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a b s t r a c t

This work compares interpolation techniques for data reconstruction at the surface in an immersed-

boundary method. Three different methods of surface pressure reconstruction based on inverse distances

are presented, which are christened as: Inverse Distance Weight (IDW) method, Inverse Distance Weight

at Interpolation Point method (IDW-IP) and Inverse Distance Weight based on Upwinding (IDW-Upwind)

method. Additionally, shear stress at the immersed surface is determined using two approaches: direct in-

terpolation of velocity gradient at the surface using IDW method, and interpolation of velocity at a point

along the surface normal using IDW-IP method. The interpolation methods are verified against analytic

solutions of ideal flow past a circular cylinder and subsonic-supersonic inviscid flow in a convergent-

divergent nozzle, and validated against laminar flow simulations of Mach 0.5 flow past a NACA0012 air-

foil, Mach 2.0 flow past a circular cylinder, and Mach 3.0 flow past a 10◦ ramp. The verification cases

show that while the pressure values reconstructed at the surface by the three interpolation methods are

very similar for the incompressible flow, the IDW-Upwind method produces the sharpest pressure rise

across the normal shock in the convergent-divergent nozzle. Comparisons of the reconstructed surface

pressure coefficient (Cp) and skin-friction coefficient (Cf) with values available from literature or ANSYS-

Fluent simulations conducted as part of the validation study show good match, but indicate that the

reconstructed pressure and shear stress values at the immersed surface has noise, which, however, re-

duces with grid refinement. Further, the IDW and IDW-Upwind method for pressure reconstruction, and

the gradient reconstruction based method for shear stress calculation are shown to produce less noise

in computed values. Integrated drag and lift values using the reconstructed surface pressure and shear

stress indicate that while the different methods used for pressure reconstruction result in similar values

of aerodynamic loads, the gradient-based shear stress calculations result in more accurate load estima-

tion. Finally, one of the interpolation methods (IDW-Upwind) is used to investigate the variation of the

surface pressure coefficient with time for a NACA0012 airfoil undergoing non-periodic plunge motion in

a Mach 0.2 flow. The computed surface pressure coefficients are correlated with the leading and trailing

edge vortices in the flow field.

© 2019 Elsevier Ltd. All rights reserved.

1

n

o

T

o

s

u

o

d

s

t

f

fl

h

s

t

c

i

r

g

t

h

0

. Introduction

Immersed-Boundary Methods (IBMs) [1–11] comprise a tech-

ique of CFD in which flow past objects can be simulated with-

ut the need for the grid to conform to the surface of the object.

his method, as such, decouples grid generation from the geometry

f the body to a considerable extent, and allows the use of Carte-

ian or simple curvilinear grids. Immersed-boundary methods are

seful for parametric studies [12–14], since they allow the re-use

f the grid for different configurations of the geometry, for han-

ling complex stationary/moving geometries [7,15–19] and fluid-

tructure interaction studies [20–22].
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A challenge in this method is the accurate reconstruction of

he pressure and shear stress (or heat flux) at the immersed sur-

ace. This becomes especially important if an IBM is to be used for

uid-structure interaction studies [20–22], for conjugate stress (or

eat transfer) analysis of the immersed structure, or for compari-

on with experimental surface data. The normal and shear stress

hus obtained at the immersed surface can also be integrated to

ompute the lift and drag forces as well as calculate moments. It

s to be noted though that there are means other than the use of

econstructed data at the immersed surface, to calculate the inte-

rated loads [19]. The distribution of the stresses (or heat flux) on

he immersed surface, however, is not determined in the process

f the load estimation in such cases.

In general, the approach for reconstructing data at the im-

ersed surface will depend on the underlying IBM used. IBMs

an be broadly classified into two categories based on the type
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of forcing employed: continuous forcing based methods and

discrete forcing based methods. While the former introduces a

forcing term to the Navier–Stokes equations before discretization,

as first proposed by Peskin [1], the latter introduces the forcing

after discretization of the Navier–Stokes equations, in the cells

near the immersed boundary (IB), as first proposed by Fadlun

[3]. Implementation of discrete forcing IBMs are done typically

by reconstructing the velocity field in fluid cells neighbouring

the immersed boundary [7,8,23,24] or solid cells adjacent to the

immersed boundary ([6,25,26]). The latter approach is referred to

as the ghost-cell method.

In the case of continuous forcing IBMs, the discrete delta func-

tion used to interpolate the velocity at all the immersed surface

points [1] can also used for the reconstruction of pressure (and

other flow properties) at the immersed surface. However, these

methods are restricted to thin (zero thickness) immersed objects

that do not displace any fluid-volume, as rendered in the continu-

ous forcing IB methods ([1,15,20,27]). It is important to note here

that while the Lagrangian description of the immersed surface is

sharp in this case, the Eulerian solution of the flow in such con-

tinuous forcing methods exhibit a diffused or smeared interface.

Beyer & Leveque [28] applied Peskin’s method to solve the 1-D

heat flow between two phases with a forcing term, in which the

interface between two phases was represented as an IB. In this

case, the property from the grid points was interpolated onto a

given IB point by using an interpolation method based on a dis-

crete dirac delta function.

f (α) = h
∑

j

f (x j)dH(x j − α) (1)

where, h is grid spacing, f(xj) is property at the grid point j, α is

the coordinate of the IB, and, dH is the discrete representation of

the dirac delta function.

In the case of discrete forcing methods, the underlying

immersed-boundary is generally required to have a finite vol-

ume [3,25], and as such, realistic rendition of complex immersed

boundaries, such as a human mannequin [7], and boundary-layer

control devices [8,14,29] among others, can be done. However, the

interpolation techniques have to be carefully constructed in this

case for estimation of the surface properties. This is so, as such

methods employ cell-classification for the fluid domain — inte-

rior and exterior to the immersed body—based on their position

with reference to the (discretized) IB surface, with the majority

[25,26,30] or all of the internal cells [7,8] having ad-hoc properties.

Hence, the procedure for data interpolation at the IB needs to be

selective in terms of the cells involved in interpolation, as internal

cells having ad-hoc flow properties may not be used.

