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One may ask which maps between Hilbert modules allow for a completely positive
extension to a map acting block-wise between the associated (extended) linking
algebras. In these notes we investigate in particular those CP-extendable maps

where the 22-corner of the extension can be chosen to be a homomorphism, the
CP-H-extendable maps. We show that they coincide with the maps considered by
Asadi [4], by Bhat, Ramesh, and Sumesh [9], and by Skeide [28]. We also give
an intrinsic characterization that generalizes the characterization by Abbaspour
Tabadkan and Skeide [1] of homomorphically extendable maps as those which
are ternary homomorphisms. For general strictly CP-extendable maps we give
a factorization theorem that generalizes those of Asadi, of Bhat, Ramesh, and
Sumesh, and of Skeide for CP-H-extendable maps. This theorem may be viewed
as a unification of the representation theory of the algebra of adjointable operators
and the KSGNS-construction. Then, we examine semigroups of CP-H-extendable
maps, so-called CPH-semigroups. As an application, we illustrate their relation with
a new sort of generalized dilation of CP-semigroups, CPH-dilations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let τ : B → C be a linear map between C∗-algebras B and C. A τ -map is a map T : E → F from a Hilbert

B-module E to a Hilbert C-module F such that

〈
T (x), T

(
x′

)〉
= τ

(〈
x, x′

〉)
. (∗)

After several publications about τ -maps where τ was required to be a homomorphism (for instance, Bakic

and Guljas [5], Skeide [23], Abbaspour Tabadkan and Skeide [1]), and others where τ was required to be just

a CP-map (for instance, Asadi [4], Bhat, Ramesh, and Sumesh [9], Skeide [28]), we think it is now time to

determine the general structure of τ -maps. We also think it is time to, finally, give some idea what τ -maps
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might be good for. While we succeed completely with our first task for bounded τ , we hope that our small

application in Section 5 that establishes a connection with dilations of CP-semigroups and product systems

can, at least, view perspectives for concrete applications in the future.

If T fulfills (∗) for some linear map τ , then T is linear. (Examine |T (x + λx′) − T (x) − λT (x′)|2.)

Furthermore, if τ is bounded, then, obviously, T is bounded with norm ‖T‖ �
√

‖τ‖. As easily, one checks

that the inflation Tn: Mn(E) → Mn(F ) of T (that is, T acting element-wise on the matrix) is a τn-map for

the inflation τn: Mn(B) → Mn(C) of τ . (Recall that Mn(E) is a Hilbert Mn(B)-module with inner product

(〈X, Y 〉)i,j :=
∑

k〈xki, ykj〉.) Therefore, ‖Tn‖ �
√

‖τn‖.

A map τ fulfilling (∗) (and, therefore, also τn) “looks” positive. (In fact, at least positive elements of

the form 〈x, x〉 are sent to the positive elements 〈T (x), T (x)〉.) More precisely, it looks positive on the ideal

span〈E, E〉. It is not difficult to show (see Lemma 2.8) that bounded τ is, actually, positive on the range

ideal BE := span〈E, E〉 of E. Since the same is true also for τn, we see that τ is completely positive (or CP)

on BE . Recall that for CP-maps τ we have ‖τn‖ = ‖τ‖.

We arrive at our first new result.

Theorem 1.1. Let T : E → F be a map from a full Hilbert B-module E (that is, BE = B) to a Hilbert

C-module F , and let τ : B → C be a bounded linear map. If T is a τ -map, then τ is completely positive.

Moreover, T is linear and completely bounded with CB-norm ‖T ‖cb := supn ‖Tn‖ =
√

‖τ‖.

The second missing part (apart from Lemma 2.8), namely, that the CB-norm ‖T‖cb actually reaches its

bound
√

‖τ‖, we prove in Lemma 2.13.

It is, in general, not true that ‖T‖cb = ‖T ‖, not even if B and C are unital.1 It is true, if E has a unit

vector ξ (that is, 〈ξ, ξ〉 = 1); see Observation 2.12.

Example 1.2. Let H �= {0} be a Hilbert space with ONB (ei)i∈I . For E we choose the full Hilbert

K(H)-module H∗ (with inner product 〈x′ ∗, x∗〉 := x′x∗). For F we choose H. So, B = K(H) and C = C.

Let T be the transpose map with respect to the ONB. That is, T sends the “row vector” xt =
∑

i xie
∗
i in E

to the “column vector” x = (xt)t =
∑

i xiei in F . Of course, ‖T‖ = 1.

