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Abstract

Genome-scale metabolic networks have been reconstructed for several organisms. These metabolic networks provide de-
tailed information about the metabolism inside the cells, coupled with the genomic, proteomic and thermodynamic infor-
mation. These networks are widely simulated using ‘constraint-based’ modelling techniques and find applications ranging
from strain improvement for metabolic engineering to prediction of drug targets in pathogenic organisms. Components of
these metabolic networks are represented in multiple file formats and also using different markup languages, with varying
levels of annotations; this leads to inconsistencies and increases the complexities in comparing and analysing reconstruc-
tions on multiple platforms. In this work, we critically examine nearly 100 published genome-scale metabolic networks and
their corresponding constraint-based models and discuss various issues with respect to model quality. One of the major
concerns is the lack of annotations using standard identifiers that can uniquely describe several components such as me-
tabolites, genes, proteins and reactions. We also find that many models do not have complete information regarding con-
straints on reactions fluxes and objective functions for carrying out simulations. Overall, our analysis highlights the need
for a widely acceptable standard for representing constraint-based models. A rigorous standard can help in streamlining
the process of reconstruction and improve the quality of reconstructed metabolic models.
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Introduction

Genome-scale metabolic networks (GSMNs) provide an integrated
view of cellular metabolism by incorporating the information ob-
tained from literature, as well as genomic, proteomic, metabolo-
mic and thermodynamic data [1]. Over the recent years, there has
been a growing interest in the reconstruction of these metabolic
networks, which can be used to infer metabolic capabilities of the
cells, with applications ranging from the prediction of drug tar-
gets in pathogenic organisms [2–4] to strain design for overpro-
duction of commercially important metabolites [5–7]. Further, the
reconstructions permit the integration of high-throughput data
such as 13C flux measurements [8,9] and microarray data [10].
They also aid in analysing the relationships between the organ-
isms in a community [11, 12] and guide the discovery of network

properties [13, 14]. These widespread applications have led to the
development of multiple genome-scale metabolic models for
various organisms that are represented in different formats cater-
ing to the needs of respective toolboxes. Despite such extensive
use of genome-scale reconstructions, a standardized form for
their representation is still lacking. In the recent years, some for-
mats have become popular for the exchange of these GSMNs,
notably the constraint-based reconstruction and analysis
(COBRA) format built on Systems Biology Markup Language
(SBML) [15], but despite this, many issues such as the lack of an-
notations to uniquely identify metabolites remain.

GSMNs are constructed from sequenced genome informa-
tion, biochemical evidence and available literature [1]. As an
initial step, automated genome annotation that provides
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information about the genes is generated from different data-
bases. These databases could either be organism-specific like
EcoCyc [16], Saccharomyces Genome Database [17] and Ashbya
Genome Database [18] or a collection of genome annotations
such as GenBank [19], The Institute of Genome Research TIGR,
(http://www.tigr.org/) and Comprehensive Microbial Resource
[20]. The information is then mapped to the biochemical reac-
tions that take place inside the cell by extracting the data from
different metabolic databases, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) [21], MetaCyc [22] and TransportDB
[23]. This step is followed by manual curation of the recon-
structed network, which involves inclusion of compartments,
organism-specific transporters, cofactors and directionality of
the reactions. The complete information about different recon-
structions can be found in Supplementary Table S1.

The assembled GSMNs are simulated by applying con-
straints that may often be experimentally defined [24, 25].
These constraints define the ‘phenotypic space’ that can be
explored to gather information about different phenotypes and
infer the metabolic capabilities of the cell [26]. GSMNs are often
referred to as (genome-scale metabolic) models after the con-
straints are applied. Several ‘constraint-based modelling’ tech-
niques have emerged, which make use of these metabolic
models. One such technique is flux balance analysis (FBA),
which uses the stoichiometric information in the GSMNs to pre-
dict the growth rate of an organism as well as the flow of metab-
olites through different pathways [27, 28]. Several
enhancements to FBA, such as minimization of metabolic ad-
justment [29] and regulatory on/off minimization [30], also rely
on the information provided by the reconstructions. A broad
overview of constraint-based modelling techniques has been
described in [31]. The increasing number of such techniques has
led to a concurrent increase in the number of software and tool-
boxes tailored for the analysis of metabolic networks, e.g.
COBRA Toolbox [15], RAVEN Toolbox [32] and OptFlux [33]. A
more detailed review on the software used for constraint-based
modelling can be found elsewhere [34, 35].

The reconstruction process is facilitated by several plat-
forms, such as KEGGtranslator [36], rBioNet [37], Pathway Tools
[38], ModelSEED [39], Flux Analysis and Modelling Environment
[40] and MicrobesFlux [41]. Each of these tools retrieve pathway
information from different databases and provide several
modes of representation and simulations. The availability of al-
ternate representations introduces non-uniformities in several
components of the GSMNs, such as reaction identifiers, metab-
olite identifiers and representation of compartments. Further,
these details are not well-catalogued in all formats, which
greatly reduce the scope of reproducibility and flexibility in
utilizing them on various software tools. It also hampers the
automated integration of high-throughput data and greatly re-
duces the chances of comparison between different GSMNs [42].
The increasing number of reconstructions in varied formats and
with different sets of annotations makes it difficult to utilize
and analyse these networks. A recent review also focuses on
the importance of optimizing and generating high-quality
metabolic network reconstructions for improving the overall
progress of the field [42].

