Header menu link for other important links
Detection of interfacial weakness in a lap-shear joint using shear horizontal guided waves
Koodalil Dileep, Barnoncel David, ,
Published in Elsevier BV
Volume: 112

This study aims to develop a shear horizontal guided wave based technique to evaluate the interfacial adhesion of aluminium-epoxy-aluminium tri-layer in a lap shear joint. A 3-D Multi-physics finite element model was developed to investigate the physics of the interaction of SH modes with a tri-layer structure. By employing the boundary stiffness approach, different cases of interfacial adhesion-ranging from perfect bond, intermediate and weak bond, were simulated. Frequency-wavenumber analysis reveals that at the bond overlap region, the incident SH0 wave mode-converts to fundamental (SH0-like) and first-order(SH1-like) modes. The dispersion characteristics of first-order mode (SH1-like) was found to be dependent on the adhesion level, and this influences the time responses collected on a receiver plate in guided wave through-transmission configuration. Experiments were carried out on aluminium-epoxy-aluminium lap shear joints using PPM-EMAT transducers. The analysis shows that this technique can detect and quantify different levels of adhesion, rather than merely classifying as good or bad bonds.

About the journal
JournalData powered by TypesetNDT & E International
PublisherData powered by TypesetElsevier BV
Open AccessNo