A linear map τ :K(H) → C turning T into a τ -map, would send eie
∗
j to τ(〈e∗

i , e∗
j 〉) = 〈T (e∗

i ), T (e∗
j )〉 =

〈ei, ej〉 = δi,j . So, on the finite-rank operators F(H) the map τ is bound to be the (non-normalized) trace

Tr :=
∑

i〈ei, •ei〉. Recall that ‖Tr‖ = dim H. This shows several things:

1. Suppose H is infinite-dimensional. Then τ cannot be bounded. Since positive maps are bounded, there

cannot be whatsoever positive map τ turning T into a τ -map. (Of course, we can extend τ = Tr

by brute-force linear algebra from F(E) to K(E), so that T is still a τ -map with unbounded and

non-positive τ .)

2. Suppose H is n-dimensional (so that, in particular, K(H) = Mn is unital). The column vector

X∗n in H∗n with entries e∗
1, . . . , e∗

n has square modulus 〈X∗n, X∗n〉 =
∑n

i=1 eie
∗
i . So, ‖X∗n‖ =√

‖
∑n

i=1 eie∗
i ‖ = 1. However, the norm of the column vector Y n with entries T (e∗

1) = e1, . . . , T (e∗
n) = en

is
√∑n

i=1〈ei, ei〉 =
√

n. Since Mn(H∗) ⊃ Mn,1(H∗) = H∗n, we find ‖T‖cb � ‖Tn‖ �
√

n. On the other

hand, by the discussion preceding Theorem 1.1, ‖T‖cb �
√

‖τ‖ =
√

n. Therefore, ‖T‖cb =
√

n, while

‖T‖ = 1 �= ‖T‖cb for n � 2.

Whenever BE is unital, τ is bounded (and, therefore, completely bounded) on BE

(!)
= span〈E, E〉; see again

Observation 2.12.

1 This contradicts the proposition in Asadi [4].
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To summarize: If E is full and if τ is bounded, then CP is automatic; and if E is full over a unital

C∗-algebra, then we have not even to require that τ is bounded. On the other hand, some of the questions

we wish to tackle, have nice answers for CP-maps τ , even if E is not full; and τ -maps T (into the Hilbert

B(G)-module F = B(G, H)) for completely positive τ (into C = B(G)) is also what Asadi started analyzing

in [4]. So, after these considerations, for the rest of these notes τ will always be a CP-map.

A basic task of these notes is to characterize τ -maps for CP-maps τ . More precisely, we wish to find

criteria that tell us when a map T : E → F is a τ -map for some CP-map τ without knowing τ , just by

looking at T .

The case when a possible τ is required to be a homomorphism has been resolved by Abbaspour Tabadkan

and Skeide [1]. (In this case, T has been called τ -homomorphism in Bakic and Guljas [5] or τ -isometry.)

For full E, [1, Theorem 2.1] asserts: T is a τ -isometry for some homomorphism τ if and only if T is linear

and fulfills

T
(
x〈y, z〉

)
= T (x)

〈
T (y), T (z)

〉
,

that is, if T is a ternary homomorphism.2 (Ternary homomorphisms into B(G, H) (G and H Hilbert spaces)

occurred under the name representation of a Hilbert module (and the unnecessary hypothesis of complete

boundedness) in Skeide [19].) Another equivalent criterion is that T extends as a homomorphism acting

block-wise between the linking algebras of E and of F . (This follows simply by applying [1, Theorem 2.1]

also to the ternary homomorphism T ∗: E∗ → F ∗ from the full Hilbert K(E)-module E∗ (with inner product

〈x′ ∗, x∗〉 := x′x∗) to the full Hilbert K(F )-module F ∗ defined as T ∗(x∗) := T (x)∗, resulting in a homomor-

phism ϑ:K(E) → K(F ) so that the block-wise map

(
τ T ∗

T ϑ

)
:

( B E∗

E K(E)

)
−→

( C F ∗

F K(F )

)

is a homomorphism.) We would call such maps H-extendable. We mention that Solel [29] has characterized

the (norm preserving) Banach space isomorphisms from E to F as those maps which allow a block-wise

extension to map from the linking algebra of E into the bidual of the linking algebra which is the sum of

a homomorphism and an anti-homomorphism.

