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Abstract. The series of published works, related to Differential Fault Attack (DFA) against the Grain
family, require (i) quite a large number (hundreds) of faults (around n lnn, where n = 80 for Grain v1 and
n = 128 for Grain-128, Grain-128a) and also (ii) several assumptions on location and timing of the fault
injected. In this paper we present a significantly improved scenario from the adversarial point of view for
DFA against the Grain family of stream ciphers. Our model is the most realistic one so far as it considers
that the cipher to be re-keyed a very few times and fault can be injected at any random location and at any
random point of time, i.e., no precise control is needed over the location and timing of fault injections. We
construct equations based on the algebraic description of the cipher by introducing new variables so that the
degrees of the equations do not increase. In line of algebraic cryptanalysis, we accumulate such equations
based on the fault-free and faulty key-stream bits and solve them using the SAT Solver Cryptominisat-2.9.5
installed with SAGE 5.7. In a few minutes we can recover the state of Grain v1, Grain-128 and Grain-128a
with as little as 10, 4 and 10 faults respectively (and may be improved further with more computational
efforts).

Keywords: Differential Fault Attack, Grain v1, Grain-128, Grain-128a, LFSR, NFSR, SAT
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1 Introduction

Fault attacks study the robustness of a cryptosystem in a setting that is weaker than its original
or expected mode of operation. Though optimistic, this model of attack can successfully be
employed against a number of proposals. In a practical setting, it is indeed possible to mount
such an attack when the number of faults is very low and we do not require precise controls over
fault injection, both in terms of exact register locations as well as timing. In this paper we achieve
these goals and present the most efficient DFA against the Grain family. Our main contribution
in this paper is to generate a large number of equations from each of the faults and further,
introduce new variables at each stage to keep the degree of each equation as low as possible.
We use the SAT solver Cryptominisat-2.9.5 [30] installed in SAGE [32] to solve the equations
towards obtaining the complete secret key.

Fault attacks have received serious attention in literature for quite some time [10, 11]. Such
attacks on stream ciphers have been studied in [21] where a typical attack scenario consists
of an adversary who can inject a random fault (using laser shots/clock glitches [28, 29]) in a
cryptographic device as a result of which one or more bits of its internal state get altered.
The faulty output from this altered device is then used to deduce information about its internal
state/secret key. Here the adversary requires certain privileges like the ability to re-key the device,
control the timing of the fault etc. The more privileges the adversary is granted, the more the
attack becomes impractical and unrealistic.



The Grain family of stream ciphers [1,2,19,20] has received a lot of attention and in particular,
Grain v1 is in the hardware profile of eStream [17]. In most of the fault attacks reported so
far [4, 8, 24] on this cipher, the adversary is granted far too many privileges to make the attacks
practical. In particular, these works consider reproducing the faults in the same location more
than once. This particular assumption has been relaxed in the work [5], where faulting the same
location more than once could be avoided. Further this work [5] considered some restricted cases
to accommodate situations when a fault affects more than one register location. For detailed
cryptanalytic results related to this family, the reader may refer to [3,7,9,13–16,18,25,26,31,33,34].

A DFA on Trivium using SAT solvers has been presented in [27] (see also [22, 23] for other
DFAs on Trivium). For more than a decade, there has been seminal research in the area of
algebraic cryptanalysis. The main idea here is to solve multivariate polynomial systems that
describe a cipher. For a very brief introduction in this, one may refer [27, Section 5]. The DFA on
Trivium [27] requires only 2 faults and this is far fewer than the fault requirements against the
Grain family. This motivates us to see how this kind of algebraic cryptanalysis can be exploited
towards DFA against Grain family.

Our Contribution. The idea of [5] considers introducing faults in all the LFSR locations.
Given an n-bit LFSR, this requires an expected n lnn fault injections which is around 28.5 for
n = 80 as in Grain v1. Our preliminary intuition was that the number of faults used in the
existing works [4,5,8,24] is considerably high. This is because, for each fault, one can generate a
significant number of equations using the faulty key-stream bits that might be enough to solve
the system. This convinced us that one actually requires a very few faults. We generated the
equations carefully, by introducing new variables at each stage, so that although the number of
variables increased, the degrees of the equations were kept in check. Since the degrees of the
equations were low, they were fed into a good SAT solver to obtain the solutions in the direction
of [27]. We found that this strategy indeed succeeds and it is possible to recover the secret key
from a very few faults (less than ten). Furthermore, all the published literature on DFAs against
the Grain family require the adversary to be able to inject fault at a precise stage of operation
i.e. at the beginning of the PRGA. In this work we will show that in Grain v1 and Grain-128,
the adversary does not need to impose such precise control over fault injections. If the adversary
is able to to inject fault at some PRGA round τ ∈ [0, τmax − 1] (the value of τmax varies for
Grain v1 and Grain-128 and is related to the algebraic structure of each cipher), then with high
probability she is able to deduce the value of τ and also the register location that the fault has
affected. The same can not be reproduced for Grain-128a because the cipher does not make all
the key-stream bits directly available to the attacker. Thus, we have the following advantages.

– We require very few faults and thus the actual hardware will be minimally stressed and the
DFA can be implemented in practice.

– So far all the DFAs on Grain family considered injecting fault either in the LFSR or in the
NFSR. Here we can tackle the cases where fault is injected randomly considering both the
LFSR and the NFSR at the same time.

– We also improve upon the technique of fault location identification proposed in [5] by in-
troducing two new sets of signature vectors Q3

φ,Q
4
φ ∈ {0, 1}2n (in addition to the two sets

Q1
φ,Q

2
φ ∈ {0, 1}2n described in [5]) so that the probability of success in exact fault location

identification improves.
– For Grain v1 and Grain-128 we outline techniques that allows the adversary to relax require-

ments related to the timing of fault injections.
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Table 1 summarizes the contribution of our work with previous work in this topic.

Table 1. Comparison of this work with previous DFA′s on Grain

CHES 2012 [4] Indocrypt 2012 [5] This work

Grain v1 29.05 28.45 10
# Faults Grain-128 - 29.27 4

Grain-128a - 29.27 10

Faults in LFSR LFSR LFSR/NFSR/Both

Control over Grain v1 Required Required Not Required
Fault Grain-128 Required Required Not Required
Timing Grain-128a Required Required Required

Distinguish No Yes Yes
multiple bit-fault

2 Algebraic description of the Grain family

Consider ai, bi, ci ∈ {0, 1} for i ∈ [0, . . . , n − 1]. Any cipher in the Grain family consists of an
n-bit LFSR and an n-bit NFSR (see Figure 1). The update function of the LFSR is given by the
equation

yt+n = f(Yt) =
n−1
⊕

i=0

ciyt+i,

where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the tth clock
interval and f is a linear function on the LFSR state bits obtained from a primitive polynomial
in GF (2) of degree n.