With the growing number of these reconstructions and their
applications, uniformity in representation of different compo-
nents becomes crucial. In this work, we critically assess nearly a
hundred published network reconstructions in aspects such as
specification of metabolite identifiers, extent of blocked reac-
tions and presence of gene-protein-reaction (GPR) associations.
Specifically, we seek to answer the following questions: are the

genome-scale metabolic networks completely specified in
terms of various components such as metabolite identifiers and
reaction identifiers? What is the extent of blocked reactions in
each of these models? Do these models have sufficient informa-
tion such as objective function and experimental bounds to
enable their simulation? We also outline common issues with
these metabolic reconstructions and consequently, a set of rec-
ommendations, which may aid in establishing a common de-
nominator for all GSMNs.

Assessment of metabolic models

Metabolic models are extensively simulated using constraint-
based analysis techniques such as FBA [25, 43]. FBA considers
the steady-state mass balance in a cell, and identifies the most
plausible flux distribution, by optimizing a particular (linear) ob-
jective function [44], usually maximum growth, and satisfying
several known biochemical and thermodynamic constraints.
The FBA framework therefore necessitates the specification of
the constraints, such as upper and lower bounds for the fluxes,
and the objective function.

We present the results of our analyses of various GSMNs/
models, on different axes, such as the representation formats,
availability of annotations for genes, metabolites and proteins,
information on GPR associations, availability of complete infor-
mation (exact specification of constraints) for enabling simula-
tions and the extent of blocked reactions. We carried out our
analysis on the SBML models using the COBRA Toolbox v2.0 ac-
cessed via MATLAB R2012b (Mathworks Inc.) and GUROBI Solver
(v5.6.3, Gurobi Inc.). We also adopted COBRApy [45] for reading
and converting SBML files that could not be interfaced through
COBRA in MATLAB. COBRApy, an object-oriented programming
implementation, not only handles SBML models with different
structures (e.g. COBRA and FBC, as described in the following
section) but also models incorporating expression data. The
models available as spreadsheets were analysed manually for
different components of the metabolic network such as the
number of reactions, genes, presence of metabolite identifiers
and bounds on the reactions using built-in functions of
Microsoft Excel.

Paradigms for GSMN representation

Genome-scale metabolic reconstructions are popularly
exchanged in the SBML format [46], while there are other types
of languages like Metabolic Flux Analysis Markup Language [47]
and Web Ontology Language-based BioPAX format [48].
Although the GSMNs generated in SBML format essentially fol-
low the basic framework of XML (eXtensible Markup Language),
the syntax and semantics vary widely. A very recent review on
all the relevant community modelling standards can be found
in [49]. In fact, the most widely used XML-based SBML format
differs in several aspects based on specifications laid down by
different packages: for instance, SBML, as popularized by the
COBRA toolbox [15], uses ‘notes’ to specify metabolite informa-
tion, gene associations and named parameters that specify
flux constraints, while the proposed version of Flux
Balance Constraints (FBC) package for SBML (http://sbml.org/
Documents/Specifications/SBML_Level_3/Packages/fbc) encour-
ages the use of specific tags for representing the same. Figures 1
and 2 illustrate the representation of reaction constraints
and gene–protein reaction associations in COBRA and FBC
formats, respectively. Indeed, COBRApy extensively supports
FBC-compliant SBML file.
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In addition to the formats mentioned above, many of the
models are represented as text files and spreadsheets, thereby
increasing the complexity in analysing these networks. While
spreadsheets are convenient for tabulating and consolidating
diverse data in metabolic networks, they do not lend them-
selves easily to simulation; the COBRA toolbox [50] for MATLAB
does have a method to convert Excel spreadsheet files to XML,
but the process may not always be straightforward and error-
free. Overall, the availability of different incompatible formats
hinders our ability to simulate the reconstructions on different
platforms. The examples of GSMNs presented in different for-
mats can be found in Table 1, and a detailed description of the
models can be found in Supplementary Table S1. Our analysis
of 99 GSMNs shows that the most widely used formats for repre-
sentation are SBML and spreadsheets. We observe that 58 of the
reconstructions are exchanged as SBML files and 28 are found
only as Microsoft Excel spreadsheet (XLS) files; while 35 are
available in both SBML format and as spreadsheet files. Besides,
we note that the models are also exchanged as PDF, MATLAB
mat data files and Microsoft Word document files.
Supplementary Table S2 details the different formats in which
the models are represented.

Annotations of metabolic networks components

The representation of different components of the GSMN like
the metabolite identifiers, genes, compartments and the object-
ive function assume a crucial role while the network is used in

simulations. These components provide insights into the fea-
tures of the metabolic network and help quantify different
properties of the reconstructions such as growth rates and
fluxes through different pathways. The inclusion of these iden-
tifiers in GSMNs is predominantly a part of the reconstruction
process and involves careful manual curation from various
databases. Many times during this process, several ad hoc nota-
tions are introduced, which lead to a wide spectrum of names
and identifiers even for common reactions and metabolites in
metabolic networks. In the following sections, we elucidate the
importance of different components of the GSMNs and demon-
strate the inconsistencies observed across the GSMNs analysed.