It is always a good idea to look at properties of Hilbert modules in terms of properties of their linking

algebras. (For instance, Skeide [19] defined a Hilbert module E over a von Neumann algebra to be a

von Neumann module if its extended linking algebra is a von Neumann algebra in a canonically associated

representation. This happens if and only if E is self-dual, that is, if E is a W ∗-module.) Likewise, it is a

good idea to look at properties of maps between Hilbert modules in terms of how they may be extended to

block-wise maps between their linking algebras. (For instance, many maps between von Neumann modules

are σ-weakly continuous if and only if they allow for a normal (that is, order continuous) block-wise extension

to a map between the linking algebras.) In addition to the usual linking algebra
( B E∗

E K(E)

)
= K

(
B
E

)
of a

Hilbert B-module E, it is sometimes useful to look at the reduced linking algebra
( BE E∗

E K(E)

)
or at the

extended linking algebra
( B E∗

E B
a(E)

)
. It would be tempting to see if τ -maps are precisely the CP-extendable

maps, that is, maps that allow for some block-wise CP-extension between some sort of linking algebras.

Unfortunately, this is not so: There are more CP-extendable maps than τ -maps; see Section 3. We, therefore,

strongly object to use the name CP-maps between Hilbert modules as meaning τ -maps, which was proposed

recently by several authors; see, for instance, Heo and Ji [12], or Joita [13].

2 We should emphasize that, unlike stated in [1], linearity of T cannot be dropped. The map T : E → C defined as T (x) = 1 is a
counter example. Indeed, without linearity, the map τ = ϕ defined in the proof of [1, Theorem 2.1] is a well-defined multiplicative
∗-map; but it may fail to be linear.
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But if CP-extendable is not the right condition, what is the right condition? And what is the right

“intrinsic condition” replacing the ternary condition for τ -isometries? As a main result of these notes, in

Section 2 we prove the following theorem.

Theorem 1.3. Let E be a full Hilbert B-module and let F be a Hilbert C-module. Let T : E → F be a linear

map and denote FT := span T (E)C. Then the following conditions are equivalent:

1. There exists a (unique) CP-map τ : B → C such that T is a τ -map.

2. T extends to a block-wise CP-map T =
(

τ T ∗

T ϑ

)
:
( B E∗

E B
a(E)

)
→

( C F ∗

T

FT B
a(FT )

)
where ϑ is a homomorphism,

that is, T is a CP-H-extendable map.

3. T is a completely bounded map and FT can be turned into a Ba(E)–C-correspondence in such a way

that T is left Ba(E)-linear.

4. T is a completely bounded map fulfilling

〈
T (y), T

(
x

〈
x′, y′

〉)〉
=

〈
T

(
x′〈x, y〉

)
, T

(
y′

)〉
. (∗∗)

A more readable version of (∗∗) is

〈
T (y), T

(
xx′ ∗y′

)〉
=

〈
T

(
x′x∗y

)
, T

(
y′

)〉
.

This quaternary condition is the intrinsic condition we were seeking, and which generalizes the ternary

condition guaranteeing that T is τ -isometry.

Observation 1.4.

1. The homomorphism ϑ in (2) coincides with the left action in (3); see the proof of (2) ⇒ (3) in Sec-

tion 2.

2. Since the set T (E) generates the Hilbert C-module FT , the left action in (3) (and, consequently, also ϑ

in (2)) is uniquely determined by (xy∗)T (z) = T (xy∗z). In fact, this formula shows that the finite-rank

operators F(E) act nondegenerately on FT , so there is a unique extension to all of Ba(E). Moreover,

this unique extension is strict and unital; see the proof of Lemma 3.1.

3. It is routine to show that (∗∗) well-defines a nondegenerate action of F(E). So, the same argument also

shows that (3) and (4) are equivalent.

4. Clearly, Example 1.2(1) shows that the condition on T to be completely bounded in (3) and (4), may

not be dropped. However, if E is full over a unital C∗-algebra, then T just linear is sufficient; see again

Observation 2.12.

Remark 1.5. It should be noted that the CP-map τ in (2) need not coincide with the map τ in (1) making T

a τ -map. (Just add an arbitrary CP-map B → C to the latter.) Likewise, having a CP-extension T with a

non-homomorphic 22-corner ϑ does not necessarily mean that it is not possible to get a CP-H-extension by

modifying ϑ.