The NFSR state is updated as

xt+n = yt ⊕ g(Xt) = yt ⊕ g(xt, . . . , xt+n−1).

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state at the tth clock
interval and g is a non-linear function of the NFSR state bits. It may very well happen that g is
degenerate on some of its variables, i.e., all the NFSR bits may not contribute in the function g.

The output key-stream is produced by combining the LFSR and NFSR bits as

zt =
n−1
⊕

i=0

biyt+i ⊕
n−1
⊕

i=0

aixt+i ⊕ h(yt, . . . , yt+n−1, xt, . . . , xt+n−1),

where h is a non-linear Boolean function, and may be degenerate on some of the variables.

Key Scheduling Algorithm (KSA). The Grain family uses an n-bit key K, and an m-bit
initialization vector IV , with m < n. The key is loaded in the NFSR and the IV is loaded in
the 0th to the (m− 1)th bits of the LFSR. The remaining mth to (n− 1)th bits of the LFSR are
loaded with some fixed pad P ∈ {0, 1}n−m. Then, for the first 2n clocks, the key-stream bit zt is
XOR-ed to both the LFSR and NFSR update functions.

Pseudo-Random key-stream Generation Algorithm (PRGA). After the KSA, zt is no
longer XOR-ed to the LFSR and the NFSR but it is used as the Pseudo-Random key-stream bit.
Thus, during this phase, the LFSR and NFSR are updated as yt+n = f(Yt), xt+n = yt ⊕ g(Xt).
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Fig. 1. Structure of Stream Cipher in Grain Family

MAC Generation Algorithm (MGA) in Grain-128a. Grain-128a [1, 2] also considers
generation of MAC. Here we follow the description given in [2]. Let z0, z1, z2, . . . denote the key-
stream bits produced by the cipher. Assume that we have a message of length L defined by
the bits m0, . . . ,mL−1. Set mL = 1 as padding. To provide authentication, two registers, called
accumulator and shift register of size 32 bits each, are used. The content of accumulator and
shift register at time t is denoted by a0t , . . . , a

31
t and rt, . . . , rt+31 respectively. The accumulator

is initialized through a
j
0 = zj, 0 ≤ j ≤ 31 and the shift register is initialized through rj =

z32+j, 0 ≤ j ≤ 31. The shift register is updated as rt+32 = z64+2t+1. The accumulator is updated
as ajt+1 = a

j
t ⊕ mtrt+j for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L. The final content of accumulator,

a0L+1, . . . , a
31
L+1 is used for authentication. For fault attack, we need to consider the key-stream

bits and thus it is important to note that we cannot use the first 64 bits of key-stream and also
then each alternative key-stream bit as those are used in MAC for Grain-128a.

3 Description of the attack using SAT solver

Let us first consider that the exact location (only a single register) of the fault is known. We
will later (in Section 4) discuss the issues related to (1) how we can obtain the exact location of
the fault after injecting the fault at a random location, (2) how we can reject the cases where
fault has disturbed more than one locations and (3) how he can guess the time of injection of
a randomly timed fault. To explain our idea for exploiting the SAT solver more precisely, let us
now consider that the fault will be injected after the KSA, i.e., just before the PRGA starts.

3.1 Populating the bank of equations for Grain v1 and Grain-128

We will now explain the method of obtaining a large number of equations that will be used for
algebraic cryptanalysis. For the time being we will consider the case that will work for Grain v1
or Grain-128. The case of Grain-128a will be little different that we will discuss next.

Equations from fault-free key-stream Let us first consider the equations from the ℓ-bit fault-
free key-stream z0, . . . , zℓ−1. As discussed, the LFSR state just after the KSA (at the beginning of
the 0-th clock) is Y0 = [y0, y1, . . . , yn−1] and the NFSR state is X0 = [x0, x1, . . . , xn−1]. In general,
the value of ℓ required to complete the attack is more than 160 for all the three versions of Grain.
But it is not feasible to compute the Algebraic Normal Form (ANF) of z159 on any standard PC,
for any version of Grain. For example using a workstation with 1.83 GHz processor, 3 GHz RAM
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Table 2. Exact description of the three ciphers following [5].

Grain v1 Grain-128 Grain-128a
n 80 128 128
m 64 96 96
Pad FFFF FFFFFFFF FFFFFFFE

f(·) yt+62 ⊕ yt+51 ⊕ yt+38 yt+96 ⊕ yt+81 ⊕ yt+70 yt+96 ⊕ yt+81 ⊕ yt+70

⊕yt+23 ⊕ yt+13 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt
xt+62 ⊕ xt+60 ⊕ xt+52

⊕xt+45 ⊕ xt+37 ⊕ xt+33

xt+28 ⊕ xt+21 ⊕ xt+14 yt ⊕ xt ⊕ xt+26⊕ yt ⊕ xt ⊕ xt+26⊕

xt+9 ⊕ xt ⊕ xt+63xt+60⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕

xt+37xt+33 ⊕ xt+15xt+9 xt+3xt+67 ⊕ xt+11xt+13 xt+3xt+67 ⊕ xt+11xt+13

g(·) xt+60xt+52xt+45 ⊕ xt+33 ⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕xt+17xt+18 ⊕ xt+27xt+59

xt+28xt+21 ⊕ xt+63xt+60 ⊕xt+40xt+48 ⊕ xt+61 ⊕xt+40xt+48 ⊕ xt+61

xt+21xt+15 ⊕ xt+63xt+60 xt+65 ⊕ xt+68xt+84 xt+65 ⊕ xt+68xt+84

xt+52xt+45xt+37 ⊕ xt+33 ⊕xt+88xt+92xt+93xt+95

xt+28xt+21xt+15xt+9⊕ ⊕xt+22xt+24xt+25⊕

xt+52xt+45xt+37xt+33 xt+70xt+78xt+82

xt+28xt+21

yt+3yt+25yt+46 ⊕ yt+3

yt+46yt+64 ⊕ yt+3yt+46 xt+12xt+95yt+95 ⊕ xt+12 xt+12xt+95yt+94 ⊕ xt+12

h(·) xt+63 ⊕ yt+25yt+46xt+63⊕ yt+8 ⊕ yt+13yt+20 ⊕ xt+95 yt+8 ⊕ yt+13yt+20 ⊕ xt+95

