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Detection of sub-degree angular fluctuations of
the local cell membrane slope using
optical tweezers

Rahul Vaippully,a Vaibavi Ramanujan,b Manoj Gopalakrishnan,a Saumendra Bajpaib

and Basudev Roy *a

Normal thermal fluctuations of the cell membrane have been studied extensively using high resolution

microscopy and focused light, particularly at the peripheral regions of a cell. We use a single probe

particle attached non-specifically to the cell-membrane to determine that the power spectral density

is proportional to (frequency)�5/3 in the range of 5 Hz to 1 kHz. We also use a new technique to

simultaneously ascertain the slope fluctuations of the membrane by relying upon the determination of

pitch motion of the birefringent probe particle trapped in linearly polarized optical tweezers. In the

process, we also develop the technique to identify pitch rotation to a high resolution using optical

tweezers. We find that the power spectrum of slope fluctuations is proportional to (frequency)�1, which

we also explain theoretically. We find that we can extract parameters like bending rigidity directly from

the coefficient of the power spectrum particularly at high frequencies, instead of being convoluted with

other parameters, thereby improving the accuracy of estimation. We anticipate this technique for

determination of the pitch angle in spherical particles to high resolution as a starting point for many

interesting studies using the optical tweezers.

Rheology of the cell membrane assumes significance in cell

migration, adhesion, differentiation and development,1–4 not

to mention, also in probing the health of the cell. It is directly

influenced in diseases like malaria5 and sickle cell anaemia.6

Further, the cancer cells are softer and more elastic compared

to healthy ones to help in intravasation,7 when trying to get into

the blood vessels and spread through the body. The the exact

mechanism by which it changes the elasticity is however not

known.8 In view of all these facets, study of membrane facets

and the subsequent response to external perturbations attains

enormous importance.

Membrane fluctuations are inherent to many membrane

processes, like ion-pump functioning, vesicle budding and

trafficking9–11 in living cells. Our knowledge of the mechanisms

of the membrane processes shall be significantly improved

while learning about the nature of active fluctuations12,13 in

membranes.

Typically, the normal membrane fluctuations have been

studied to ascertain the rheological parameters of the living

cells.13 These fluctuations are powered by thermal energy as

well as ATP dependent processes. The temporal range of such

fluctuations is quite broad, starting from slow (10 s) actin waves

that drive large wavelength fluctuations (100 nm to 10 mm) at

cell edges and basal membrane,14–16 to relatively smaller

amplitude ones (5 to 50 nm) which appear at the basal

membrane17,18 and are mainly thermal in nature. Fluctuations

of the basal membrane, as opposed to the cell edges have not

been explored much due to requirements of high resolution.

We use a new technique where we place a particle on top of a

cell membrane at locations away from the cell edges to find the

normal fluctuations after ensuring non-specific binding. This

does not require proximity to a second surface as the interference

is between the unscattered light in photonic force microscopy

with that of the scattered light from the particle,19–21 and thus the

unconfined free surface of the cell can also be probed.

Here, we also introduce a hitherto new concept, that of

membrane local slope fluctuations, to study the parameters. To

perform such a measurement, we show how the pitch-rotation

angle22 of a spherical particle attached to the membrane can be

ascertained at high resolution in optical tweezers to add addi-

tional parameters that can greatly improve the accuracy. The

normal thermal fluctuations of the cell membrane have been

regularly used to ascertain the properties of the membrane

like the bending rigidity from the power spectral density when

performed with techniques likemembrane flickering.23,24However,
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the power law fit to the normal thermal fluctuations particu-

larly at high frequencies leads to a coefficient which includes

both the bending rigidity and the cytoplasmic viscosity as

multiplicative factors. Estimates to bending rigidity are then

made after numerical integration and estimating the coeffi-

cients in the different regimes of low frequency, intermediate

frequency and high frequency. Thus the error in estimation of

bending rigidity is high. In our technique, the slope fluctua-

tions, which we introduced for the first time, directly gives the

estimate for the bending rigidity from the coefficient of the

power law fit to the PSD at high frequency. Combining the PSD

for normal fluctuations and the slope fluctuations, the bending

rigidity and the cytoplasmic viscosity can be accurately ascer-

tained with lower error bars than from the normal fluctuations

alone. During the process of ascertaining the slope fluctuations,

we show, for the first time, how to find the pitch-rotational angle

to high accuracy using optical tweezers. The technique also does

not require complicated contact based methods.24 The bending

rigidity has recently been shown to be correlated to membrane

viscosity,23 another important membrane parameter.