Remark 1.6. Unlike for τ -isometries, for more general τ -maps the homomorphism ϑ in (2) will only rarely

map the compacts K(E) into the compacts K(FT ). So, in (2) it is forced that we pass to the extended

linking algebras. Also considerations about the strict topology cannot be avoided completely.

Remark 1.7. We already know that a τ -map T is linear, so linearity of T may be dropped from (1). We

know from the example in Footnote 2 that linearity may not be dropped from (4), not even if T fulfills

the stronger ternary condition. Linearity may be dropped from (3), if E contains a unit vector ξ (or, more
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generally, a direct summand B), for in that case we have T (x) = T (xξ∗ξ) = (xξ∗)T (ξ), which is linear in x.

However, unlike in Observation 1.4(4), we were not able to save the statement for unital B without a unit

vector.

The property in (3) is almost visible from a glance at (∗). In fact, we try to assign a value 〈T (x), T (x′)〉
to the element 〈x, x′〉 ∈ BE = E∗ ⊙ E. (Here E∗ is the dual Hilbert B

a(E)-module of E with inner product

〈x′ ∗, x∗〉 := x′x∗, and the tensor product is over the canonical left action of B
a(E) on E.) It is clear

that the map (x, x′) 
→ 〈T (x), T (x′)〉 has to be balanced over B
a(E) if there should exist τ fulfilling (∗).

And if there was a suitable left action of B
a(E) on FT , then we would be concerned with the map τ :=

T ∗ ⊙ T . People knowing the module Haagerup tensor product of operator modules and Blecher’s result [11,

Theorem 4.3] that the Haagerup tensor product is (completely) isometrically isomorphic to the tensor

product of correspondences, can already smell that everything is fine. We shall give a direct proof in

Section 2. Actually, our method will provide us with a quick proof of Blecher’s result.

We have seen in Theorem 1.3 that the Hilbert submodule FT of F generated by T (E) plays a distinguished

role. (If T is a τ -isometry, then T (E) is already a closed τ(B)-submodule of F .) It is natural to ask to what

extent the condition in (2) can be satisfied if we write F instead of FT . In developing semigroup versions

in Sections 4 and 5, this situation becomes so important that we prefer to use the acronym CPH for that

case, and leave for the equivalent of τ -maps the rather contorted term CP-H-extendable:

Definition 1.8. A CPH-map from E to F is a map that extends as a block-wise CP-map between the

extended linking algebras of E and of F such that the 22-corner is a homomorphism. A CPH-map is strictly

CPH if that homomorphism can be chosen strict. A (strictly) CPH-map is a (strictly) CPH0-map if the

homomorphism ϑ can be chosen unital.

CPH-maps are CP-H-extendable (Corollary 2.7). If FT is complemented in F , then T is a CPH-map if

and only if it is CP-H-extendable. (In that case, Ba(FT ) is a corner of Ba(F ), so that ϑ may be considered

a map into B
a(F ).) But this condition is not at all necessary, nor natural; see Observation 4.16.

Despite the fact that there are fewer CPH-maps than CP-H-extendable maps, looking at CPH-maps is

particularly crucial if we wish to look at semigroups of CP-H-extendable maps Tt on E. Obviously, for

full E, the associated CP-maps τt form a CP-semigroup. But the same question for the homomorphisms ϑt,

a priori, has no meaning. The extensions ϑt map B
a(E) into B

a(ETt
), not into B

a(E). And if ETt
is not

complemented in E, then it is not possible to interpret Ba(ETt
) as a subset of Ba(E), to which ϑs could be

applied in order to make sense out of ϑs ◦ ϑt.

In Section 4 we study such CPH-semigroups, and examine how the results of the first sections may be

generalized or reformulated. These results depend essentially on the theory of tensor product systems of

correspondences initiated in Bhat and Skeide [10] (following Arveson [2] for Hilbert spaces), which, in our

case, have to replace the GNS-construction for a single CP-map τ . See the introduction to Section 4, in

particular after Observation 4.2, for more details.

In the speculative Section 5 we introduce the new concept of CPH-dilation of a CP-map or a CP-

semigroup. It generalizes the concept of weak dilation and is intimately related to CPH-maps or CPH-

semigroups. In the end, we comment on some relations with (completely positive definite) CPD-kernels and

with Morita equivalence. If CPH-dilations can be considered an interesting concept, and if, as demonstrated,

understanding CPH-dilations is the same understanding CPH-maps and CPH-semigroups, then Section 5

shows the road to what might be the first application of CPH-maps.