A cue for solution reconstruction at the immersed surface in

such cases can be taken from the methods used to apply discrete

forcing in cells immediately outside [7,8] or inside (internal cell)

[3,6,25] of the immersed surface. For example, Majumdar et al.

[30] proposed linear interpolation in a triangular domain, bi-linear

interpolation in a rectangular domain, and linear-quadratic inter-

polation along tangential and wall-normal direction (all of which

are polynomial based); however, this approach may not work in

certain cases. To illustrate, Choi et al. [7] used a power-law based

interpolation in the wall-normal direction for the forcing of the

surface-parallel component of velocity, which can result in infi-

nite values of shear strain rate at the immersed surface, and hence,

cannot be used for estimation of shear stress.

In this work, different interpolation techniques, which use

weights based on inverse distances, have been explored to recon-

struct data at the immersed surface. The methods are designed

to be used for any discrete forcing immersed-boundary method,

whether sharp interface type [5,7,8,26] or otherwise [31,32], and

are not dependent on the underlying discrete forcing algorithm
mployed in the IBM. Specifically, three different interpolation pro-

edures for reconstruction of pressure, and two methods for the

stimation of shear stress at the IB surface have been used. While

ll of the methods use inverse-distance based interpolation in

ome form, they differ in detail, and one of the methods, the IDW-

pwind, is novel to the best knowledge of the authors.

The outline for the rest of the paper is as follows. The section

ethodology discusses the details of the solver and the interpo-

ation methods. The section Computational Details discusses the

omain, grid details, and flow conditions for the verification and

alidation test cases. This is followed by the Results and Discus-

ion section, wherein the results from the verification, validation

nd application studies are presented; the grid-convergence study

or the simulations are also included in this section.

. Methodology

A short description of the IBM used in this work is presented

n this section. This is followed by more detailed descriptions of

he interpolation methods presented in this work to reconstruct

he data (pressure, shear stress) at the immersed surface and a

rief description of the procedure used for integration of the sur-

ace loads. Body-fitted grid simulations have also been performed

sing ANSYS-Fluent for the validation cases of laminar flow past

ACA 0012 airfoil and supersonic flow past a circular cylinder. A

ensity-based steady solver using AUSM scheme for the convective

uxes, central difference scheme for the viscous fluxes and implicit

ime marching is used.

.1. Immersed-boundary solver

The flow solver, REACTMB [33] is suitable for compressible lam-

nar and turbulent flows with support for the immersed-boundary

ethod [8]. This solver is a parallel, finite volume solver for struc-

ured grids that uses implicit (Crank–Nicolson scheme for unsteady

imulations and Implicit Euler scheme for steady simulations) tem-

oral integration for marching the Favre-averaged N–S equations

n time. The inviscid fluxes at the cell faces are constructed us-

ng the Low Diffusion Flux Splitting scheme (LDFSS) [34] and vis-

ous fluxes are constructed using a central difference type scheme.

he Piece-wise Parabolic Method (PPM) [35] or MUSCL scheme

36] may be used for higher order extension in space. A local time-

tepping is used to accelerate the convergence for steady state

roblems.

In the immersed-boundary method (of REACTMB) used herein

7,8], the cells of the grid are classified into three categories: field

ells, band cells, and interior cells. A signed distance function is

sed to decide the category of a particular cell [7]. If the distance

unction is negative, it is classified as an interior cell; if the dis-

ance function is positive, and at least one of its neighbours is an

nterior cell, it is classified as a band cell. The rest of the cells with

ositive distance function are classified as field cells.

The immersed-boundary method uses a discrete forcing, first

roposed by Fadlun et al. [3], which is done by suitable recon-

truction of the solution in the band cells. To do this, first an inter-

olation point is constructed along the line normal to the surface

oint nearest to each band cell. This is done, as it is assumed that

he near-surface (immersed body) properties are functions of the

urface-normal coordinate only. The location of the interpolation

oint and its properties are determined by using inverse distance

ased interpolation of the position and data of the neighbouring

ells. The wall-parallel component (relative to surface) of the ve-

ocity at the band cell is constructed using the interpolation point

ata and assuming a power law type distribution along the surface

ormal. The wall normal component of velocity is constructed by
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Fig. 1. Schematic of interpolation stencil for IDW method.
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Fig. 2. Schematic of interpolation stencil for IDW-IP method.
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olving a discrete continuity equation near the surface. A more de-

ailed description of the velocity reconstruction in the band cells

s provided in Ghosh et al. [8]. Temperature in the band cells is

econstructed using Walz’s formula for compressible boundary lay-

rs, and turbulence properties are constructed using law-of-the-

all type relations [8]. For determining density at the band cell,

ressure is first reconstructed at the interpolation point, and the

alue is extrapolated to the band cell; the density is then deter-

ined using this pressure, the reconstructed value of temperature

t the band cell, and the equation of state.

.2. Interpolation methods (Pressure)

The basic premise of the solution reconstruction at the im-

ersed surface involves the construction of a stencil around each

B point that includes at least one field cell. In order to build the

tencil, the nearest cell-centre to the IB point is determined. Subse-

uently, the neighbouring cells (that share at least one vertex with

he nearest cell) are considered. This is the smallest stencil used

nd is of dimension 3 × 3 cells in 2D. In case this stencil does not

nclude at least one field cell, it is expanded by one cell size in all

irections giving rise to a 5 × 5 stencil. This procedure is contin-

ed until at least one field cell is available in the stencil. Once the

tencil has been fixed, the data at field and band cells of the stencil

re used to reconstruct the value at the IB point. The interpolation

echniques, as applied to pressure data, are discussed next.

.2.1. Inverse distance weight (IDW)

In this method, once the stencil is built, the inverse of the dis-

ance (di, in Fig. 1) between the centre of every field/band cell (‘A’)

f the stencil and the IB point (‘C’) is used as a weight to deter-

ine the value of pressure at the IB point, as given below.

IB = PC =
∑

i Pi/dm
i∑

i 1/dm
i

(2)

here i sums over all the field and band cells of the stencil.

