size of the training and testing data, the accuracy
(ration of predictions that are at rank 1 compared to the total
number of predictions), average and maximum ranks and
number of wrong classification. For example, it can be seen

from Table 1 that; with the 218.000 training data, the 214.551

testing data, and the accuracy for GRAIN‐128A without
authentication for ML‐based method is 0.9988, whereas the
same for the correlation‐based method is 0.9970.

From each pair‐wise comparison, it can be observed that
ML outperforms correlation with the same training and testing
data, in each of the metrics. However, for certain ciphers, the
advantage of using ML is more apparent than other ciphers.
For example, we observe that the ML‐based method achieves
full accuracy for SIMON‐32 (can be seen from Table 1 as well
as Figure 7(a)), whereas the same for the correlation‐based
method is 0.7113.

As for the complexity of the training/testing data, we note
the following. The offline (training) phase can be simulated,
hence the data required (<219) is not a major limiting factor.
The size of the testing data used here (<215) can likely be
reduced.

We would like to emphasise that the graphs in Figures 4, 6,
and 7 show the ranks at which the correct prediction occurs.
For the best case scenario, the rank should be 1 (as in Figure 7
(a) for SIMON‐32), which would indicate that all the fault
locations are identified at the first predicted class. Higher ranks
show the accuracy of the model is worse; for example, a
comparison of Figure 7(a) with Figure 7(b) shows that the
ranks are higher for the correlation‐based method, meaning
the correlation‐based method performs worse.

4 | CONCLUSION

Here we apply an ML method to the problem of finding the
location of a fault in a symmetric key cipher. We consider one
of the most common faults, DFA, where the fault effectively
flips one bit (location of this flipped bit is unknown to the
attacker). Previous research works use a correlation coefficient‐
based method for this purpose, for example, [5,12], to name a
few. Instead of that, we propose to use a supervised ML‐based
approach. We show that a five‐layer (i.e. with three middle
layers) MLP‐based method which can outperform that of the
correlation while both are trained and tested with the same
data. The validation of our claim is done through four ciphers,
namely for two variants of GRAIN‐128A (one as a stream

F I GURE 3 Schematic of a multilayer perceptron

1https://www.tensorflow.org/
2https://keras.io/
3The trained models (in ‘.h5’ format) and the signatures (in ‘.npy’ format) are available
online: https://entuedu‐my.sharepoint.com/:f:/g/personal/anubhab001_e_ntu_edu_sg/
EmDCnoe‐sllKrmLKvQuhwkgBByxY7DDab8h4IdxjVsw6Vg?e=1ptqOX.
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cipher, while the other as a stream cipher with authentication)
[14], the lightweight stream cipher LIZARD [15] and the
lightweight block cipher SIMON‐32 [16] (the unkeyed per-
mutation variation).

We note that our work does not pose the upper bound of
ML‐based analysis. It is likely that the performance can be
improved by choosing a more sophisticated model (currently
the hype‐parameters of our model are somewhat arbitrarily

(a) (b)

F I GURE 4 Performances for machine learning and correlation‐based methods on GRAIN‐128A (without authentication)

(a) (b)

F I GURE 5 Performances for machine learning and correlation‐based methods on GRAIN‐128A (with authentication)

(a) (b)

F I GURE 6 Performances for machine learning and correlation‐based methods on LIZARD

22 - BAKSI ET AL.



chosen, similar to [8,9]), and/or using more training/testing
data. Continuing in this line of work, one may be interested in a
multibit fault (where the fault flips more than one state bits), or
the sensitivity of one particular ML model with respect to
various ciphers.
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