We wish to underline that all results in these notes can be formulated for von Neumann algebras, von Neu-

mann modules (or W ∗-modules), and von Neumann correspondences (or W ∗-correspondences), replacing

also the tensor product of C∗-correspondences with that of von Neumann correspondences, replacing full
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with strongly full, and adding to all maps between von Neumann objects the word normal (or σ-weak). We

do not give any detail, because the proofs either generalize word by word or are simple adaptations of the

C∗-proofs. We emphasize, however, that all problems regarding adjointability of maps or complementability

of FT in F disappear. Likewise, every normal CP-map from the von Neumann algebra Bs
E extends to a

CP-map from B. Therefore, for von Neumann modules (or W ∗-modules), CPH and CP-H-extendable is the

same thing and it does no longer depend on (strong) fullness.

2. Proof of Theorem 1.3

Equivalence of (3) and (4) has already been dealt with in Observation 1.4(2) and (3). For the remaining

steps we shall follow the order (1) ⇒ (2) ⇒ (3) ⇒ (1). Since we also wish to make comments on the

mechanisms of some steps or how parts of the proof are applicable in more general situations, we put each

of the steps into an own subsection and indicate by “✷” where the part specific to Theorem 1.3 ends.

In Section 3, we present an alternative direct proof of (2) ⇒ (1), which avoids using arguments originating

in operator spaces as involved in the proof (3) ⇒ (1).

Proof (1) ⇒ (2)

We first consider the case where B and C are unital, but without requiring that E is full. So let τ : B → C be

a CP-map between unital C∗-algebras, and let T : E → F be a τ -map from an arbitrary Hilbert B-module E

to a Hilbert C-module F .

Since B and C are unital, by Paschke’s GNS-construction [17] for τ , we get a pair (F, ζ) consisting of

GNS-correspondence F from B to C and cyclic vector ζ in F such that

〈ζ, •ζ〉 = τ, span BζC = F.

One easily verifies that the map

x ⊙ ζ 
−→ T (x)

defines an isometry v: E ⊙ F → F . (It maps x ⊙ (bζc) = ((xb) ⊙ ζ)c to T (xb)c.) In other words, T factors

as T = v(• ⊙ ζ). (We just have reproduced the simple proof of the “only if” direction of the theorem in

Skeide [28].)

Now, v is obviously a unitary onto FT := span T (E)C. So ϑ := v(•idF)v∗ defines a (unital and strict)

homomorphism Ba(E) → B
a(FT ). Identifying F with B

a(C,F) via y: c 
→ yc and identifying B ⊙ F with F

via b ⊙ y 
→ by, we may define a map

Ξ :=

(
ζ

v∗

)
∈ B

a

(( C
FT

)
,

( B
E

)
⊙ F

)
.

Obviously, the map T := Ξ∗(• ⊙ idF)Ξ from the extended linking algebra of E into the extended linking

algebra of FT is completely positive. One easily verifies that

T =

(
τ T ∗

T ϑ

)
,

where T ∗(x∗) := T (x)∗. This proves (1) ⇒ (2) for unital C∗-algebras but not necessarily full E.

Now suppose B is not necessarily unital. (Nonunital C may always be “repaired” by appropriate use of

approximate units.) The following is folklore.
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Lemma 2.1. If τ : B → C is a CP-map, then the map τ̃ : B̃ → C̃ between the unitalizations of B and C, defined

by

τ̃ ↾ B := τ, τ̃(1̃) := ‖τ‖1̃,

is a CP-map, too.

Proof. Denote by δ: B̃ → C the unique character vanishing on B, and choose a contractive approximate unit

(uλ)λ∈Λ for B. Then the maps

τλ := τ
(
u∗

λ • uλ

)
+

(
‖τ‖1̃ − τ

(
u∗

λuλ

))
δ

are CP-maps (as sum of CP-maps) and converge pointwise to τ̃ . Therefore, τ̃ is a CP-map, too. ✷

Now, E and F are also modules over the unitalizations, and T is a τ̃ -map, too. Since in the first part E

was not required full, we may apply the result and get a CP-map T̃ that, obviously, restricts to the desired

CP-map T. This concludes the proof (1) ⇒ (2). ✷

Observation 2.2. Obviously, the proof shows that the conclusion (1) ⇒ (2) holds in general, even if E is not

full: All τ -maps are CP-H-extendable.