Different values of m ( > 1) may be chosen to perform this in-

erpolation; the effect of the cells relatively far from the IB point,

n the interpolated value drops as m increases. However, the effect

f the value of m on the results was found not to be very signifi-

ant. Hence, a value of m = 1 has been used in all the applications

f this method.

.2.2. Inverse distance weight at interpolation point method (IDW-IP)

Interpolation Point (IP) [7] is defined, in this context, as a point,

hich lies on the normal (to immersed surface) at the IB point, at

hich the properties are interpolated from the surrounding cells,

nd subsequently transferred to the IB point. There are two as-

ects that need to be determined about the interpolation point:
rstly, its location, and secondly, its properties. To determine the

ocation of the interpolation point, the following relation is used,

s outlined in Choi et al. [7].

IP =
∑

i d2,i/d1,i∑
i 1/d1,i

(3)

ere, d1 is the perpendicular distance from ‘A’ to the normal at the

B point, and d2 is the projection of the distance from ‘A’ to the

B point, along the normal at the IB point, as illustrated in Fig. 2.

o determine the value of pressure at the interpolation point, the

ollowing relation is used.

IP =
∑

i Pi/d1,i∑
i 1/d1,i

(4)

In this approach, the pressure determined at the interpolation

oint is copied to the IB point. This method can also be used for a

igher order reconstruction of pressure at the IB point [7].

.2.3. Inverse distance weight based on upwinding (IDW-Upwind)

In this method, in addition to the distance, the flow direc-

ion relative to the IB and Mach number are considered to deter-

ine the interpolation weights. This is a novel approach, to the

est knowledge of the authors, that combines distance and Mach

umber to estimate the interpolation weights. The formulation is

dapted from the upwind-biased reconstruction of pressure flux at

ell interfaces in finite-volume methods proposed by van Leer [37],

hich makes use of Mach number based polynomials. In this case,

he surface normal at the IB point is considered as an interface

ith information coming from the upstream and downstream di-

ections. The pressure at this interface is then interpolated at the

B point using Mach number and distance based weights. The in-

erpolated pressure at the IB point is calculated in this case as:

IB = Pc =
∑

i Piwi∑
i wi

(5)

here wi is the weight associated with the ith cell-centre of the

tencil.

The weights wi are given by:

i = (1 + |Mi|)2(2 − |Mi|)
4di

, for |Mi| ≤ 1 and �Vi.�rn < 0

i = (1 − |Mi|)2(2 + |Mi|)
4di

, for |Mi| ≤ 1 and �Vi.�rn > 0

i = 1

di

, for |Mi| > 1 and �Vi.�rn < 0

i = 0, for |Mi| > 1 and �Vi.�rn > 0 (6)

ere the Mach number Mi is based on the component of veloc-

ty perpendicular to the normal (Vn) and the local speed of sound;
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Fig. 3. Schematic of interpolation stencil for IDW-Upwind method.

Table 1

Simulation details.

Immersed surface imax × jmax × kmax δmin (m) M Re α

NACA0012 airfoil 4512 × 900 × 1 5E−4 0.5 5000 10

Circular cylinder 1360 × 980 × 1 4E−3 2.0 300 –

10◦ Ramp 1024 × 576 × 1 2E−3 3.0 16800 –

NACA0012 airfoil (plunge) 780 × 1400 × 1 1.0E−3 0.2 1000 00
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also, di is the distance between the field/band cell-centre (‘A’) and

the IB point, ‘C’ (In Fig. 3, di = |�r|). The sign of the dot product of

the velocity vector at the cell-centre and the vector �rn i.e. �Vi.�rn, is

found in order to determine the orientation of the flow at the cell-

centre relative to the normal at the IB point ‘C’. If the dot product

is negative, the local flow is towards the normal; if it is positive,

the local flow is away from the normal. The interpolation weights

are constructed such that they result in higher weights for cell-

centres having flow towards the surface normal than those having

flow away from the normal, even when they are at identical dis-

tances from the IB point. Thus, the interpolation weights can be

considered as upwind biased, as they are sensitive to the local di-

rection of flow and have greater influence of the local upstream as

compared to the local downstream.

There may be a situation where all the field cells in the stencil

have |Mi| > 1, and the velocity vector at the field cell points away

from the normal. In such a case, the weights (wi) for all the cells

in the stencil would be zero. If this happens, the stencil size is in-

creased to ensure there exists at least one field cell with a non-

zero weight.

2.3. Interpolation of shear stress

Two different approaches are used to determine the shear stress

at the immersed surface; these are described in the following para-

graphs.

2.3.1. Velocity reconstruction at IP using IDW-IP

In order to determine shear stress at an IB point, the fluid ve-

locity is first reconstructed at the interpolation point (�VIP in Fig. 2)

using the IDW-IP method. The component of �VIP perpendicular to

the normal, and hence parallel to the immersed surface (�Vτ ) is

then determined, and the shear stress at the IB point is calculated

as,

τw = μw
|�Vτ |
dIP

(7)

where, μw is the dynamic viscosity and dIP is given by Eq. (3). The

method adopted here is simplistic and is expected to under predict

the shear stress at the surface. This is because the shear stress cal-

culation, as given in Eq. (7), implicitly assumes a linear variation

of wall parallel velocity between the surface and the interpolation

point, which can introduce large errors if the interpolation point

location is not sufficiently close to the surface.

2.3.2. Velocity gradient reconstruction at surface using IDW

In this case, the velocity gradient is first computed in the

cells comprising the interpolation stencil and then reconstructed

at the immersed-boundary point using weights defined by the

IDW method, wherein Eq. (4) is used by replacing pressure with
he scalar components of the velocity gradient tensor. The recon-

tructed velocity gradient at the immersed surface is then used to

etermine the viscous stress tensor at the surface.