Metabolite identifiers

Because a GSMN provides a catalogue of the biochemical reac-
tions taking place in an organism, it is important to uniquely
identify the corresponding metabolites, genes and proteins,
through annotations that uniquely map these components to
standard databases. Metabolic networks are usually identified
through references to different standard databases. The pri-
mary metabolite identifiers are PubChem Compound ID [62],
KEGG Compound ID [21] and Chemical Entities of Biological
Interest (ChEBI) ID [63], while the structure-based identifiers in-
clude IUPAC International Chemical Identifier (InChI) and the
Simplified Molecular-Input Line-Entry System (SMILES) from
the respective databases. The structure-based identifiers like

A

B

Figure 1. Different types of representations of reaction constraints in SBML format: Panel A illustrates how reaction constraints such as upper and lower bounds are

specified using the Flux Balance Constraints package, while Panel B illustrates the same in the COBRA format. Note that the list of objectives in the FBC package speci-

fies the list of reactions that serve as objective function. On the other hand, the ‘objective coefficient’ in the COBRA format is individually specified for every reaction.
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InChI also provide details on the stereochemistry of the com-
pounds [64].

Our analysis of the reconstructions for the presence of stand-
ard metabolite identifiers illustrates that nearly 60% of the mod-
els lack any of the standard metabolite identifiers, such as KEGG
LIGAND ID, PubChem Compound ID and InChI. Figure 3 illus-
trates an example of an SBML reconstruction where identifiers
are mapped to the standard database of metabolites, while
Figure 4 represents a bar graph showing the distribution of mod-
els having specific metabolite identifiers. Besides, few recon-
structions possess database specific identifiers, such as SEED ID,
thereby making their interpretation even more circuitous.

Mass and charge balance of reactions

We also examined the reactions in the GSMNs for mass and
charge balances, using the molecular formulae of the metabol-
ites involved. The stoichiometric inconsistencies arising out
of the unbalanced reactions in the metabolic network not only
affect the accuracy of predictions but also violate the
fundamental law of mass conservation [65], which is the key

A

B

Figure 2. Different types of representations of Gene Protein Reaction Association in SBML format: Panel A illustrates how the gene-protein-reaction associations are

specified in Flux Balance Constraints package, while Panel B illustrates the same in COBRA Format. Note that the FBC package, in addition to the geneAssociation

field, consists of a separate notes field, which contains the details about the GPRs involved in the given reaction.

Table 1: Examples of reconstruction formats

Serial
number

Format Example GSMNs in this format

1 SBML:COBRA Aspergillus terreus iJL1454 [51],
Kluyveromyces lactis iOD907 [52],
Pseudomonas putida iJP815 [53],
Salmonella enterica subsp. enterica
serovar Typhimurium str. LT2
iIT1271 [2], Spirulina platensis C1
iAK692 [54], Geobacter metallireducens
iAF987 [55]

2 SBML:RAVEN Saccharomyces cerevisiae iTO977 [56],
Penicillium chrysogenum Wisconsin
54-1255 iAL1006 [32], Pseudomonas
fluorescens SBW25 iSB1139 [57]

3 SBML: FBC Synechocystis sp. PCC 6803 iTM686 [58],
Geobacter metallireducens iAF987 [55]

4 Simpheny Saccharomyces cerevisiae iMM904 [59]
5 Spreadsheets Pichia stipitis iBB814 [60], Pichia pastoris

iLC915 [61]

Note. The table lists example of formats adhered to by different GSMNs.
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principle on which methods such as FBA are based. It has been
previously shown that rebalancing all the unbalanced reactions
of a GSMN had significant impact on the predictions of FBA [66].

Although the reconstructions exchanged as spreadsheets con-
tained the metabolite formulae, we limited our analysis to
GSMNs exchanged as SBML files due to the difficulties involved in
parsing spreadsheets in different formats. Of the 59 reconstruc-
tions in SBML format, we were able to perform this analysis only

on 21 models. The other SBML reconstructions either did not fol-
low the structure specified by COBRA Toolbox or did not contain
metabolite formulae. We observe that most of the unbalanced re-
actions result owing to the differences in hydrogen atom num-
bers (Supplementary Table S3). For a few reactions in any given
reconstruction, we were unable to determine the mass balance
owing to the absence of corresponding metabolite formulae
(Figure 5). It is interesting to note that in few cases such as

Figure 3. Example representation of metabolite identifiers in models: figure illustrates the presence of metabolite identifiers in an SBML reconstruction following

COBRA format. Note the presence of unique identifiers pointing to standard databases such as KEGG, PubChem and ChEBI.

Figure 4. Presence of metabolite identifiers in the GSMNs: figure shows a bar graph for the number of models having different metabolite identifiers, which can be used

to uniquely identify the metabolite and also retrieve the appropriate information from various databases.
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Streptomyces coelicolor iMK1208 [67], all the reactions were bal-
anced, while in some others such as Escherichia coli iAF1260 [68],
only the biomass reaction was unbalanced. However, to reduce
the model complexity, reactions such as biomass production and
exchange reactions are often left unbalanced.