yt+46yt+64xt+63 ⊕ yt+3 yt+42 ⊕ yt+60yt+79 yt+42 ⊕ yt+60yt+79

yt+64 ⊕ yt+46yt+64 ⊕ yt+64

xt+63 ⊕ yt+25 ⊕ xt+63

xt+1 ⊕ xt+2 ⊕ xt+4⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕

zt xt+10 ⊕ xt+31 ⊕ xt+43 xt+45 ⊕ xt+64 ⊕ xt+73 xt+45 ⊕ xt+64 ⊕ xt+73

xt+56 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h

and 2 MB system cache, computing the ANF of any zℓ in Grain v1, for ℓ > 44 is infeasible. The
ANF of z44 itself has algebraic degree 17 and consists of 80643 monomials.

Also we have to keep in mind that we expect to solve these solutions using SAT solver.
SAT solvers solve a polynomial equation system by converting the ANF′s to their equivalent
Conjunctive Normal Forms (CNF′s). As we will see in Section 3.3, the representation of each
degree d monomial requires d + 1 CNF clauses. Thus to enable the SAT solver to solve the
system efficiently, the degrees of the expressions in the equation system must also be controlled.

In order to overcome both limitations, we use a technique popularly used in ANF-CNF con-
versions [6]. At each PRGA round t > 0, we introduce two new variables yt+n, xt+n to update the
LFSR and NFSR state respectively. To illustrate the technique, let us denote the states at the
beginning of the t-th (t ≥ 0) PRGA round as

Yt = [yt, yt+1, . . . , yt+n−1], Xt = [xt, xt+1, . . . , xt+n−1].

Given these, we formulate the following equations.

1. LFSR equation: yt+n = f(Yt).

2. NFSR equation: xt+n = yt ⊕ g(Xt).

3. Key-stream equation: zt =
⊕n−1

i=0 biyt+i ⊕
⊕n−1

i=0 aixt+i ⊕h(yt, . . . , yt+n−1, xt, . . . , xt+n−1).

In the Grain family, while the first equation is linear, the degrees of the other two equations are
also not very high. We initially start with 2n variables, y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1. Then
corresponding to each key-stream bit zt, we introduce two new variables yt+n, xt+n and obtain
three more equations. Thus we have in total 2n + 2ℓ variables and 3ℓ equations. The advantage
of using such a technique is as follows.

5



• First of all it allows us to formulate the expression for zℓ (via a series of equations) for values
of ℓ ≥ 159. Instead, if at each round t > 0, the variables yt+n, xt+n were replaced by their
equivalent algebraic expressions in y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1, this would never have
been possible on an ordinary PC.

• Since the expressions in the LFSR and NFSR cells always stay linear, this allows us to control
the algebraic degree and the number of monomials in each of the 3ℓ equations so obtained.

Equations from faulty key-streams We use a similar technique to extract equations from
faulty key-streams. Let us assume that a fault is injected in the LFSR location φ at PRGA round 0.
The same method will work if the fault is injected in the NFSR. Since we re-key the cipher with the
same Key-IV before injecting a fault, after fault injection we obtain the state y0, y1, . . . , yφ−1, 1⊕
yφ, yφ+1 . . . , yn−1 and x0, x1, . . . , xn−1 at the start of PRGA. Then corresponding to each key-

stream bit zt, we introduce two new variables y
(φ)
t+n, x

(φ)
t+n and obtain three more equations. Thus

we have additional 2ℓ variables and 3ℓ equations.

Total number of variables and equations Given that we introduce ν faults after these many
re-keyings, the total number of variables is 2n + 2(ν + 1)ℓ and the total number of equations is
3(ν + 1)ℓ.

3.2 Populating the bank of equations for Grain-128a

We will now explain the formation of equations for Grain-128a. Here the first 64 key-stream bits
z0, . . . , z63 and every other (alternating) key-stream bits thereafter are used to construct MAC.
Hence these bits are unavailable to the attacker.

Equations from fault-free key-stream Let us first consider the equations from the ℓ-bit fault-
free key-stream z64, z66, . . . , z64+2ℓ−2 as only alternative key-stream bits are used for encryption.
Hence, similar to the above, we have the following equations.

1. 2 LFSR equations: yt+n = f(Yt) and yt+n+1 = f(Yt+1).

2. 2 NFSR equations: xt+n = yt ⊕ g(Xt) and xt+n+1 = yt+1 ⊕ g(Xt+1).

3. 1 Key-stream equation: zt =
⊕n−1

i=0 biyt+i ⊕
⊕n−1

i=0 aixt+i ⊕h(yt, . . . , yt+n−1, xt, . . . , xt+n−1).

We initially start with 2n variables, y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1. Then corresponding to
each key-stream bit zt, we introduce four new variables yt+n, yt+n+1, xt+n, xt+n+1 and obtain five
more equations. Thus we have in total 2n+ 4ℓ variables and 5ℓ equations.

Equations from faulty key-streams Let us consider that a fault is injected in the LFSR
location φ at the beginning of the PRGA. Again, the method works similarly if the fault is
injected in the NFSR. Since we will re-key the cipher with the same Key-IV, in such a case we
will obtain the state y0, y1, . . . , yφ−1, 1⊕yφ, yφ+1 . . . , yn−1 and x0, x1, . . . , xn−1. Then corresponding

to each key-stream bit zt, we introduce four new variables y
(φ)
t+n, y

(φ)
t+n+1, x

(φ)
t+n, x

(φ)
t+n+1 and obtain

five more equations. Thus we have additional 4ℓ variables and 5ℓ equations.
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Total number of variables and equations Given that we introduce ν faults after these many
re-keyings, the total number of variables is 2n+4(ν+1)ℓ and the total number of equations is 5(ν+
1)ℓ. All these equations are used in the SAT solver to obtain y0, y1, . . . , yn−1 and x0, x1, . . . , xn−1.
This completes the attack. As the ciphers in the Grain family are invertible both in KSA and
PRGA, one can also get the secret key efficiently.