1 Theory

The pitch signal is given as the difference-in-halves signal of the

light scattered by the birefringent particle placed inside crossed

polarizers,22 and can also extend to particles trapped in optical

tweezers. The pitch signal is linearly proportional to the

difference-in-halves signal. The power spectrum due to pitch

Brownian motion is given as follows, in consistency with the

conventional power spectra in optical tweezers.25

PSD ¼ A

f 2 þ B
(1)

The calibration factor b and the optical trap stiffness k1 are

given as

k1 ¼ 2pg
ffiffiffiffi

B
p

(2)

b ¼
ffiffiffiffiffiffiffiffiffi

kBT

gA

s

(3)

where, g is the drag coefficient of the particle close to the

surface of the membrane. The g of the pitch rotation close to a

surface relates to the drag coefficient away from surface g0 by

the following relation.26

g ¼ g0
1� ð5=16Þða=sÞ3 þ ð15=256Þða=sÞ6 (4)

where, a is the radius of the particle and s is the separation

between the center of the particle and the surface.

Further, following the Wiener–Khinchin theorem, the power

spectral density (PSD) of membrane height fluctuations is given

by27,28

PSDz ¼
ð

dteiot
ð

d2qd2q0

ð2pÞ4 hqð0Þhq0 ðtÞ
� �

(5)

where hqðtÞ ¼
Ð

d2reiq�rhðr; tÞ is the Fourier transform of the

height fluctuation, whose auto-correlation is

hhq(0)hq0(t) i = 4p2F(q)d(q + q0)e�oqt (6)

where

FðqÞ ¼ kBT

kq4 þ sq2
(7)

from equipartition theorem, where k is the bending modulus

and s is the surface tension of the membrane. Assuming an

impermeable, flat cell membrane which separates two fluids of

mean viscosity Z, the wavelength relaxation rate oq is given

by29–31

oq ¼
kq4 þ sq2

4Zq
(8)

After using (6) in (5), and switching to plane polar coordi-

nates, it follows that

PSDz ¼
1

p

ðqmax

qmin

dqqFðqÞ oq

oq
2 þ o2

(9)

If we consider the cell has an infinite membrane with a

point like detection area, qmin = 0 and qmax = N in (3). Next,

after using (7) and (8) in (3), it follows that the Z-power spectral

density of a particle stuck on the membrane is

PSDz ¼
4ZkBT

p

ð1

0

dq

kq3 þ sqð Þ2þð4ZoÞ2
(10)

This integral cannot be solved analytically in the present

form, and only numerical estimates can be made. Thus,

approximations are considered. In the low frequency limit,

i.e., when o- 0, it can be shown that

PSDz �
kBT

2so
ðo ! 0Þ; (11)

whereas in the large o limit, we find

PSDz �
kBT

3 4Z2kð Þ1=3o5=3
ðo ! 1Þ: (12)

The expression in (12) suggests that the Z-power spectrum

obeys a power-law decay at large frequencies o, with an

exponent �5/3.

Consider a birefringent particle stuck on the cell membrane,

which is characterised by height fluctuations h(r,t), where r =

(x,y) are points on the plane of projection, which we define as

the x–y plane.

The slope of the optic axis of the birefringent particle placed

on the cell membrane (shown in Fig. 1) at a particular instant in

the h–r plane is given by,

tanðyÞ ¼ h2 � h1

r2 � r1
(13)

where the particle touches the cell membrane between r1 and

r2, such that r2 � r1 is the length of the contact for the particle.

This is of the order of 100 nm for a 1 mm diameter particle and

is assumed to remain constant during rotational motion.
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For small angles y, we may approximate tan y E y. Within

this approximation, the appropriate generalisation of (13) for

the two-dimensional membrane surface is

y(r,t) = qrh(r,t), (14)

where r is the location of the centre of the particle in the x–y plane.