.4. Calculation of aerodynamic forces

The integrated loads, lift and drag, are obtained using the re-

onstructed surface values of pressure and shear stress at the IB

oints, and the geometry of the line elements, which are line seg-

ents connecting two adjacent IB points. The average pressure and

hear stress for each element are determined by simply averaging

he values at its two end nodes or IB points. The unit normal vec-

or to the line segment is then used to determine the orientation of

he pressure force, and the shear stress is considered to act along

he line element. The forces on each element are then summed up

ectorially over the entire IB surface to get the total forces. The net

ift force as such has some contribution from the shear stresses,

nd drag is due to both shear stress (skin-friction) and pressure

istribution (form drag).

. Computational details

The free-stream conditions and grid sizes for the different sim-

lations - except the verification cases, which did not include any

ow simulation, are listed in Table 1. The grid sizes listed here

re arrived at from grid resolution studies that are discussed in

ection 4. The number of points rendering the IB in all cases is de-

ided such that the cells intersected by the IB contain at least 3–4

B points.

.1. Verification

The aim of this study is to estimate the performance of the

ressure reconstruction methods using exact/analytic solutions and

ot results from CFD simulation, such that any errors in the recon-

tructed surface pressures can be attributed only to the interpola-

ion procedure. The exact pressure values are populated at discrete

ocations - cell centres of a Cartesian grid – which are then used to

etermine the pressure at the immersed surface using the recon-

truction methods outlined in Section 2. The reconstructed values

f pressure are then compared with the exact solution.

.1.1. Ideal flow past a circular cylinder

For this case an exact solution, derived from potential flow the-

ry, exists, which is used to compare with the reconstructed values

f pressure on the surface of the cylinder. A square domain tessel-

ated using Cartesian grids is used, which contains the immersed

bject: the circular cylinder, which is rendered using a cloud of

oints. Three grids are used, with each successive refined grid hav-

ng four times the number of cells as its predecessor.

The error in the estimation of the integrated lift force, which

hould actually be zero, is used to estimate the order of accuracy

f the interpolation methods.

.1.2. Quasi-one-dimensional flow through a convergent-divergent

ozzle

The pressure distribution for a quasi-one-dimensional flow

hrough a convergent-divergent nozzle is obtained by applying
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Fig. 4. Validation study: Mach 0.5 laminar flow past a NACA0012 airfoil.

Fig. 5. Validation study: Mach 2.0 laminar flow past a circular cylinder.
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sentropic relations and normal-shock relations. The plenum pres-

ure is 6894.76 Pa, and the exit pressure is set to 5171.07 Pa. The to-

al temperature of the plenum is 55.56 K. The domain ranges from

= 0 m to x = 10 m, with the throat situated at x = 5 m. The areas

efore and after the throat are given by:

pre−throat = 1.75 − 0.75cos(π(0.2x − 1.0))

post−throat = 1.75 − 0.25cos(π(0.2x − 1.0))

or the aforementioned conditions, there is a stationary normal

hock that forms at x = 7.55 m. This test case is, as such, suitable

or testing the performance of the pressure interpolation methods

n the presence of both smooth variation and discontinuities in

ressure. The center-line of the convergent-divergent nozzle is dis-

retized into equally spaced grid points, where the exact solution

s populated, and IB points, wherein the pressure is to be interpo-

ated. It is ensured that the grid points and IB points are not collo-

ated. The exact solution stored at the grid points is then used to

nterpolate the pressure values at the IB points using the pressure

nterpolation methods discussed in Section 2.2.

.2. Validation: Mach 0.5 laminar flow past a NACA0012 airfoil

The domains along with the boundary conditions are shown in

ig. 4a. Subsonic inflow condition (velocity is fixed, pressure is ex-
rapolated) and subsonic outflow (velocity is extrapolated, pressure

s fixed) are used at the left and right faces respectively. A symme-

ry boundary condition is used at the top and bottom faces of the

omain as these are far away ( ≈ 3000 c) from the airfoil surfaces

nd the flow can be assumed to be approximately parallel to the

ree-stream.

Fig. 4b shows a representative grid for the simulation of flow

ast the NACA0012 airfoil. As seen in the figure, the grid is dense

n the vicinity of the airfoil in order to capture the flow gradients

ccurately. For the airfoil simulations, an inner box, which contains

he airfoil, having constant spacing (δmin) along X and Y directions

s used. The grid stretches out using a tanh function towards the

uter parts of the domain starting from the edges of the inner box.

he leading edge of the airfoil is at origin and the chord length is

nity.

In addition to the IB simulations, a solution on a body-fitted

rid is obtained using ANSYS-Fluent. The simulation was per-

ormed on a fine, structured C-grid provided in ‘2nd International

orkshop on High-Order CFD Methods’ [38]. The grid contains

5,840 cells, and is the second finest grid in the series of grids pro-

ided in the workshop, with the C-boundary having the velocity-

nlet boundary condition and the rest of the boundaries, having

ressure-outlet boundary condition. The Cp and Cf values extracted

rom this simulation are used to compare with the corresponding

econstructed quantities from the IB simulations.
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Fig. 6. Validation study: Mach 3.0 laminar flow past a 10◦ ramp.

Fig. 7. Mach 0.2 laminar flow past a plunging NACA0012 airfoil.

Table 2

Data interpolation at immersed surface: list of parameters.

Pressure reconstruction Shear stress reconstruction Method label

IDW Velocity reconstruction at IP A1

IDW-IP Velocity reconstruction at IP A2

IDW-Upwind Velocity reconstruction at IP A3

IDW Velocity gradient reconstruction at surface A4

IDW-IP Velocity gradient reconstruction at surface A5

IDW-Upwind Velocity gradient reconstruction at surface A6
3.3. Validation:Mach 2.0 laminar flow past a circular cylinder

The domain and boundary conditions for this test case is shown

in Fig. 5a. A far-field boundary condition is used on all faces ex-

cept for the left face, wherein a supersonic inflow (conditions pre-

scribed) boundary condition is used. In Fig. 5b a dense uniform

mesh embeds the cylinder and stretches out in both X and Y di-

rections towards the domain boundaries. The center of the cylinder

is at (24 m, 20 m) and the diameter is 1 m. A Fluent simulation has

been computed in this case also to generate Cf data for comparison

with the reconstructed Cf from the IB simulation.