3.3 Using the SAT Solver

To solve polynomial systems of multivariate equations by SAT solvers, the attacker initially
converts the system from Algebraic Normal Form (ANF) to Conjunctive Normal Form (CNF).
We will show some standard techniques of how this can be done:

Conversion of monomials Any monomial of the form x1x2 · · · xd is first equated to another
variable β (say). The tautological equivalent of β = x1x2 · · · xd is β ⇔ x1x2 · · · xd, which is
same as the boolean expression β XNOR x1x2 · · · xd. This therefore can be expressed as

(β ∨ x1) ∧ (β ∨ x2) ∧ · · · ∧ (β ∨ xd) ∧ (β ∨ x1 ∨ x2 ∨ · · · ∨ xd)

As can be seen this adds d+ 1 clauses to the system each of which need to be TRUE for the
correct solution.

Conversion of linear expressions A linear system of the form x1 + x2 + . . . + xk = 1 can
be expressed equivalently as the boolean expression x1 XOR x2 XOR · · · xk. For example
x1 + x2 + x3 + x4 = 1 can be expressed as

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)∧

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

A linear system of the form x1+x2+ . . .+xk = 0 can be expressed equivalently as the boolean
expression (x1 XOR x2 XOR · · · xk)

′. For example x1 + x2 + x3 = 1 can be expressed as

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Conversion of large XOR chains In the above system, the number of clauses obtained de-
pends on the value k. it can easily be shown that this number is 2k−1. To prevent accumulation
of such large chain of clauses, we introduce dummy variables γi at each stage. For example,
x1 + x2 + . . .+ xk = 0 is equivalent to:

x1 + x2 + x3 + γ1 = 0, γ1 + x4 + x5 + γ2 = 0, · · · γM + xk−2 + xk−1 + xk = 0.

This gives rise to M = k
2
− 1 equations each having 24−1 = 8 clauses.

Example 1. To solve the equation system x1x2+x2x3+x4 = 0, x2x3+x3+x1 = 0, we translate
the system into the following form [1] β1 = x1x2, [2] β2 = x2x3, [3] β1 + β2 + x4 = 0, [4]
β2 + x3 + x1 = 0.

[1] gives us (β1 ∨ x1) ∧ (β1 ∨ x2) ∧ (β1 ∨ x1 ∨ x2) = TRUE.
[2] gives us (β2 ∨ x2) ∧ (β2 ∨ x3) ∧ (β2 ∨ x2 ∨ x3) = TRUE.
[3] gives us (β1 ∨ β2 ∨ x4) ∧ (β1 ∨ β2 ∨ x4) ∧ (β1 ∨ β2 ∨ x4) ∧ (β1 ∨ β2 ∨ x4) = TRUE.
[4] gives us (x1 ∨ β2 ∨ x3) ∧ (x1 ∨ β2 ∨ x3) ∧ (x1 ∨ β2 ∨ x3) ∧ (x1 ∨ β2 ∨ x3) = TRUE.

After the system of algebraic equations have been converted to their equivalent CNF, they
are passed on to the SAT solver for extracting a solution.
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4 How to identify the location of a random fault

Initially, we will assume that the adversary is able to inject faults at the beginning of the PRGA.
In the next section, we will relax this requirement and show how to deduce the injection time of
a randomly timed fault (for Grain v1 and Grain-128). Now so far, in all the published literature
on fault analysis of Grain [4, 5, 8, 24], either the LFSR or the NFSR has been chosen for fault
injection. Techniques have been proposed in all of the above works, to identify the location of a
randomly applied bit fault in the internal state, provided the adversary knows apriori whether it
is the LFSR or the NFSR she is injecting faults in. In the attack we propose, the adversary does
not need apriori knowledge of this information, i.e., she injects a fault in a random bit location
of the internal state without knowing whether the fault has affected a location in the LFSR or
the NFSR. We will propose a technique (along the lines of [5]) that will enable the adversary to
not only identify the location of an injected fault but also help him determine whether the fault
was injected in the LFSR or NFSR.

The idea of determining the location of a randomly applied fault in the LFSR of the Grain
family by comparing the difference of the faultless and faulty key-stream sequence with certain
pre-computed signature vectors was first introduced in [4]. This technique however required the
adversary to be able to fault the same LFSR location more than once to conclusively determine
the fault location. This idea was further developed in [5] where the differential key-stream was
compared with two sets of vectors called the First and Second signature vectors. Using this
technique it was no longer necessary to fault the same location more than once and it enabled
the adversary to exercise less control over fault injections.

4.1 First and Second signature Vectors

We will summarize the basic ideas in [4,5]. Consider 2 initial PRGA states S and Sφ which differ
only in the LFSR location φ i.e. Sφ is produced when a random fault toggles the LFSR location
φ of S. Let Z = [z0, z1, z2, . . .] and Zφ = [zφ0 , z

φ
1 , z

φ
2 , . . .] be the faultless and faulty key-stream

sequence produced by S and Sφ respectively.

a. At certain PRGA rounds i, zi and z
φ
i are guaranteed to be equal, irrespective of the exact

value of S. This is because at each PRGA round i, only a few bits of the internal state are
used to produce zi. Therefore at all rounds i when the faulty and faultless internal states differ
in bit locations which have no contribution towards zi, the faulty and faultless key-stream
bits are guaranteed to be equal.

b. Furthermore at certain other PRGA rounds j, zj and z
φ
j are guaranteed to be unequal for all

values of S. Again certain bits of the internal state are linearly xor-ed to the output function
h to produce the output key-stream bit. It is when an induced fault causes a deterministic
difference between S and Sφ in an odd number of these bits that the output bits are guaranteed
to be unequal.

c. For every fault location φ (0 ≤ φ < n) in the LFSR, one can define [5] two 2n length vectors
Q1
φ,Q

2
φ (called the First and Second signature Vectors for the location φ) as follows:

Q1
φ(i) =

{

1, if zi = z
φ
i , ∀ S,

0, otherwise.
Q2
φ(i) =

{

1, if zi 6= z
φ
i , ∀ S,

0, otherwise.

The signature vectors can be efficiently computed by performing analysis of the differential
trail of the Grain PRGA following the methods described in [5].
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d. The location identification algorithm consists of comparing Eφ = Z ⊕Zφ with Q1
φ, Q

2
φ for all

φ ∈ [0, n− 1] and finding a match. For any element V ∈ {0, 1}2n, define the support of V as

ΠV = {i : 0 ≤ i < 2n, V (i) = 1}.