Genes, proteins and GPR associations

We also checked for the presence of the enzymes participating
in different reactions of the GSMNs. The enzymes are repre-
sented with their Enzyme Commission numbers, obtained from
databases such as BRaunschweig ENzyme DAtabase (BRENDA)
[69] and ExPaSy [70]. Apart from these, the GSMNs also harbour
unique protein identifiers retrieved from databases such as
Universal Protein Resource (UniProt) [71] and SWISS-PROT [72].
We analysed the reconstructions for the presence of the protein
identifiers, and find nearly 25% of them lack information on the
protein identifiers.

Another important component of GSMNs is the presence of
information about genes/proteins that are involved in the ca-
talysis of a reaction, indicated as GPRs. The gene and protein
identifiers are crucial, as they help in deriving useful
hypotheses about gene essentiality and understanding
the regulatory mechanisms of the biological systems. The
gene IDs, as mentioned earlier, are usually retrieved
from GenBank [19] or organism-specific databases, and the GPR
associations are formulated as Boolean rules based on the
participation of each gene and its associated product in every
reaction. These rules also take into account the presence of
isozymes and multifunctional enzymes in the metabolic
network.

The presence of information on genes is critical when the
model is applied for strain optimization using constraint-based
modelling. They also help in deriving useful hypotheses about
gene essentiality and understanding the regulatory mechan-
isms of the biological systems. Several previous studies rely on
the gene information provided by the GSMNs to discover and
formulate hypothesis about gene essentiality [73, 74]. We find
that nearly all GSMNs (90%) provide details of the GPR associ-
ations, in either SBML or XLS files. However, nearly 35% of the
models available in both XLS and SBML formats fail to incorpor-
ate the GPRs in their respective SBML files, making it difficult to
generate predictions on gene knockouts or overexpression.
Supplementary Table S4 lists the information on genes and
GPRs present in various reconstructions. It is often the case that
the same reconstruction, when exchanged in different formats,
say as SBML and XLSs, fails to incorporate all the information in
both formats.

Analysis of simulation capabilities of the models

Metabolic models are often simulated to capture vital informa-
tion like growth rate, essential genes, active pathways and es-
sential reactions in a given medium. The metabolic models that
underlie these metabolic networks are highly underdetermined;
solving them requires the specification of additional con-
straints, to narrow down the space of solutions that are more
likely to be biologically feasible. The constraints could be phys-
ico-chemical, environmental or thermodynamic, which are
defined to analyse different functions of a biological system.
Mathematically, these are indicated as the bounds and the bal-
ances on the reaction fluxes. The former are often derived from

Figure 5. Mass and charge balance analysis: figure shows a stacked graph representing the fraction of reactions that are balanced (light grey), fraction of reactions for

which the mass balance cannot be determined (dark grey) owing to absence of metabolite formulae corresponding to that reaction and the fraction of reactions that

are unbalanced (black). Note that few reconstructions such as Methanosarcina barkeri iMG746 and Streptomyces coelicolor iMK1208 do not have any unbalanced reactions,

while some reconstructions such as Escherichia coli iJO1366 and Escherichia coli iAF1260 have just one unbalanced reaction.
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enzyme capacity measurements and environmental conditions,
whereas the latter are derived from fundamental mass, energy
and charge conservation [26]. The integration of the objective
function and environment/medium conditions into the meta-
bolic network is a part of the reconstruction step itself and plays
a crucial role in determining the usability of the model for simu-
lations. Often in FBA, biomass maximization is chosen as the
objective function; the biomass equation is formulated based
on cellular composition and energy requirements of the cell
[75]. In models such as human tissues, where maximizing
growth rate has little meaning, an alternate objective function
is chosen [76]. Moreover, in alternate FBA formulations such as
flux minimization [77] and loopless FBA [78], biologically mean-
ingful solutions can be obtained by constraining the uptake and
secretion bounds.

In some cases, transcriptomic data such as those obtained
from gene expression and protein expression are incorporated
in metabolic models to further constrain the flux space of pos-
sible solutions [79]. To this end, several methods such as inte-
gration of Boolean rules defining gene expression [79], E-Flux
[10], PROM [80] and MADE [81] have been developed. Although
such regulatory constraints improve metabolic predictions,
their applications are still restricted owing to the lack of under-
standing about the transcriptional mechanisms, absence of a
significant correlation between gene and protein expressions
and experimental variations in detecting different levels of
transcripts [82].