3.4. Validation: Mach 3.0 flow past a 10◦ ramp

The domain and boundary conditions for this test case is shown

in Fig. 6a. A supersonic inflow condition is used at the left or inlet
face, a symmetry boundary condition is used at the top face and

a supersonic outflow boundary condition is used at the right or

exit face. In Fig. 6b a dense uniform mesh embeds the ramp and

stretches out in Y direction. The ramp starts at X = 1.0 m and is

rendered as an IB.

The primary motivation for this test case is to compare the sur-

face pressure coefficients for the different interpolation methods in

the presence of a shock. The comparison is made only with data

available from literature [39] in this case.

3.5. Application: Mach 0.2 flow past a plunging NACA0012 airfoil

Fig. 7a shows the domain used for the simulations. A sub-

sonic inflow boundary condition is used in this case with a far-

field boundary condition imposed at the other boundaries. The grid

zoomed in near the airfoil shows the presence of an inner box with
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Fig. 8. Verification of surface-data interpolation for inviscid, incompressible flow past a circular cylinder.

Fig. 9. Interpolated pressure distribution in a CD nozzle with pressure ratio 0.75.
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Table 3

Interpolation parameters for grid convergence study.

Immersed surface NACA0012 airfoil/Circular cylinder

Pressure interpolation IDW-Upwind

Shear stress interpolation Velocity gradient reconstruction at surface

Method Label A6

Stencil 3 × 3
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dense grid. The inner box is sized in this case to accommodate

he airfoil throughout the plunge motion. The point clouds repre-

enting the NACA0012 airfoil at its starting and ending positions

re also shown in Fig. 7b. The chord length and the plunge dis-

ance are both equal to 1m. The plunge motion of the airfoil is

iven by the following equation [40].

(t) = 0.25t2(3 − t) (8)

here h(t) is the vertical displacement of the airfoil in metres and

is the time in seconds. The total time for the heaving motion is

s, during which the airfoil moves up by 1m.

. Results and discussion

A list of the choices of methods for pressure and shear-stress

econstruction at the immersed surface used in this work is pre-

ented in Table 2. The verification test cases are presented first, fol-

owed by the validation test cases and finally the application of the

ata reconstruction methods for flow past a plunging NACA0012

irfoil is presented. A grid/time-resolution study is also included

ere for the test cases. The interpolation parameters (method and

tencil) used for the grid-resolution study is listed in Table 3.

The studies include simulations on three levels of grid, start-

ng from the finest mesh. The coarse meshes were generated by

emoving alternate grid points along the X and Y directions, start-

ng with the finest mesh. Further, using the calculated Cd values for

he three grids the observed order of convergence [41], p, and exact
alue using Richardson extrapolation, Cd,ref, are calculated. In order

o check for solution convergence with grid resolution, Cp and Cf

lots are compared, and the error in Cd, �Cd(= Cd − Cd,re f ), is also

etermined, as percentage of Cd,ref for the simulations of flow past

ACA0012 airfoil and circular cylinder. For the Mach 3.0 flow past

he ramp, only Cp plots are used for checking grid convergence. It

s to be noted that errors in Cp, Cf and Cd are also a property of

he discrete solution obtained using the immersed-boundary ap-

roach and not just the interpolation methods (IDW, IDW-IP, and

DW-Upwind) used.

.1. Verification

.1.1. Ideal flow past a circular cylinder

Fig. 8a shows the variation of the coefficient of pressure with

along the upper surface of the circular cylinder. The results in-

icate that IDW, IDW-IP, and IDW-Upwind methods have almost

dentical predictions of the surface pressure, and that the error in

he prediction increases as one approaches the top of the cylinder
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Fig. 10. Static gauge pressure contours for Mach 0.5 flow past NACA0012 airfoil.

Fig. 11. Grid-convergence study for simulation of Mach 0.5 flow past NACA0012 airfoil.

Fig. 12. Comparison of interpolation pressure reconstruction methods using 3 × 3 stencil for Mach 0.5 flow past NACA0012 airfoil.

4

n

p

t

c

s

(point of minimum pressure). The variation of the integrated lift

force for the three methods are compared in Fig. 8b. As the lift

force should be zero, this also shows the error in the prediction of

the integrated force with grid refinement. It is observed that the

IDW and IDW-Upwind methods have almost identical errors, while

the IDW-IP method has a higher error. The errors reduce with grid

refinement as expected.
.1.2. Quasi-one-dimensional flow through a convergent-divergent

ozzle

Fig. 9 compares pressure interpolated by each of the three

ressure interpolation methods with the analytic solution, for

hree grids with 101, 201 and 401 equally spaced points on the

entre-line; the IB consists of 501 equally spaced points. It is

een that for all three grids, the IDW-Upwind method captures
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Fig. 13. Comparison shear-stress reconstruction methods using 3 × 3 stencil for Mach 0.5 flow past NACA0012 airfoil.

Fig. 14. Effect of stencil size on surface pressure and skin-friction coefficients for Mach 0.5 flow past NACA0012 airfoil.

Fig. 15. Density contours of Mach 2.0 flow past circular cylinder.
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sharper shock compared to the other two methods. Addition-

lly, it is seen that the noise in the immediate downstream re-

ion of the shock has lower peaks in the case of IDW-Upwind

ethod, as compared to the other two methods. In the regions

f smooth pressure variation, all three methods perform equally

ell. It is to be noted that in real flows, such sharp discontinu-

ties in flow variables may not appear on walls due to the presence

f the boundary layers. In such situations, as such, all the three
 g
ressure reconstruction methods are expected to provide similar

esults.

.2. Validation: Subsonic laminar flow past NACA0012 airfoil

Fig. 10 shows the comparison of static pressure contours

etween the IB simulation and the ANSYS-Fluent simulation. The

rid for the simulation on ANSYS-Fluent was obtained from the
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Fig. 16. Grid-convergence study for Mach 2 supersonic flow past a circular cylinder.

Fig. 17. Comparison of pressure interpolation methods using 3 × 3 stencil for Mach 2.0 flow past circular cylinder.