Now define a relation � in {0, 1}2n such that for 2 elements V1, V2 ∈ {0, 1}2n, V1 � V2 if ΠV1 ⊆
ΠV2 . For the correct value of φ, ΠQ1

φ
⊆ ΠEφ , ΠQ2

φ
⊆ Π1⊕Eφ and hence Q1

φ � Eφ, Q2
φ � 1⊕Eφ.

So the strategy is to formulate the first candidate set Ψ0,φ = {ψ : 0 ≤ ψ ≤ n− 1, Q1
ψ � Eφ}.

If |Ψ0,φ| is 1, then the single element in Ψ0,φ will give us the fault location φ. If not, we then
formulate the second candidate set Ψ1,φ = {ψ : ψ ∈ Ψ0,φ, Q2

ψ � 1 ⊕ Eφ}. If |Ψ1,φ| is 1, then
the single element in Ψ1,φ will give us the fault location φ. If Ψ1,φ has more than one element,
then the strategy fails.

4.2 Our results

We use the basic technique outlined in [5], but with a few tweaks. First of all, the work in [5]
considers faults in LFSR locations only. We have extended the technique to determine the location
of a fault introduced in either the LFSR or the NFSR. For this we increase the number of pre-
computed first and second signature vectors to 2n, i.e. one for each register location in the NFSR
and LFSR. We now compare the differential vector Eφ with the first and second signature vectors
of all the 2n register locations using the strategy outlined in [d]. After the comparison with the
signature vectors the algorithm will either output

1. The LFSR or NFSR location φ of the induced fault, OR
2. If |Ψ1,φ| > 1, then it outputs a failure message.

Further, we also introduce two additional signature vectors over the two described in [5].
We performed computer experiments by simulating random single bit faults for 220 randomly

chosen Key-IVs. The probability that the new algorithm identifies the correct fault location in
the LFSR or the NFSR i.e. P (|Ψ1,φ| = 1) is around 1.00 for Grain v1, 1.00 for Grain-128 and
0.81 for Grain-128a (improving the success probabilities of [5] that were around 0.99 for Grain
v1, 1.00 for Grain-128 and 0.79 for Grain-128a).

4.3 Improving the success probabilities: Third and Fourth signature Vectors

While the probabilities of success of fault location identification are very high (close to 1) for both
Grain v1 and Grain-128, it is around 0.79 for Grain-128a. One of the reasons why the success
probability relatively low for Grain-128a is because the cipher does not make each and every
key-stream bit directly available to the adversary. As has been explained, the key-stream bits of
the first 64 rounds and every alternate round thereafter contribute to the computation of the
MAC and is not directly available to the adversary. This limits the information available to the
location identification algorithm and hence the slightly low success probability.

This leaves plenty of room for improving the success probabilities towards 1. We already
know that given a single bit fault in the internal state of the cipher, the faulty and the faultless
key-streams at certain PRGA rounds are guaranteed to be equal and they are also guaranteed to
be different at certain other rounds. However there may be situations when the difference of the
faulty and faultless key-stream bits at a certain PRGA round i i.e. zi⊕z

φ
i is deterministically equal

or unequal to the difference of the faulty and faultless key-stream bits at some other PRGA round
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j even though the difference of these bits at either rounds i or j themselves is not guaranteed to
be either 0 or 1.

That is to say zi ⊕ z
φ
i = zj ⊕ z

φ
j holds for all values of S, even if zi = z

φ
i , zj = z

φ
j or

zi = z
φ
i ⊕ 1, zj = z

φ
j ⊕ 1 does not hold. Alternatively, for some other values of i, j, φ, we may get

zi ⊕ z
φ
i = 1⊕ zj ⊕ z

φ
j for all values of S, even if zi = z

φ
i ⊕ 1, zj = z

φ
j or zi = z

φ
i , zj = z

φ
j ⊕ 1 does

not hold. We will explain the occurrence of these events with the help of the following theorem.

Theorem 1. Let S, Sφ be two internal states in Grain that differ only in the LFSR location φ

at the beginning of the PRGA. Then for certain values of φ, there exists integers t0, t1 such that

if δt0 = zt0 ⊕ z
φ
t0
, & δt1 = zt1 ⊕ z

φ
t1
, then

A. Even if δt0 = 0, δt1 = 0 or δt0 = 1, δt1 = 1 does not hold for all values of S, δt0 = δt1 always

holds.

B. Even if δt0 = 0, δt1 = 1 or δt0 = 1, δt1 = 0 does not hold for all values of S, δt0 = 1 ⊕ δt1
always holds.

Proof. To prove this, we will require the tool D-Grain(φ, r) proposed in [5, Section 2.1] that can
be used to analyze all the 3 versions of Grain. Briefly recalling, D-Grain(φ, r) is an algorithm
that performs simple truncated differential analysis of the Grain cipher. It takes two inputs: (a)
the difference location φ ∈ [0, n − 1] of the LFSR, and (b) the number of PRGA rounds r for
which the analysis is to be performed. The algorithm initializes a differential engine ∆φ-GRAIN,
which consists of an n-integer LFSR and NFSR with the same taps as a given version of Grain,
but with different update functions. Table 3 presents a comparison.

Table 3. The engine ∆φ-GRAIN

Grain cipher ∆φ-GRAIN

LFSR Update yt+n = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa ut+n = ut + ut+f1 + ut+f2 + . . .+ ut+fa mod 2

NFSR Update xt+n = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb) vt+n = ut + 2 ·OR(vt, vt+g1 , . . . , vt+gb)

Here Lt = [ut, ut+1, . . . , ut+n−1] and Nt = [vt, vt+1, . . . , vt+n−1] denote respectively the LFSR
and NFSR states of ∆φ-GRAIN at the PRGA round t and OR is a map from Z

b+1 → {0, 1} which
roughly represents the logical ‘or’ operation and is defined as

OR(k0, k1, . . . , kb) =

{

0, if k0 = k1 = k2 = · · · = kb = 0,
1, otherwise.

Let us define the equation for output key-stream bit in Grain as (this accommodates all the 3
versions of Grain)

zt =
c

⊕

k=1

xt+lk ⊕
d

⊕

k=1

yt+ik ⊕ h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw)

Now we define the vectors (for 0 ≤ t < r)

χt = [vt+l1 , . . . , vt+lc , ut+i1 , . . . , ut+id ], ηt = [xt+l1 , . . . , xt+lc , yt+i1 , . . . , yt+id ]

Υt = [ut+h1 , . . . , ut+he , vt+j1 , . . . , vt+jw ], θt = [yt+h1 , . . . , yt+he , xt+j1 , . . . , xt+jw ].