We note that around 88% of the models use ‘default bounds’
for simulations, i.e. 0 mmol gDCW�1h�1 to
1000 mmol gDCW�1h�1 for irreversible reactions and
�1000 mmol gDCW�1h�1 to 1000 mmol gDCW�1h�1 for reversible
reactions. More details on the bounds of the reactions in the
models can be found in the Supplementary Table S5. While
these sets of constraints do lead to the generation of
growth rates, to obtain a biologically feasible solution, the
inclusion of the experimental constraints based on experimen-
tal measurements is necessary. These constraints ensure
that the predictions of models do not diverge too far from
the reality. We evaluated the biomass formation in each of
these SBML models by applying environmental conditions
specified in the corresponding publication. We find that some
models do not explicitly provide the constraints and objective
function required for simulation. In such cases, we tried
to simulate the models for growth by unrestricted exchange
of all possible metabolites. Despite this, we were able to
precisely correlate the growth rates of only 22 SBML
models (Supplementary Table S6). We also note that the
regulatory data have been incorporated in few genome-scale
models such as Saccharomyces cerevisiae iFF708 [83],
Chlamydomonas reinhardtii iRC1080 [84] and Pseudomonas aerugi-
nosa iMO1056 [85].

Blocked reactions

Blocked reactions in metabolic networks are those reactions that
cannot carry a flux at steady state in a given growth medium.
These reactions may arise owing to multiple reasons: (i) the
metabolic network model is incomplete, with gaps (unknown
connecting reactions) between the metabolites, (ii) medium
conditions used to simulate the model and (iii) incorrect
bounds on the reactions. Although these reactions are su-
perfluous for simulations, it is often necessary to specify them in
the model, as they highlight the knowledge gaps in the
reconstructed metabolic network. It has been previously reported

that by removing and connecting a few dead-end metabolites
in Saccharomyces cerevisiae iFF708, the predictions of the FBA
algorithm improved from 40–53% to 68–80% for single lethal dele-
tions [77].

We identified blocked reactions by solving a set of linear pro-
gramming problems that involve maximizing and minimizing
the flux through every reaction, to pinpoint the reactions that
cannot carry fluxes in either direction [86]. For this purpose, we
simulated the metabolic model with default bounds as given in
the reconstructions. It is striking to note that 50% of the recon-
structions have nearly 20–40% of the reactions blocked, while
only 7% of all the reconstructions have <20% blocked reactions
(Figure 6). We also observe that a minor fraction of the models
have all their reactions to be blocked. This owes to the absence
of bounds for reactions in the GSMNs, owing to which all the re-
actions assume a zero flux when simulated.

Compartments

All higher organisms have complex compartmentalization of
the cell into multiple organelles; in prokaryotes, there are no or-
ganelles. For the purpose of modelling, prokaryotes are usually
depicted as two-compartment systems with the internal com-
partments being ‘cytoplasm’ and ‘periplasm’, along with an
‘extracellular’ compartment. Eukaryotes have multiple com-
partments corresponding to their complex organellar organ-
ization. Compartmentalization in models helps in
distinguishing the metabolic machinery from the surrounding
and also helps demarcate between different organelles, which
is particularly important when the models of eukaryotic organ-
isms are reconstructed and simulated. Lack of compartment
definitions makes it difficult to discern reactions taking place in
different parts of the cell and accurately determine flux distri-
butions. We find that 36% of the prokaryotic models lack ‘peri-
plasm’ as one of the compartments and consist of only two
compartments, i.e. ‘cytoplasm’ and ‘extracellular’, while 19% of
all the models do not contain compartments at all. Besides, we
also encounter several inconsistencies associated with the com-
partments IDs such as representation of endoplasmic reticulum
with ‘e’, ‘er’ or ‘r’ and peroxisome with ‘p’ or ‘x’. Supplementary
Table S7 represents different compartments in the metabolic
network.

Figure 6. Blocked Reaction Analysis: histogram represents the number of models

having different degrees of blocked reactions. Blocked reactions refer to those

reactions that cannot carry a flux in either direction at steady state in the given

growth medium.
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Discussion

GSMNs have been reconstructed for several organisms in the
past years and are being simulated for understanding the meta-
bolic capabilities of biological systems. The reconstructions con-
sist of components such as metabolite and reaction identifiers,
genes, GPRs and protein identifiers, many of which lack a stand-
ard form of representation. Further, simulation of the metabolic
models demand specification of constraints such as bounds on
reactions and objective function to predict the metabolite flux
through different pathways.

In this study, we assess nearly 100 reconstructions on vari-
ous axes to determine the suitability of simulations on multiple
toolboxes. We find multiple formats for model representation
and lack of standard annotations for different components of
the metabolic models such as metabolite and protein identi-
fiers. The absence of such annotations that provide references
to standard databases greatly limit our ability to compare and
analyse multiple metabolic models, especially while interrogat-
ing metabolic interactions between organisms in a community.

Broadly, we make four observations that illustrate the need
for a unifying standard, across reconstructions. First, we see
that there are many different formats for the exchange of these
models, with each format having a different set of specifica-
tions, to denote various components of the genome-scale
reconstruction. Also, XLS files are most unsuitable for represen-
tation, as they are unstructured and are not easy to validate.
The diversity in the formats for representation increases the
complexity in analysing and simulating the GSMNs. These chal-
lenges can be surmounted if the reconstructions adhere to one
standard format of representation and also harbour appropriate
annotations for all the metabolites, genes, etc., which will also
greatly facilitate interconversion between different formats and
enhance interoperability and the ability to simulate on multiple
software platforms. Also, such a standard would help overcome
the customized instructions and dedicated software that one
needs to adopt while simulating the models.