Observation 2.3. Adding the obvious statement that for each B–C-correspondence F and for each vector

ζ ∈ F, an isometry v: E ⊙ F → F gives rise to a τ -map T := v(• ⊙ ζ) for the CP-map τ := 〈ζ, •ζ〉, we also

get the “if” direction of the theorem in [28]. For this it is not necessary that F is the GNS-correspondence

of τ . This observation provides us with many CPH-maps. It also plays a role in Section 4.

Remark 2.4. The theorem in Skeide [28] is the last and most general version of a result, first, stated by

Asadi [4] for unital CP-maps into C = B(G) and T mapping into F = B(G, H) (G and H Hilbert spaces)

under the extra condition that T (ξ)T (ξ)∗ = idF for some ξ ∈ E and, then, proved by Bhat, Ramesh, and

Sumesh [9] (without the extra condition and for B still unital, but τ not necessarily unital).

Proof (2) ⇒ (3)

Let T : E → F be a map from a Hilbert B-module E to a Hilbert C-module F . Define the map

T ∗: x∗ 
→ T (x)∗, and put FT := span T (E)C. Suppose we find a CP-map τ : B → C and a homomorphism

ϑ:Ba(E) → Ba(FT ) such that T :=
(

τ T ∗

T ϑ

)
:
( B E∗

E B
a(E)

)
→

( C F ∗

T

FT B
a(FT )

)
is a CP-map. Then, in particular,

T is a CB-map.

Lemma 2.5. Let S: B → C be a CP-map between C∗-algebras B and C. Suppose A ⊂ B is a C∗-subalgebra

of B with unit 1A such that the restriction ϑ := S ↾ A of S to A is a homomorphism. Then

S(ba) = S(b1A)ϑ(a), S(ab) = ϑ(a)S(1Ab)

for all b ∈ B and a ∈ A.

Proof. Assume that B and C are unital. (Otherwise, unitalize as explained in Lemma 2.1 and observe that

also the unitalization S̃ fulfills the hypotheses for A ⊂ B̃ with the same ϑ. If the statement is true for S̃,

then so it is for S = S̃ ↾ B.)
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Let (F, ζ) denote the GNS construction for S. By the stated properties, one easily verifies that |aζ −
1Aζϑ(a)|2 = 0, so, aζ = 1Aζϑ(a) for all a ∈ A. The first equation of the lemma follows by computing

S(ba) = 〈ζ, baζ〉, and the second by taking its adjoint. ✷

By applying Lemma 2.5 to the CP-map T:
( B E∗

E B
a(E)

)
→

( C F ∗

T

FT B
a(FT )

)
with the subalgebra A =

( 0 0
0 B

a(E)

)
∋

( 0 0
0 idE

)
= 1A, we get

(
0 0

T (ax) 0

)
= T

((
0 0

0 a

) (
0 0

x 0

))
=

(
0 0

0 ϑ(a)

)
T

(
0 0

x 0

)
=

(
0 0

ϑ(a)T (x) 0

)
,

thus T (ax) = ϑ(a)T (x) for all x ∈ E and a ∈ B
a(E). This proves (2) ⇒ (3). ✷

Observation 2.6. Also here we did not require that E is full. So (2) ⇒ (3) is true for all CP-H-extendable

maps.

Effectively, for the conclusion T (ax) = ϑ(a)T (a), we did not even need that T maps into the linking

algebra of FT . The conclusion remains true for all CPH-maps, so that for a CPH-map the subspace FT of F

reduces ϑ.

Corollary 2.7. A CPH-map T : E → F is CP-H-extendable.

For full E, this also follows via CPH ⇒ (3) ⇒ (1) ⇒ (2), as soon as we have completed the step (3) ⇒ (1).

Proof (3) ⇒ (1)

Given T and a left action of Ba(E) on FT such that aT (x) = T (ax), our scope is to define τ by (∗). So,

in this part it is essential that E is full. Our job will be to show that the hypotheses of (3), which showed

already to be necessary, are also sufficient.

As mentioned in the introduction, in the case B = BE = E∗ ⊙ E, the map τ , if it exists, appears to be

the map

B = E∗ ⊙ E
T ∗⊙T−−−−→ F ∗ ⊙ F = CF ⊂ C.