10



The key-stream element ∆zt output from the engine ∆φ-GRAIN is given as

∆zt =







0, if Υt = 0 AND χt ⊑ 1 AND |χt| is even
1, if Υt = 0 AND χt ⊑ 1 AND |χt| is odd
2, otherwise.

V ⊑ α, implies that all elements of V are less than or equal to α. The algorithm D-Grain(φ, r)
initializes the LFSR and NFSR of ∆φ-GRAIN to all 0′s except the φth LFSR element which is
initialized to 1. It then runs the engine for r PRGA rounds. For each t, (0 ≤ t < r) it returns
the 3-tuple [χt, Υt, ∆zt].

• χt and Υt that contain elements from {0, 1, 2, 3}.
• ∆zt which is an integer from the set {0, 1, 2}.

Let us denote the symbols St = Xt||Yt and S
φ
t = X

φ
t ||Y

φ
t the corresponding internal states at

round t, which differed in the LFSR location φ at the beginning of the PRGA. Also ηφt , θ
φ
t are the

tth round vectors of Sφt that contribute to the output key-stream bit as a linear mask and input
to the function h respectively. Then it has been proven in [5], that if the ith element of χt (Υt) is

(1) 0, then the ith bits of ηt and η
φ
t (θt and θ

φ
t ) is equal for all values of S,

(2) 1, then the ith bits of ηt and η
φ
t (θt and θ

φ
t ) is unequal for all values of S,

(3) 2 or 3, then the difference between the ith bits of ηt and η
φ
t (θt and θ

φ
t ) is probabilistic.

Similarly, if ∆zt is 0 or 1, it implies that zt and z
φ
t are respectively equal or unequal for all S.

However if this output is 2 then the difference is probabilistic.
Consider the situation when for some particular value of φ the output in the tth0 PRGA round

of D-Grain(φ, r) i.e. [χt0 , Υt0 , ∆zt0 ] be such that (i) Υt0 = 0 and (ii) χt0 has all but one element
equal to 0, and this non-zero element is strictly greater than 0, i.e. vt0+lw > 1 for some w ≤ c

and all other vt0+lk , ut0+ik equals 0. Then following (1) - (3), for all values of S, we must have
θt0 = θ

φ
t0

and ηt0 and ηφt0 have all but their wth element deterministically equal. Let us call the
difference of the wth elements of these vectors equal to δ. If P(·) denotes the GF(2) sum of the
elements of a vector, then we have

δt0 = zt0 ⊕ z
φ
t0
= P(ηt0)⊕ h(θt0)⊕ P(ηφt0)⊕ h(θφt0) = δ

Consider the output of D-Grain(φ, r) at the PRGA round t1 = t0 − le + lw for some le < lw.
Note that due to the evolution of the LFSR of ∆φ-GRAIN the difference of the eth element of χt1
must be equal to the wth element of χt0 . Now if (iii) all the remaining elements of χt1 and the
entire of Υt1 are all 0′s then following the previous argument we have

δt1 = zt1 ⊕ z
φ
t1
= P(ηt1)⊕ h(θt1)⊕ P(ηφt1)⊕ h(θφt1) = δ

Thus at PRGA rounds t0, t1 we have δt0 = δt1 = δ, even though δ itself is not deterministic.
Now all that remains to be shown is that for every version of Grain, there exist values of φ, t0, t1
for which the conditions (i),(ii),(iii) hold. This can be shown by construction i.e. for each version
of Grain, we need to construct the engine ∆φ-GRAIN for all values of φ and check the outputs
of this engine for sufficiently large values of r. Experimental results have shown that for all the
three versions of Grain, taking r = 2n, there exist such pairs t0, t1 for almost all values of φ.

Part B of the proof can be arrived at by following similar arguments. Consider some other
PRGA round t1 = t0 − le′ + lw for some le′ < lw. Then the difference of the e′-th element of
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χt1 must be equal to the wth element of χt0 . Now if (iv) Υt1 = 0 and (v) there exists some w′

such that χt1 [w
′] = 1 and all the remaining elements of of χt1 is 0, this implies that (vi) all

elements of θt1 and θ
φ
t1

are deterministically equal and (vii) the w′-th elements of ηt1 and η
φ
t1

are deterministically unequal, (viii) the difference δ between the e′-th element of ηt1 and ηφt1 is

probabilistic and (ix) all other elements of ηt1 and ηφt1 are deterministically equal. Then,

δt1 = zt1 ⊕ z
φ
t1
= P(ηt1)⊕ h(θt1)⊕ P(ηφt1)⊕ h(θφt1) = 1⊕ δ

Thus at PRGA rounds t0, t1 we have δt0 = 1⊕ δt1 = δ even though δ is non-deterministic. As
above, the existence of φ for which there exist PRGA rounds t0, t1 that satisfy (i),(ii),(iv),(v)
for all the three versions of Grain, can be shown by construction. Also, the above analysis may
be similarly extended for the case when the difference at the beginning of the PRGA exists in
some NFSR location. ⊓⊔

Example 2. Let S, S0 be two internal states in Grain v1, that differ only in the LFSR location 0
at the beginning of the PRGA. Then although z41 = z041, z66 = z066 or z41 = z041⊕ 1, z66 = z066⊕ 1
does not hold for all values of S, z41 ⊕ z041 = z66 ⊕ z066 always holds.

Example 3. Let S, S38 be two internal states in Grain v1, that differ only in the LFSR location
38 at the beginning of the PRGA. Then although z79 = z3879 , z104 = z38104⊕1 or z79 = z3879⊕1, z104 =
z38104 ⊕ 1 does not hold for all values of S, z79 ⊕ z3879 = z104 ⊕ z38104 ⊕ 1 always holds.