Second, we point out that nearly 60% of the models lack an-
notations for metabolites, with identifiers connecting to stand-
ard databases. Our results clearly suggest the need to include
these standard metabolite identifiers to improve the quality of
the reconstruction, which is often overlooked. Nevertheless,
several online resources such as MetRxn [66], MetaNetX [87]
have been developed; these databases strive to enable standard-
ization of the metabolic models by assigning a common name-
space for metabolites. However, these resources have been
largely underutilized.

Third, we note that the GPR information is not often clearly
specified in the models—even for the same model, the XLS file
may have more (or less) information on the GPRs, compared with
the SBML file. Nearly 35% of the models do not have well-defined
gene annotations at all. These aspects limit our ability to decipher
the underlying associations between genes and reactions and
also predict gene targets for amplification or knockout studies.

Fourth and most important, we find that many models lack
clear information on the constraints and objective functions
used for the simulations. Also, we observe a large fraction of
blocked reactions in many of the models. Overall, many models
do not lay out a clear specification of the constraints and the en-
vironment conditions that were used to simulate the model,
which severely limits our ability to simulate for models and pre-
dict growth rates.

Further, it is also desirable that reconstructions accommo-
date the changes in reaction bounds when simulated under

different environment conditions. It is common to simulate a
model under different environmental conditions (growth
media) or with different objective functions (that model plaus-
ible alternate behaviours). The ability to ‘compose’ multiple en-
vironmental conditions and objective functions into
reconstructed models will be a very valuable feature in any
standard for representing these models. Currently, only a very
few models such as iRC1080 of Chlamydomonas reinhardtii [84]
and iTM560 of Neisseria meningitis [88] incorporate multiple ob-
jective functions in the same reconstruction. Moreover, we ob-
serve that models do not explicitly specify the choice of
medium or the objective function, which makes it difficult to
faithfully reproduce the original observations from other mod-
els. We also note that many of the reconstructed networks are
constantly revised, based on newly acquired biochemical know-
ledge. In such cases, it would be instructive to adopt versioning,
although incremental changes can be tracked by examining the
model history. Version control becomes particularly important
when the biochemical models are deposited in standard reposi-
tories. Most of the available model version control systems
(VCS) operate on software codes; only few of them, such as
XyDiff-algorithm-based BiVeS library [89] (Biochemical Model
Version Control System), are suited for XML-based models.
Currently, versioning is in practice for few reconstructions such
as Saccharomyces cerevisiae [90] and Salmonella enterica subsp.
enterica serovar Typhimurium LT2 [2].

In sum, while we find that most of the reconstructions strive
to provide adequate information for analysis and simulation,
the establishment of a clear standard, which will entail only
minor modifications will greatly improve the quality of the re-
constructions, particularly their reusability. Further, it will help
us garner maximum benefits from the enormous efforts that go
into the creation of these networks. Various community efforts
like organization of ‘jamborees’ for annotating the genome-
scale reconstructions of different organisms have been initiated
[91]. The jamborees are aimed are reconciling and consolidating
the existing reconstructions of the target organisms. Besides,
there have also been considerable efforts in developing online
resources that facilitate the generation and reconciliation of
draft genome-scale reconstructions [66, 92, 93]. Notably,
Path2Models project [93] consolidates the biochemical path-
ways catalogued in well-curated online resources such as KEGG
and pathway tools and generates draft SBML models that com-
ply with MIRIAM (Minimum Information Required in Annotated
Models) specifications.

Although unique annotations for different model components
such as reactions, metabolites, genes and compartments are a
part of MIRIAM standards [94], many of these guidelines are rarely
followed. Availability of different forms of encoding constraint-
based models such as COBRA-compliant SBML, FBC-compliant
SBML and spreadsheets have resulted in multiple ways of repre-
senting the same information. Not only does this compromise the
ability to simulate the reconstructions, it also hampers the auto-
mated integration of high-throughput data. Although MIRIAM
guidelines address most of these concerns, a unified standard for
representing GSMNs is still lacking. We reiterate that the recon-
structions must provide the following:

i. sufficient information about the reactions and the reaction
IDs from the respective databases based on which the
model was constructed;

ii. standard metabolite annotations like KEGG ID, InChI
String, PubChem ID and metabolite formula, charge or ref-
erences to the corresponding database;
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iii. information about the genes associated with the network;
iv. GPR association in Boolean format;
v. the bounds and the experimental conditions used to simu-

late the network;
vi. details on biomass formulation;

vii. validation about the growth rate and the values observed
when simulated on different media;

viii. compartments and subsystems where the reactions occur;
ix. conventions for versioning such as model VCS.

We observe that even in the widely used de facto COBRA
standard for SBML files, important aspects such as the standard
metabolite annotations are a part of additional information that
are often left empty. Further, it encourages the introduction of
several ad hoc notations for representing different components
such as genes, compartments and reaction names. This has re-
sulted in diverse annotations representing same information.
Also, objective functions and the constraints used to simulate
these models are less well-defined in the COBRA format.
Moreover, several functions within the commonly used COBRA
toolbox are restricted to analyse SBML Level 2 files. To address
these issues and capture more information, community efforts to
develop FBC package for SBML have been initiated. A more recent
proposal of FBC seeks to address some of these issues, including
specification of genes, however does not yet have all the features.
Additionally, to enhance the interoperability and guarantee a cor-
rect evaluation of the models, it would be highly desirable if infor-
mation provided in the ‘notes’ section of COBRA format comply
to MIRIAM standards. Further, a separate attribute may be pro-
vided in the model class of FBC to describe draft models of uncul-
tivable non-model organisms for which it is difficult to determine
the uptake or secretion constraints. A list of suggestions to FBC
package can be found in Table 2.