In terms of the Fourier transform hq(t), the angle y becomes

yðr; tÞ ¼ � i

ð2pÞ2
ð

d
2
qhqðtÞq cosfe�iqr cosf; (15)

where f is the angle between the (fixed) vector r and q. After using

the auto-correlation for the height field given in (6) and carrying

out the angular integration, the auto-correlation of the angle

becomes

yðr; 0Þyðr; tÞh i ¼ 1

4p

ð

dqq3FðqÞe�oqt (16)

where the function F(q) has been given in (7). Upon sub-

stituting the latter in (16), and using the Wiener–Khinchin

theorem, the PSD for the angle/slope fluctuations is found

have the general form

PSDy ¼
2ZkBT

p

ð

dq
q2

kq3 þ sqð Þ2þð4ZoÞ2
(17)

After a careful analysis of the integral, we find that the low

frequency and high frequency behaviours of (17) are given by

PSDy ¼
8kBTZ

3p
ffiffiffiffiffiffiffiffi

s3k
p � 4kBTZ2

s3
o ðo ! 0Þ (18)

PSDy ¼
kBT

12ko
ðo ! 1Þ (19)

Thus, we find the functional relationships for the PSD for

pitch motion at low and high frequencies.

2 Experimental details

The experiment was performed using an optical tweezers kit

OTKB/M (Thorlabs, USA) in an inverted configuration, where a

linearly polarized 1.7 W, 1064 nm wavelength diode laser

(Lasever, China) was used to form the optical tweezers. The

objective was an Olympus 100�, 1.3 NA oil immersion one with

the illumination aperture being overfilled and the condenser

being a 10�, 0.25 NA Nikon air-immersion one. The power of

laser light at the sample plane was set to be about 100 mW. The

schematic diagram has been shown in Fig. 1. An LED lamp

illuminates the sample from the top using a dichroic mirror,

while another dichroic collects the visible light to be placed in a

CMOS camera (Thorlabs). The forward scattered light emerges

through the top dichroic and is sent into a polarizing beam

splitter, where most of the light through one of the ports and

sent into a Quadrant Photodiode (QPD). The other arm experi-

ences a minimum in scattered intensity and experiences a

complete dark when there are no particles in the trapping

region.

The tracer particles that we used are birefringent liquid

crystalline RM257 (Merck) particles made using standard

techniques32,33 and of typical diameter 1 � 0.1 mm. When these

particles are trapped in optical tweezers, the birefringence axis

aligns with that of the polarization of light, both in the

conventional yaw and the pitch sense. When a well-linearly

polarized light is used to trap a birefringent particle, some

amount of light also emerges from the dark port of the

polarizing beam splitter placed in the forward direction, due

to the internal structure of the directors of the particle resulting

in a four-lobe scatter intensity pattern. It has been shown in

ref. 22 that the distribution of light in between these halves

becomes anisotropic when the particle turns in the pitch sense.

We exploit this very facet to ascertain the pitch motion.

We place an edge mirror in the path of the dark port of the

polarizing beam splitter (PBS) in the forward direction and

send one half of the scattered light into one photodiode (PD1),

Fig. 1 (a) Schematic diagram of the set-up used to detect pitch rotation. A

very well polarized 1064 nm laser beam is used to trap the particle, which

then passes through into the forward scatter direction. The component of

the forward scattered light orthogonal to the input polarization is sent into

an edge mirror to ascertain the asymmetry in the scatter pattern. (b) The

pitch rotation detection technique is used to find the local slope fluctua-

tions of the cell membrane as shown in this cartoon.
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while sending the other half to a different photodiode (PD2).

These photodiode signals are amplified with current amplifiers

and then sent into the Data Acquisition System (DAQ card,

National Instruments) at a sampling rate of 40 kHz. These time

series signals from PD1 and PD2 are then subtracted to gain the

pitch signal. The advantage of using this configuration, as opposed

to another QPD, is that larger gains can be obtained here.

If we look at the Fig. 1(a), we can notice a quarter wave-plate,

in conjugation with a half wave-plate placed in the output path

of the light after it escapes the sample chamber. A combination

of these two can compensate for complicated shifts in phase

due to the cell. We adjust these two such that the output of the

polarizing beam splitter (PBS) which detects pitch motion has a

good minimum in intensity (almost dark). Then we study the

fluctuations of the intensity.

Typical X, Z and pitch power spectra for a birefringent

particle trapped in water are shown in Fig. 2.

The X and Z PSD are the usual Lorentzian in nature, the

pitch spectra is also found to be a good Lorentzian. This can be

used for calibrating the pitch motion using eqn (1).25 The pitch

rotational trap stiffness k1 is calculated from the eqn (2) and

(4) is given by 1834 � 600 pN nm rad�1.