Now by performing a differential trail analysis using D-Grain(φ, r) for all the register loca-
tions φ in the LFSR and the NFSR we will obtain a set of PRGA rounds for most of the register
locations at which the difference between the faulty and faultless key-stream bits are thus related.
This fact can be further utilized to improve the success probability of the identification algorithm.
For example, suppose the given identification algorithm using the first two signature vectors, nar-
rows down the set Ψ1,φ to {0, 25}. Now suppose, we observe that z41 ⊕ z

φ
41 = 1 ⊕ z66 ⊕ z

φ
66. We

can immediately conclude that φ 6= 0, and hence φ = 25 must be the actual fault location.
We will now formalize the above ideas by first defining the Third and Fourth signature

vectors Q3
φ,Q

4
φ ∈ {0, 1}2n that had not been considered in [5]. Index the n NFSR locations as

0, 1, . . . , n− 1 and the n LFSR locations as n, n+ 1, . . . , 2n− 1. Then for every register location
φ ∈ [0, 2n− 1] define the set of tuples

Cφ3 = {(i, j) : i 6= j and zi ⊕ z
φ
i = zj ⊕ z

φ
j = δ, ∀ S, but 0 < P (δ = 0) < 1}

and Cφ4 = {(i, j) : i 6= j and zi ⊕ z
φ
i = zj ⊕ z

φ
j ⊕ 1 = δ, ∀ S, but 0 < P (δ = 0) < 1}

Now we define Q3
φ,Q

4
φ as

Q3
φ(i) = Q3

φ(j) =

{

max(i, j), if (i, j) ∈ Cφ3
0, otherwise.

Q4
φ(i) = Q4

φ(j) =

{

max(i, j), if (i, j) ∈ Cφ4
0, otherwise.

The max() function has been chosen to ensure that for two distinct pairs (i0, j0) 6= (i1, j1) ∈ Ct
φ,

we have Qt
φ(i0) 6= Qt

φ(i1). Now for φ to be the correct fault location for some differential vector

Eφ we must have Eφ(i) = Eφ(j) whenever Q3
φ(i) = Q3

φ(j) 6= 0 and Eφ(i) = 1⊕ Eφ(j) whenever

Q4
φ(i) = Q4

φ(j) 6= 0. Let us denote these conditions by the notations Eφ
⊳Q3

φ and Eφ
⊳Q4

φ.
So let us formally define our fault location identification algorithm.
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e. Let Ψ1,φ be the set of candidate fault locations obtained after performing step [d] in the
previous subsection.

f. Formulate the set Ψ2,φ = {φ : φ ∈ Ψ1,φ and Eφ
⊳Q3

φ}. If |Ψ2,φ| = 1, the output the only element
in Ψ2,φ.

g. Else, formulate the set Ψ3,φ = {φ : φ ∈ Ψ2,φ and Eφ
⊳Q4

φ}. If |Ψ3,φ| = 1, the output the only
element in Ψ3,φ. If |Ψ3,φ| > 1, then our strategy fails.

We again performed computer experiments by simulating random single bit faults for 220 ran-
domly chosen Key-IVs. The probability that the new algorithm identifies the correct fault location
in the LFSR or the NFSR i.e. Prob(|Ψ3,φ| = 1) is around 1.00 for Grain v1, 1.00 for Grain-128
and 0.81 for Grain-128a.

Implication of the success probabilities In Table 4, the number of faults required to deter-
mine the internal states of Grain v1, Grain-128 and Grain-128a are given. As can be seen, the
attack may be carried out in very little time by employing around 10, 4, 10 faults for Grain v1,
Grain-128 and Grain-128a family. While the probabilities of success of fault location identifica-
tion are very high (close to 1) for both Grain v1 and Grain-128, it is around 0.81 for Grain-128a.
Since the success probabilities in Grain v1 and Grain-128 are very high, it is expected that for
any set of 10 (for Grain v1) and 4 (for Grain-128) randomly applied faults in the internal state,
the algorithm will succeed in finding the fault location of all the faults with very high probability
and hence help complete the attack. But this is not the case for Grain-128a. For Grain-128a, the
location identification algorithm is expected to succeed with 0.81 and so if the adversary wants
to complete the attack, she has to apply around 10 · 1

0.81
≈ 12.3 faults to succeed.

4.4 Identifying Multiple bit faults

In [5], a preliminary study was made of the situation when a single fault injection affects the value
of upto three consecutive locations in the LFSR. It gave rise to 4n−5 possible cases of faults out
of which n were due to single bit faults and the other 3n−5 due to double or triple bit faults. The
same fault identification routine is used to determine the fault location of faulty streams arising
due to double or triple bit faults. In [5], it was shown that if the faults are restricted to the LFSR
then the location identification will be able with a very high probability (close to 1 for Grain
v1, Grain-128 and Grain-128a) identify that a faulty stream produced due to a double or triple
bit fault could not have been produced due to a single bit fault (this happens when Ψ3,φ = ∅)
and in all such cases the algorithm outputs a null message. In our experiments we have explored
this situation with respect to faults in both the LFSR and the NFSR. After experimenting with
randomly chosen single, double and triple bit faults for around 220 Key-IV pairs, it was found
that the probability that the algorithm successfully rejects a faulty stream produced due to a
multiple bit fault i.e. Pr(Ψ1,φ = ∅) is 0.94 for Grain v1, 0.99 Grain-128 and 0.86 for Grain-128a.

5 Identifying Fault Locations for Injections at random time

Thus far we have assumed that the adversary is able to inject all faults at the beginning of a
fixed PRGA round. This is usually practical as fault injections are usually synchronized with the
power consumption curves of the device implementing the cryptosystem [12]. In this section we
show that it is possible to attack Grain even this requirement is relaxed. We will show that if
the adversary injects a fault at a PRGA round τ where τ ∈ [0, τmax − 1]. In such an event, it is
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possible for the adversary, with high probability, determine the values of the fault location φ and
the injection time τ . Before we get into further details, let us recap a few things and look at a
definition that we will be using extensively.

The location identification algorithm that presented so far (call it FLI(Eφ) takes the difference
vector Eφ = Z ⊕ Zφ, performs the seven steps (a) -(g) and returns the following

• The fault location φ if the set Ψ3,φ has cardinality 1.

• The ∅ message if the set Ψ3,φ has cardinality 0, which is indicative of the fact that Zφ was
generated due to multiple bit fault.

• A failure message if the set Ψ3,φ has cardinality strictly greater than 1. This case may may
arise for both single and multiple bit faults.

Definition 1. Two distinct fault location and time injection pairs (φ, τ) and (φ′, τ ′) are said to

be equivalent if they produce the same faulty key-stream.

For example in Grain v1, faulting the NFSR location 70 at PRGA round 0 would produce
the same faulty key-stream as faulting NFSR location 69 at PRGA round 1. This is because
the difference that is induced in location 70 at PRGA round 0 shifts to location 69 in PRGA
round 1 anyway. Thus (70, 0) and (69, 1) are equivalent pairs. However (62, 0) and (61, 1) are
not equivalent since 62 is a tap for the update function of the NFSR for Grain v1. A difference
induced in PRGA round 0 in location 62 travels to both locations 61 and 79 in the next round.
Whereas a fault at location 61 in round 1 would affect only this location and not location 79.