Given that the quantity of genomic data being generated is
steadily increasing, the time is really ripe for the community to
get together and embrace a versatile, strict and widely adopt-
able ‘gold standard’ for specifying/annotating genome-scale
metabolic reconstructions. Over the past 3 years, we find that
reconstructions incorporate most of the information required
for simulation and analysis. Nearly 85% of the reconstructions
are exchanged as SBML files, which are either COBRA- or
FBC-compliant, 60% of the reconstructions have at least one
metabolite identifier, 65% of the reconstructions specify GPRs
and the blocked reactions in these genome-scale models have
reduced to an average of <33%. However, a unified standard to
represent these reconstructions is still lacking. We believe that

most of these inconsistencies can be sorted with the improved
version of FBC package for SBML. These standards would serve
as a common denominator for the model reconstruction
process. Well-crafted reconstructions will provide a platform
for more reliable simulations and pave the way for a better
understanding of the underlying biology to help propel
research forward.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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Key Points

• The recent years have seen a tremendous increase in

the number of GSMNs, owing to the growing number

of sequenced genomes and applications in multiple

areas such as metabolic engineering and drug target

identification.
• Many of these reconstructions fail to incorporate the

standard identifiers in annotations and other features,

which assume a crucial importance when the network

is used for simulations and predictions.
• A number of models lack clear information on the

constraints and objective functions used for the simu-

lations and also contain a large fraction of blocked re-

actions: overall, many models do not lay out a clear

specification of the constraints and the environment

Table 2: List of recommendations to FBC Package for SBML

Components Suggestions

Reactions EC Numbers, annotations from databases such as KEGG Reaction (in accordance with MIRIAM)
Metabolite formula Annotations from databases such as KEGG, PubChem and ChEBI (in accordance with MIRIAM)
Compartments Annotations that are either MIRIAM compliant or follow SBO conventions
Subsystems An additional attribute to reaction class to specify subsystems derived from standard database such as SEED [95]

(optional)
Genes and GPRs References pointing to standard databases like KEGG (planned for FBC Version 2)
Constraints and

Objective functions
Additional object under FBC FluxBound class to specify regulatory constraints, Class to specify multiple objective

functions (planned for FBC Version 2)
Miscellaneous a. Special attribute or a separate class to describe models that do not have experimental validations, such as in

uncultivable bacteria where it is often challenging to determine the constraints such as uptake or the secre-
tion rates.

b. An optional attribute to reactions to specify its addition to the currently existing models (to incrementally
track changes)

Note. The table provides the list of components in the metabolic network and the corresponding suggestions.
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conditions that were used to simulate the model, se-

verely limiting our ability to perform simulations.
• As the quantity of the data generated through high-

throughput techniques is steadily increasing, we need
a versatile and widely adaptable ‘gold standard’ for
specifying/annotating genome-scale metabolic recon-
structions; this would aid in streamlining the stand-
ards of the growing number of reconstructions.
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1. Feist AM, Herrgård MJ, Thiele I, et al. Reconstruction of bio-

chemical networks in microorganisms. Nat Rev Microbiol 2009;
7:129–43.

2. Thiele I, Hyduke DR, Steeb B, et al. A community effort to-
wards a knowledge-base and mathematical model of the
human pathogen Salmonella Typhimurium LT2. BMC Syst Biol
2011;5:8.

3. Sigurdsson G, Fleming RMT, Heinken A, et al. A systems biol-
ogy approach to drug targets in Pseudomonas aeruginosa bio-
film. PLoS One 2012;7:e34337.

4. Kim HU, Kim SY, Jeong H, et al. Integrative genome-scale
metabolic analysis of Vibrio vulnificus for drug targeting and
discovery. Mol Syst Biol 2011;7:460.

5. Li S, Gao X, Xu N, et al. Enhancement of acetoin production in
Candida glabrata by in silico-aided metabolic engineering.
Microb Cell Fact 2014;13:55.

6. Alper H, Jin Y-S, Moxley JF, et al. Identifying gene targets for
the metabolic engineering of lycopene biosynthesis in
Escherichia coli. Metab Eng 2005;7:155–64.

7. Choi HS, Lee SY, Kim TY, et al. In silico identification of gene
amplification targets for improvement of lycopene produc-
tion. Appl Environ Microbiol 2010;76:3097–105.

8. Kjeldsen KR, Nielsen J. In silico genome-scale reconstruction
and validation of the Corynebacterium glutamicum metabolic
network. Biotechnol Bioeng 2009;102:583–97.

9. Widiastuti H, Kim JY, Selvarasu S, et al. Genome-scale model-
ing and in silico analysis of ethanologenic bacteria
Zymomonas mobilis. Biotechnol Bioeng 2011;108:655–65.