Table 4

Comparison of Cl and Cd values for Mach 0.5 flow past NACA0012

airfoil (A1:A6) ; Cl,lit = 1.8273e-2, Cd,lit = 5.531e-2.

Interpolation method Cl (error) Cd (error)

A1 1.90e-2 (4.09%) 5.25e-2 (−5.04%)

A2 1.90e-2 (4.03%) 5.26e-2 (−4.99%)

A3 1.90e-2 (4.03%) 5.25e-2 (−5.01%)

A4 1.87e-2 (2.12%) 5.36e-2 (−3.02%)

A5 1.87e-2 (2.06%) 5.37e-2 (−2.97%)

A6 1.87e-2 (2.06%) 5.37e-2 (−2.98%)

ANSYS-Fluent 1.85e-2 (1.2%) 5.693e-2 (2.9%)

Table 5

Comparison of Cl and Cd values for Mach 0.5

flow past NACA0012 airfoil (A1-A6); Cl,lit =
1.8273e-2, Cd,lit = 5.531e-2.

Interpolation δ error (Cl) δ error Cd

A1 −0.71% −1.23%

A2 −0.60% −1.18%

A3 −0.49% −1.46%

A4 −0.71% −0.42%

A5 −0.55% −0.40%

A6 −0.44% −0.67%

4
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higher order workshop [38]. The grid for the IB simulation is

listed in Table 1. The contour plots look very similar indicating

that the flow field predicted by the two simulations agree quali-

tatively.
.2.1. Grid refinement

The Cp and Cf plots for the simulations using the three grids

re shown in Fig. 11. Fig. 11a shows a zoomed in view of Cp

lots wherein it is clear that the Cp predictions on the finest and

edium grid are very close to each other and approach the results

f the ANSYS-Fluent simulation. Further, the noise in the recon-

tructed pressure decreases with increase in grid resolution, which

s expected. Similar observations about noise in the reconstructed

alues can be made about the Cf plot shown in Fig. 11b. The accu-

acy of the reconstruction also improves, especially near the lead-

ng edge, with grid refinement. Fig. 11c shows the convergence in

he error with grid refinement. The value of Cd calculated using

ichardson’s extrapolation is 5.368 e-02 and the observed order of

onvergence, p, in this case is equal to 3.22.

.2.2. Variation in interpolation method

Fig. 12 shows the Cp plots obtained from the three pressure re-

onstruction methods (Section 2.2) that use the smallest stencil.

he three methods agree very closely with each other and with

he body fitted grid simulation of ANSYS-Fluent. Fig. 13 plots the

kin-friction coefficient using the two shear-stress reconstruction

ethods (Section 2.2.3) for the smallest stencil. It can be observed

hat the shear stress reconstruction that makes use of the velocity

nterpolation using IDW-IP has more noise than the gradient-based

ethod. This is possibly due to the inherent smoothing present in

he gradient-based method, as it involves a larger effective stencil

or interpolation of the shear stress. This is so, as the calculation

f the velocity gradients in the cells of the smallest 3 × 3 sten-

il requires the use of data from the adjacent neighbours, which
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Fig. 18. Comparison of shear-stress reconstruction methods using 3 × 3 stencil for Mach 2.0 flow past circular cylinder.

Fig. 19. Effect of stencil size on surface pressure and skin-friction coefficients for Mach 2.0 flow past a circular cylinder.

Fig. 20. Cp plot comparison across grids for Mach 3.0 flow past a 10° ramp.
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ffectively increases the size of the interpolation stencil. The re-

ults from both the methods show very good agreement with lit-

rature.

Cl and Cd values are also tabulated in Table 4, in which the val-

es in parenthesis denote the error, which is calculated relative to

reference value obtained from literature [38], and expressed as a

ercentage of the reference value. It is observed from Table 4 that

he lift and drag coefficients obtained using the IBM simulation
nd subsequent interpolations using methods A1–A6 are within

% of the values reported in literature. It is interesting to note

hat predictions of both lift and drag coefficients improve with the

se of velocity gradient reconstruction at the surface for the shear

tress calculation. The results indicate that while the accuracy of

he integrated loads are not affected by the choice of pressure re-

onstruction methods proposed in this work, it is more accurate

ith the use of the velocity gradient based approach for the shear

tress reconstruction, for the choice of a 3 × 3 interpolation stencil.

.2.3. Variation in stencil size

The effect of having a larger stencil size has a smoothing ef-

ect on the surface data in all three cases of pressure interpola-

ion. Fig. 14a shows the comparison of the IDW-Upwind method

or two different stencil sizes: 3 × 3 and 11 × 11. This behaviour

an be explained as follows: physically, the steady state solution at

ny point in the domain is dependent on the solution at all other

oints in the domain, the flow being steady and subsonic; a larger

nterpolation stencil results in more cells affecting the interpolated

alue, which captures the physics better and has a smoothing ef-

ect. However, this may not be true for flows with shocks in which

ase, a larger stencil size may result in more noise in the inter-

olated data. A similar effect is observed for the shear stress re-

onstruction methods and is shown here for the case wherein the

elocity gradient is interpolated at the surface in Fig. 14b.

Table 5 compares the values of Cl and Cd computed with

he 3 × 3 and 11 × 11 interpolation stencils. The difference in the
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Fig. 21. Comparison of pressure interpolation methods using 3 × 3 stencil for Mach 3.0 flow past a 10◦ ramp.

Fig. 22. Comparison of Cp using IDW-Upwind, for different stencils. Fig. 23. Temporal convergence study for Mach 0.2 flow past plunging NACA0012

airfoil.
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absolute value of the errors in lift and drag coefficients for the two

cases - corresponding to the two different sized interpolation sten-

cil – is reported here. A negative value is to be read as a reduc-

tion in error while a positive value indicates an increase in error.