Let us denote the elements of Eφ = [e0, e1, e2, . . .]. Also define the vector Eφ
i = [ei, ei+1, . . .].

Let us assume that the vector Eφ has been produced due to fault injection at some LFSR or
NFSR location φ at time τ where 0 ≤ τ ≤ τmax − 1. To identify (φ, τ) the adversary runs the
routine FLI(Eφ

i ) for all i ∈ [0, τmax − 1]. As a result, he adversary could obtain

1. The output S + i for all values of i. Note that since the pairs (S + i, i) are equivalent, he can
assume that (S, 0) are the true values of (φ, τ).

2. The output S + i for some values of i and a failure messages for some other values of i. The
adversary then takes the minimum value of i = imin for which FLI(Eφ

i ) succeeds and assumes
(S + imin, imin) to be the true values of (φ, τ).

3. The failure message for all values of i. In this event he rejects the key-stream. However, the
probability of this outcome is quite low.

4. If he obtains ∅ for some value of i he deduces multiple-bit injection and rejects the key-stream.

5. If he obtains the outputs S1 for i = i1 and S2 for i = i2 such that (S1, i1) and (S2, i2) are not
equivalent then he deduces that the algorithm has failed.

Experiments performed for around 220 random Key-IVs the probability of Case 5 occurring
is only about 0.089 for Grain v1 if we take τmax = 10. For for Grain-128, taking τmax = 15,
the failure probability comes to 0.079. For higher values of τmax the failure probability becomes
non-negligible.

This approach, however, fails for Grain-128a. Recall, that every alternate key-stream bit in
Grain-128a is used for the computation of MAC and is therefore not directly available to the
attacker. It is easy to see that the given approach will fail in all cases when the injection time is
an odd number.
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6 Experimental Results

In this section we present the experimental results in detail. After the fault location and injection
time of a particalar faulty key-stream vector have been identified using the signature vectors, a
system of equations are formulated using the steps outlined in Section 3, and the equations are
then fed into a SAT solver. There are several issues to be considered.

– The number of faults is the most significant figure that we minimize using the SAT solvers.
This implies that we also reduce the number of rekeyings of the cipher.

– We deduce the fault location and the injection time using the idea of the four signature
vectors. Note that, in [5], faults have been introduced only in LFSR, but here we can handle
the situation when faults may be introduced either the LFSR, NFSR or both of them.

– The number of faulty key-stream bits required to solve the system is also important. In our
experiments, We have used 2n key-stream bits corresponding to each fault, i.e., 2 · 80 = 160
for Grain v1 and 2 · 128 = 256 for Grain-128 and Grain-128a. In fact, for Grain-128a, we use
even fewer key-stream bits as we obtain more equations per key-stream bit.

We have solved the equations using SAT solver Cryptominisat-2.9.5 [30] installed with SAGE
5.7 on Linux Ubuntu 2.6. The hardware platform is an HP Z800 workstation with 3GHz Intel(R)
Xeon(R) CPU. We have considered three different cases: (i) the faults are introduced in LFSR
only, (ii) the faults are introduced in NFSR only, and (iii) the faults are introduced in both LFSR
and NFSR (here we consider that expected half of the faults are injected in LFSR and the other
half in NFSR). The results have been presented in Table 4. We have presented the time required
for the SAT solver part only as the time for identifying the location of the fault using signature
vectors is negligible. For each row, we consider a set of ten (10) experiments. As it is not easy to
count the exact number of computational steps required in the SAT solver, we have reported the
amount of time required in seconds.

One may note that our method requires far fewer faults that what earlier known for Grain
family (of the order of hundreds) in literature so far [4, 5, 8, 24]. Several issues may be optimized
in the experiments. We note that with very little amount of key-stream, the attack takes longer
time. It is also clear that the number of faults may be reduced further with more computational
effort.

7 Conclusion

The Differential Fault Analysis (DFA) against the Grain family of stream ciphers has been a
fairly well researched topic [4, 5, 8, 24] and has been studied under various fault models some
more restrictive and some more relaxed. In this work, we propose a DFA of the Grain family that
requires the adversary to have the least control over fault injections, i.e., same as that of [5] but
requires far fewer faults than that required in [5]. Furthermore the adversary need not restrict
the fault injections to either the LFSR or the NFSR, a stipulation that has been imposed in all
the previous fault attacks on the Grain family. For Grain v1 and Grain-128, the adversary need
not even exercise precise control over timing of fault injection. The algorithm we propose first
finds the location and injection time of a randomly applied bit fault (it rejects the faulty stream
if it infers that it was produced due to multiple bit fault) and then populates a bank of equations
in the internal state variables of the cipher at the start of the PRGA. The algorithm then tries
to solve the equations using the Cryptominisat-2.9.5 SAT solver [30]. For all the three ciphers
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Table 4. Experimental Results

Faults in LFSR only
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
10 160 16.48 49.23 27.40

Grain v1 9 160 22.10 32.71 40.50
8 160 18.62 92.34 48.40
5 256 5.21 9.43 7.10

Grain-128 4 256 9.03 96.68 34.40
3 256 24.52 361.53 163.70
11 175 14.47 37.85 23.60

Grain-128a 10 175 26.82 253.15 52.74

Faults in NFSR only
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
11 160 27.93 105.44 55.35

Grain v1 10 160 21.14 89.50 43.64
9 160 29.64 123.98 56.35
6 256 16.64 196.32 93.45

Grain-128 5 256 22.87 380.01 147.70
11 175 179.62 8453.14 1542.27

Grain-128a 10 175 175.07 8387.21 1495.54

Faults in both LFSR and NFSR
Cipher Number of faults Amount of key-stream Time (in sec.)

Minimum Maximum Average
11 160 54.96 1420.71 220.90

Grain v1 10 160 19.17 452.30 352.20
6 256 6.48 14.32 10.41

Grain-128 5 256 12.18 37.56 22.15
4 256 27.63 4876.53 581.80
11 175 46.45 259.34 101.10

Grain-128a 10 175 69.63 5144.56 1472.35

the solver is able to recover the entire internal state using equations generated by less than or
equal to 10 random faults in a few minutes. This is, to the best of our knowledge, the best fault
analysis that has been reported against the Grain family.
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