10.Colijn C, Brandes A, Zucker J, et al. Interpreting expression
data with metabolic flux models: predicting Mycobacterium tu-
berculosis mycolic acid production. PLoS Comput Biol 2009;5:
e1000489.

11.Zhuang K, Izallalen M, Mouser P, et al. Genome-scale dynamic
modeling of the competition between Rhodoferax and
Geobacter in anoxic subsurface environments. ISME J 2011;5:
305–16.

12.Ye C, Zou W, Xu N, et al. Metabolic model reconstruction and
analysis of an artificial microbial ecosystem for vitamin C
production. J Biotechnol 2014;182-183:61–7.

13.Larhlimi A, Basler G, Grimbs S, et al. Stoichiometric capaci-
tance reveals the theoretical capabilities of metabolic net-
works. Bioinformatics 2012;28:i502–8.

14.Kim TY, Kim HU, Lee SY. Metabolite-centric approaches for
the discovery of antibacterials using genome-scale metabolic
networks. Metab Eng 2010;12:105–11.

15.Schellenberger J, Que R, Fleming RMT, et al. Quantitative pre-
diction of cellular metabolism with constraint-based models:
the COBRA Toolbox v2.0. Nat Protoc 2011;6:1290–307.

16.Keseler IM, Collado-Vides J, Gama-Castro S, et al. EcoCyc: a
comprehensive database resource for Escherichia coli. Nucleic
Acids Res 2005;33:D334–7.

17.Christie KR, Weng S, Balakrishnan R, et al. Saccharomyces
Genome Database (SGD) provides tools to identify and

analyze sequences from Saccharomyces cerevisiae and related
sequences from other organisms. Nucleic Acids Res 2004;32:
D311–14.

18.Hermida L, Brachat S, Voegeli S, et al. The Ashbya Genome
Database (AGD)–a tool for the yeast community and genome
biologists. Nucleic Acids Res 2005;33:D348–52.

19.Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank.
Nucleic Acids Res 2007;35:D21–5.

20.Peterson JD, Umayam LA, Dickinson T, et al. The
comprehensive microbial resource. Nucleic Acids Res 2001;29:
123–5.

21.Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res. 2000;28:27–30.

22.Caspi R, Altman T, Dreher K, et al. The MetaCyc database of
metabolic pathways and enzymes and the BioCyc collection
of pathway/genome databases. Nucleic Acids Res 2012;40:
D742–53.

23.Ren Q, Kang KH, Paulsen IT. TransportDB: a relational data-
base of cellular membrane transport systems. Nucleic Acids
Res 2004;32:D284–8.

24.Wiback SJ, Mahadevan R, Palsson BØ. Using metabolic flux
data to further constrain the metabolic solution space and
predict internal flux patterns: the Escherichia coli spectrum.
Biotechnol Bioeng 2004;86:317–31.

25.Chen X, Alonso AP, Allen DK, et al. Synergy between (13)C-
metabolic flux analysis and flux balance analysis for under-
standing metabolic adaptation to anaerobiosis in E. coli.
Metab Eng 2011;13:38–48.

26.Price ND, Reed JL, Palsson BØ. Genome-scale models of micro-
bial cells: evaluating the consequences of constraints. Nat Rev
Microbiol 2004;2:886–97.

27.Orth JD, Thiele I, Palsson BØ. What is flux balance analysis?
Nat Biotechnol 2010;28:245–8.

28.Raman K, Chandra N. Flux balance analysis of biological sys-
tems: applications and challenges. Brief Bioinform 2009;10:
435–49.
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64.Haraldsdóttir HS, Thiele I, Fleming RM. Comparative evalu-
ation of open source software for mapping between metabol-
ite identifiers in metabolic network reconstructions:
application to Recon 2. J Cheminform 2014;6:2.

65.Gevorgyan A, Poolman MG, Fell DA. Detection of stoichiomet-
ric inconsistencies in biomolecular models. Bioinformatics
2008;24:2245–51.

66.Kumar A, Suthers PF, Maranas CD. MetRxn: a knowledgebase
of metabolites and reactions spanning metabolic models and
databases. BMC Bioinformatics 2012;13:6.

67.Kim M, Sang Yi J, Kim J, et al. Reconstruction of a
high-quality metabolic model enables the identification
of gene overexpression targets for enhanced antibiotic pro-
duction in Streptomyces coelicolor A3(2). Biotechnol J 2014;9:
1185–94.

68.Feist AM, Henry CS, Reed JL, et al. A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts
for 1260 ORFs and thermodynamic information. Mol Syst Biol
2007;3:121.

69.Schomburg I, Chang A, Ebeling C, et al. BRENDA, the enzyme
database: updates and major new developments. Nucleic
Acids Res 2004;32:D431–3.

70.Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: The prote-
omics server for in-depth protein knowledge and analysis.
Nucleic Acids Res 2003;31:3784–88.

71.Wu CH, Apweiler R, Bairoch A, et al. The Universal Protein
Resource (UniProt): an expanding universe of protein infor-
mation. Nucleic Acids Res 2006;34:D187–91.

72.Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT
protein knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Res 2003;31:365–370.
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