It is seen from the tabulated values that increasing the stencil, uni-

formly produces a reduction in the error for both lift and drag co-

efficients. However, although the lift predictions change by similar

values across all methods of interpolation, the change in drag is

very different for the two different choices of shear stress calcula-

tion; the shear stress determination using the velocity reconstruc-

tion at the inteprolation point is observed to be more sensitive to

the interpolation stencil in this case. Among the pressure interpo-

lation methods, it is observed that while the IDW method shows

the highest improvement in Cl prediction, the IDW-UP method pro-

duces the most improvement in the Cd prediction.

4.3. Validation: supersonic flow past a circular cylinder

The density contour plots of the IB simulation and ANSYS-

Fluent simulation are presented in Fig. 15. The IB simulation is per-

formed on the grid listed in Table 1. Both the plots report the for-

mation of a bow shock and look qualitatively similar although the

gradients appear sharper with the Fluent simulations, especially in

the wake of the cylinder.

4.3.1. Grid refinement

Plots of Cp, generated using IDW-Upwind and Cf, generated

using gradient method, are shown in Fig. 16. The Cp values in
ig. 16(a) show good convergence, with the medium and fine grids

ery closely matching with ANSYS-Fluent data. The convergence in

f is relatively poor though, suggesting that use of even more re-

ned grids may be required. However, as the Cp plots show excel-

ent convergence, the finest grid is used for presenting the com-

arison with the results from literature and Fluent simulation. It is

bserved that the noise in the surface data drops with grid refine-

ent. Fig. 16(c) shows the convergence in the error with grid re-

nement for method A6. The value of Cd calculated using Richard-

on’s extrapolation is 1.56 and the observed order of convergence,

, is 0.7 in this case. A lower order of convergence, p, is observed

n this case compared to Mach 0.5 flow past the NACA0012 airfoil,

hich is possibly due to the relatively poor convergence in Cf ob-

erved in this case.

.3.2. Variation in interpolation method

Fig. 17 shows the Cp plots obtained from the three interpolation

ethods (Section 2.2) that use the smallest stencil (3 × 3). The

hree methods agree very closely with each other, with the body-

tted grid simulation of ANSYS-Fluent and with the data from lit-

rature [42]. The same trend was reported in the case of the flow

ast the NACA0012 airfoil (Section 4.2).

Fig. 18 compares Cf reconstructed using the shear-stress re-

onstruction methods (Section 2.2.3), with that from the body-

tted grid simulation in ANSYS-Fluent. As reported in the case

f NACA0012 airfoil (Section 4.2), the shear stress determined us-

ng the gradient-based method has less noise compared to that
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Fig. 24. Time history of force coefficients for Mach 0.2 flow past a plunging NACA0012 airfoil.

Table 6

Comparison of Cd values for Mach 2.0 flow past

a circular cylinder (A1:A6);Cd,lit = 1.54.

Interpolation Cd (error)

A1 1.527 (−0.8%)

A2 1.527 (−0.8%)

A3 1.527 (−0.8%)

A4 1.53 (−0.65%)

A5 1.53 (−0.65%)

A6 1.53 (−0.65%)

ANSYS-Fluent 1.537 (−0.19%)
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Table 7

Comparison of Cd values for

Mach 2.0 flow past a circular

cylinder (A1:A6);Cd,lit = 1.54.

Interpolation δ error Cd

A1 0.19%

A2 0.19%

A3 0.06%

A4 0.52%

A5 0.52%

A6 0.39%
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alculated using the velocity reconstruction method. Table 6

resents Cd predicted by methods A1–A6. The errors in all cases

re within 1%, which is excellent. The Cd predictions are slightly

etter with the use of the velocity gradient reconstruction method

or shear stress. Further, the Cd values are insensitive to the choice

f pressure reconstruction method. Both these trends were ob-

erved in the NACA0012 airfoil case as well. It is interesting to note

hat even though the shear stress predictions do not compare very

ell with the ANSYS-Fluent predictions, the computed drag coeffi-

ients match. This is possibly due to the fact that the major contri-

ution to drag in this case is from pressure, which shows excellent

atch with data from literature and ANSYS-Fluent simulations.

.3.3. Variation in stencil size

Fig. 19 shows a comparison of Cp obtained using the IDW-

pwind method and Cf obtained using velocity gradient recon-

truction, for two different interpolation stencil sizes: 3 × 3 and

1 × 11. Larger stencils are, again, seen to smooth the data. Al-

hough this being the case, in Fig. 19(b), it is seen that the skin-

riction (Cf) predicted is lower for the larger stencil. The reason for

his behavior could be that the velocity gradients for this specific

ow case are decaying quickly in the direction away from the sur-

ace.

Table 7 reports the increase/decrease of error while using a

1 × 11 stencil as compared to a 3 × 3 stencil. This has been de-

cribed in Section 4.2.3. Here, we see that in all cases, the error

s higher for the 11 × 11 stencil. In particular, the error growth in

4–A6 is large, which is consistent with Fig. 19(b) that shows drop

n Cf.

.4. Validation: Mach 3.0 flow past a 10◦ ramp:

Pressure reconstruction on the surface using the different in-

erpolation methods listed in Section 2.2 are investigated in this
ase; shear stress reconstruction is not investigated in this case as

he primary objective is to check if the IDW-Upwind method per-

orms better compared to the other pressure interpolation meth-

ds as observed in the case of inviscid quasi-1D flow through the

onvergent–divergent nozzle presented in Section 4.1.2.

.4.1. Grid refinement

Fig. 20 compares Cp data over the ramp for three grids with

ata from literature. It is seen that the medium and fine grids pro-

uce solutions which are close to each other. Also, there is noise

n the Cp data of the coarse grid in the downstream region of the

amp, which reduces with grid refinement.

.4.2. Variation in interpolation method

Fig. 21 compares the Cp data at the ramp for each of the pres-

ure interpolation methods with that from literature. As seen in

he previous validation cases, the three methods perform equally

ell. Even though this case has an oblique shock present in the do-

ain, the reconstructed surface pressures using IDW-Upwind are

ot any different from those determined using the IDW and IDW-

P methods. The reason for this is that the viscous effects in the

oundary layer smear the rise of pressure over a large region of

he wall, as seen in the plots, and the effect of upwinding in the

nterpolation of pressure becomes insignificant.