Michigan Cancer Foundation-7 (MCF-7) cells were grown on

glass slides coated with gelatin. These slides were initially

treated with the piranha solution and sterilized with a UV

(265 nm) lamp for 20 minutes and thereafter coated with

0.5% gelatin solution. MCF7 cells were added towards the

center of the coverslip and the Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 10% fetal bovine serum

and 1% glutamine–penicillin–streptomycin was added on top

of the coverslip. 10 mL of birefringent sample with particles

suspended in water was added to the cells. Cells were incubated

at 5% carbondioxide and 37 1C.

One such birefringent particle was trapped and gradually

brought in contact with the cell surface and held for about

10 seconds. It is well known that a birefringent particle aligns

with the axis along the direction of linear polarization of the

trapping beam both in the yaw sense and in the pitch sense.32

Thus, the particle automatically aligns in the preferred orienta-

tion while binding. It is then observed that the particle attaches

to the cell by forming non-specific binding to present us with

an excellent opportunity to probe the fluctuations of the cell

membrane.34 We simultaneously probe the slope fluctuations

of the membrane from the light scattered by the birefringent

particle while in contact with the membrane, as explained in

eqn (18).

3 Results and discussions

The power spectral density of the motion of the particle normal

to the membrane and the slope fluctuations are reported in

Fig. 3.

The Fig. 3(a) indicates the PSD for the normal motion of the

cell membrane. We find this to fit well to a power law with

exponent �5/3,12 particularly at high frequencies between 10 Hz

and 1 kHz. This is consistent with the theory presented in eqn (12)

for normal fluctuations, thereby indicating that the particle is

indeed attached to the cell membrane and probing the normal

fluctuations, not to mention this being also consistent with

existent literature.35 We simultaneously ascertain, for the same

particle, the slope fluctuation PSD and show in Fig. 3(b). This PSD

fits well to a power law and shows an exponent of 1.25 � 0.16,

which we call the pitch PSD. Calibrating the pitch motion

amplitude with factors from Fig. 2, we find ourselves capable of

resolving 100 mdeg at 40 Hz. We also show the noise floor in

Fig. 3(b) (green curve). The torque applied by the laser light on the

particle is given as 1834 � (p/180) � 1.33 � 0.1 = 4.2 pN nm,

considering a 0.1 degree angular rotation. The factor of 1.33 is due

to the faxen correction given in eqn (4), for the particle placed very

close to the surface. Now, the membranes fluctuate due to forces

in excess of 5 to 10 pN.36 Further, the particle has an attachment

diameter of about 100 nm. Then the torque applied by the cell

membrane onto the particle during the process of slope fluctua-

tion is in excess of 500 to 1000 pN nm, which is at least an order of

magnitude higher than the torque applied by the light onto the

Fig. 2 The power spectra for (a) the pitch motion and the transverse x

motion (b) for the axial Z motion, fitted to Lorentzians (eqn (1)) for

calibration purposes.
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particle. Thus the effect of the optical torque on the system can be

neglected. Moreover, the system is residing in a water based

buffer medium, such that it is in an overdamped environment.

Thus, the inertial terms are also negligible.

The power spectra shown in Fig. 3 have been fit to power

laws of the form eqn (20).

PSD = Dfpow. (20)

In the Fig. 3, where the power spectral densities for the

normal fluctuations and the slope fluctuations have been

shown, the spectra for the normal fluctuations yields a power

law with exponent �5/3, which corresponds to the normal

fluctuations for a free membrane. Thus, we may assume that,

given the conditions are the same for the slope fluctuations too,

the effect is only due to the membrane. Moreover, cytoskeletal

effects can be induced by adding drugs like Latrunculin-B when

the normal fluctuations shows a power law with spectra �4/3,

and when the actin in the cytoskeleton depolymerizes to

indicate membrane fluctuations in the proximity to a rigid

wall. That is not the case here.

In order to ascertain the accuracy of the power law when

fitted to the pitch PSD, we block average37 the PSD data in

exponents of 2 (namely 1, 2, 4, 8 and so on). This block averaged

PSD also fits well to the power law, within 5% error, till about

5 Hz but starts deviating upon using lower frequencies, with

the exponent being 1.22 � 0.15, as shown in Fig. 4. Here, the

amplitude of the PSD at 40 Hz for a bandwidth of 1 Hz

is 0.01 deg2 Hz�1. Then the amplitude of the pitch motion is

0.1 deg over a bandwidth of 1 Hz.

We also show the statistics of pitch exponents observed in

our experiments in Fig. 5. The average value of the pitch

exponent is obtained to be �1.15 � 0.12. This exponent is

comparable with the expected pitch exponent of �1, as indi-

cated in eqn (18), and consistent to a p-value of 0.0001.

We also show, in Fig. 6(a), that the value of the bending

rigidity estimated from the measurement of the slope is coming

to be 1.88 � 0.42 � 10�19 J, which is consistent with literature

values.13 The PSD in eqn (20) has been compared to eqn (19),

such that D ¼ kBT

24pk
: Thus k can be estimated.

Fig. 3 The calibrated Power Spectral Densities (PSD) for (a) the normal

fluctuations of the membrane (b) the local slope fluctuations of the

membrane indicated by the Pitch angle, ascertained from the same

particle simultaneously. In (b), the background PSD with the particle placed

on a solid glass surface (without membrane fluctuations) is shown in green.

Fig. 4 (a) A typical pitch PSD data for a particle placed on the cell

membrane is shown here. The data has been averaged in logarithmic

blocks and then subsequently fitted to a power law. (b) The residuals are

reported here. The data fits well to 5% error above 5 Hz but starts deviating

as one goes lower than 5 Hz.
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The curves for the normal and slope fluctuations can be

simultaneously used to ascertain the bending rigidity, the

cytoplasmic viscosity and the surface tension at high accuracy.

We estimate the effective cytoplasmic viscosity from the

eqn (12) and (19) and report the result in Fig. 6(b) with an

average value 62.7 � 15.6 Pa s. The viscosity is higher than

expected for a cell cytoplasm,38 but typically also involves the

fluid getting trapped in the membrane, like reported by Biswas

et al.13 Estimation of the membrane tension requires fits to the

PSD at low frequencies, the regime where our laser intensity is

not stable enough and hence does not yield meaningful results.

Such experiment shall require complete redesign of the experi-

mental setup, and beyond the scope of the present study.

There are reports in the literature about corrections to the

eqn (12), on the basis of correction terms to the energy due to

tilt-dependence.39,40 However, such theory yields a functional

form for the PSD at high frequency that does not fit to the pitch

PSD. This could be due to the curvature tilts at length-scales

of 10 to 20 nm while the size of the birefringent particle being

1 mm with a base contact being of the order of 100 nm. Thus,

such a probe cannot sample the bending to the membrane due

to tilt-dependence.

The particle that has been used is a typically of 1 mm diameter

and is well attached to the membrane by non-specific binding.

The estimation of the normal fluctuations yields a power law

with the amplitude and the exponent both matching well with

previous experiments. Thus, we believe that the particle has

negligible effect on the results obtained. In view of this, we

used the pitch motion to study slope fluctuations of the cell

membrane and then estimated the bending rigidity of the cell

membrane from the coefficient to the power law fit. We find

that the bending rigidity values obtained here are comparable

to the values reported in literature. Thus, we do not deem it

necessary to account for the presence of the particle on the

membrane in the theory.

4 Conclusions

Thus to conclude, we have developed a new technique to

ascertain the pitch rotational motion to a high sensitivity using

optical tweezers. The pitch power spectrum for a birefringent

particle trapped in water fits well to a Lorentzian. This particle

can be attached non-specifically to a cell membrane by holding

it against the membrane for 10 seconds. As soon as the particle

attaches to the membrane, the vertical fluctuations of the

particle can be used to find the membrane fluctuations. The

PSD of the vertical fluctuations shows a power law exponent of

�5/3, confirming that the particle is indeed recording the

normal membrane fluctuations. We simultaneously ascertain

the slope fluctuations of the membrane and find that the PSD

fits well to a power law with the exponent consistent to �1 with

Fig. 5 The variation of pitch exponents for different measurement events.

The average value of the exponent to the power law fit is �1.15 � 0.12,

consistent to �1 with a p-value of 0.0001.

Fig. 6 This figure shows the variation of the calculated bending rigidity

from the amplitudes of the power laws fitted to the high frequency region

of the pitch PSD. The values are consistent with the values previously

mentioned in the literature.
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a p-value of 0.0001. The coefficient to the power law fit to the

slope fluctuation PSD yields information about the cell

membrane parameters like the bending rigidity and the effec-

tive cytoplasmic viscosity. This can be used to study the cell

membrane to a better accuracy than previously possible with

non-contact based techniques. Further, the fact that the

measurement uses slope fluctuations raises the possibility of

studying the vectorial nature of the cell membrane parameters.

Such study is beyond the scope of the present manuscript.
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