.4.3. Variation in stencil size

Increasing the stencil size reduces noise in the Cp data, as seen

n the other validation cases. Fig. 22 shows the Cp plots for this

ow case.

.5. Application: Mach 0.2 flow past plunging NACA0012 airfoil

A temporal convergence study was performed for this case us-

ng time steps of 1E-3 s and 5E-4 s. Time-histories of C and C for
l d



14 A. Bharadwaj S and S. Ghosh / Computers and Fluids 196 (2020) 104236

Fig. 25. Cp distribution (left), vorticity contours (middle), and Cl (right) at different times for Mach 0.2 flow past a NACA0012 plunging airfoil: t/T = 0.0–1.0; US – Upper

Surface, LS – Lower Surface.
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Fig. 25. Continued
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the two different time steps are shown in Fig. 23. It is observed

that the lift and drag coefficients are very close to each other for

the two simulations, which suggests that the solutions are time-

converged. The following results are presented with the finer time

step of 5.0E−4 s.

Time histories of force coefficients plotted in Fig. 24 show that

both Cl and Cd predictions using the IBM simulation compare well

with literature[40], with the lift predictions being relatively more

accurate compared to the drag predictions. Results from simula-

tions using two different grids – 780 × 1400 and 390 × 700

– are shown to check for spurious force oscillations [9]. It is ob-

served that the force coefficients on the coarser grid shows noise

in the computed drag-force coefficient. To get further insight into

the lift generation during the plunge process, the surface distribu-

tion of Cp along the airfoil upper and lower surfaces and the vor-

ticity contours in the domain are plotted at the same time instants

in Fig. 25; the lift coefficient at the corresponding instants of time

is also shown. The pressure on the airfoil has been calculated using

the IDW-Upwind interpolation.

At the start of the heaving motion (Fig. 25a) the airfoil gener-

ates no lift and the Cp curves for the upper and lower surfaces are

coincident; the vorticity contours also show symmetry about the

airfoil chord. In Fig. 25b the airfoil has started to move up and

a clockwise vortex can be seen to be rolling down at the trail-

ing edge. The Cp plot indicates that negative lift (as lower surface

has lower pressures than upper surface) is generated, which is ex-

pected as the airfoil is moving upwards and as such, effectively

has a negative angle of attack. The minimum pressure, near the

leading edge lower surface, drops further at the next time instant

(Fig. 25c), but the overall lift remains similar as the pressure on

the upper surface also drops. The lift decreases further (Fig. 25d)

as the lower surface pressure drops further. A leading edge vor-

tex on the lower surface is observed in the next frame (Fig. 25e),

which results in a sharp drop in the surface pressure around 0.2 c

on the lower surface. The vortex is more prominent in Fig. 25f and

its centre approximately coincides with the stream-wise location

of the pressure trough on the lower surface. The vortex is on the

verge of being shed in the next frame (Fig. 25g), and has moved

away from the airfoil surface. The airfoil is losing negative lift as

its plunge velocity is dropping, and pressures on the lower sur-

face have increased one the whole. At the end of the plunge mo-

tion (Fig. 25h), the lower surface pressures are, for the most part,

higher compared to the upper surface pressures which results in a

positive lift.

5. Conclusions

In this work, three methods of pressure interpolation and two

methods of shear stress reconstruction at the immersed surface,

vis-à-vis a discrete-forcing immersed-boundary method, have been

verified against analytical solution of canonical inviscid flows and

validated against CFD data from literature for laminar flow simula-

tions of Mach 0.5 flow past a NACA0012 airfoil, Mach 2.0 flow past

a circular cylinder and Mach 3.0 flow past a 10◦ ramp. Comparisons

of the interpolation procedures are presented for surface pressure

coefficients, skin friction coefficients and integrated loads, wherein

the effect of stencil size on the interpolation methods is also inves-

tigated. In general, predictions of surface pressure and shear stress

improve - resulting in better accuracy and lesser noise – with grid

refinement. Effect of stencil size on the interpolated pressure also

indicates that higher stencil size results in smoother surface pres-

sure and shear stress. However, the effect of stencil size on the ac-

curacy of the integrated loads might vary depending on the flow

problem being considered, and a case-specific optimal size may

exist. Among the interpolation methods for pressure investigated

in this work, the IDW and IDW-Upwind methods are seen to re-
ult in less noise in the interpolated surface pressure, compared

o the IDW-IP method. Further, the IDW-Upwind method produces

he sharpest pressure rise among the interpolation methods for an

uler flow with a normal shock, though a similar result is not ob-

ained for a laminar Mach 3.0 flow past a ramp. This suggests that

he additional cost involved in the IDW-Upwind method may not

rovide any benefit for viscous flows. Considering the fact that the

DW-IP method is based on the interpolation procedure used for

he discrete solution forcing, it can be argued that the interpola-

ion strategy used for solution forcing in the neighbourhood of the

B may not be the most suitable method for reconstruction of the

ata at immersed surface in discrete-forcing immersed-boundary

ethods. As for the shear stress reconstruction, the gradient-based

ethod produces less noise compared to the velocity interpolation

ethod.

Further, although the interpolation methods presented in this

ork have been tested on a specific immersed-boundary solver,

n principle these can be applied to any direct-forcing type

mmersed-boundary solver, without much additional programming

ffort.

The data-reconstruction method proposed in this work, in con-

unction with an immersed-boundary approach, can thus be used

xtensively for the prediction of aerodynamic characteristics of

irfoils (including multi-component airfoils, airfoils and with ice-

ccretion, and airfoils with complicated motion), which can be

sed for design of airfoils and related studies for small UAVs. Fur-

her, the shear-stress reconstruction at the immersed-surface can

lso be used to detect flow-separation and reattachment, which

s useful for flow separation and control related studies. As such,

he work presented is very relevant in making (discrete-forcing)

mmersed-boundary methods more useful for airfoil design stud-

es, flow control in airfoils and also, to understand the fluid dy-

amics involving intricate airfoil motions such as insect flight.
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