Note that, actually, T ∗ ⊙ T maps into F ∗
T ⊙ FT ⊂ F ∗ ⊙ F . And if F is a correspondence making T left

B
a(E)-linear, then, by definition of left B

a(E)-linear, FT is a correspondence making T left B
a(E)-linear,

too. (Also strictness does not play any role here.) So, it does note really matter if we require the property

in (3) for FT or for F , because the latter implies the former. So, let F be a B
a(E)–C-correspondence such

that T is left B
a(E)-linear. Likewise, T ∗ := ∗ ◦ T ◦ ∗ is a right B

a(E)-linear map for the corresponding

B
a(E)-module structures of E∗ and F ∗. So, T ∗ ⊙ T , indeed, defines a linear map from the algebraic tensor

product E∗ ⊙ E over Ba(E) into F ∗ ⊙ F . And by Lance [15, Proposition 4.5], we have E∗ ⊙ E = span〈E, E〉
as subset of E∗ ⊙ E = B.

Once τ : E∗ ⊙E → C is bounded (for the norm of the internal tensor product E∗ ⊙E on E∗ ⊙E ⊂ E∗ ⊙E),

Theorem 1.1 asserts that the extension to B = E∗ ⊙ E is completely positive. Recall that we still have to

add the following missing piece to the proof of that theorem:

Lemma 2.8. Let τ : B → C be a bounded linear map fulfilling (∗) for some map T : E → F . Then τ is positive

on BE.
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Proof. We already said that T being a τ -map, also Tn is a τn-map. Similarly, T n: En → F n is a τ -map itself.

Let us choose a bounded approximate unit (uλ)λ∈Λ for BE consisting of elements uλ =
∑nλ

i=1〈xλ
i , yλ

i 〉 ∈ BE .

Defining the elements Xλ ∈ Enλ with entries xλ
i and, similarly, Yλ, we get uλ = 〈Xλ, Yλ〉. For any positive

element bb∗ in BE , denote by aλ ∈ K(Enλ) the positive square root of the rank-one operator Xλbb∗X∗
λ =

(Xλb)(Xλb)∗. Then

τ
(
u∗

λbb∗uλ

)
= τ

(
〈aλYλ, aλYλ〉

)
=

〈
T nλ(aλYλ), T nλ(aλYλ)

〉
� 0.

Since u∗
λbb∗uλ → bb∗ in norm, and since τ is bounded, we get τ(bb∗) � 0. ✷

So it remains to show that τ is bounded on E∗ ⊙ E. Care is in place, however, as in several respects,

T ∗ ⊙ T is not just the usual tensoring of Ba(E)-linear maps on internal tensor products of correspondences.

Firstly, T is left linear but, in general, not bilinear. (If T was bilinear, it was a τ -isometry.) Secondly, F ∗ is

a Banach right Ba(E)-module for which T ∗ is right Ba(E)-linear, but F ∗ is not a Hilbert Ba(E)-module.

So, thirdly, F ∗ ⊙ F is not an internal tensor product over Ba(E).

The proof of boundedness can be done by appealing to the module Haagerup tensor product and Blecher’s

result [11, Theorem 4.3] that the internal tensor product of correspondences is completely isometrically the

same as their module Haagerup tensor product. (Indeed, the universal property of the module Haagerup

tensor product guarantees that the map T ∗ ⊙ T between the module Haagerup tensor norms on the tensor

products E∗ ⊙ E and F ∗ ⊙ F over B
a(E) is completely bounded with ‖T ∗ ⊙ T‖cb � ‖T ∗‖cb‖T‖cb. The

Haagerup seminorm on F ∗ ⊗F with amalgamation over Ba(E), which is homomorphic to a subset of Ba(F ),

is bigger than the Haagerup seminorm with amalgamation over B
a(F ). So, together with Blecher’s result

we get that the CB-norm of τ as map between the internal tensor products is not bigger than ‖T ∗‖cb‖T‖cb.)

But we prefer to give a direct independent proof.

Let u =
∑n

i=1 x∗
i ⊙ yi =

∑n
i=1〈xi, yi〉 ∈ E∗ ⊙ E = span〈E, E〉. For the elements Xn and Y n in En

with entries xi and yi, respectively, this reads u = 〈Xn, Y n〉. We get (T ∗ ⊙ T )(u) = 〈T n(Xn), T n(Y n)〉.
Consequently,

∥∥(
T ∗ ⊙ T

)
(u)

∥∥ =
∥∥〈

T n
(
Xn

)
, T n

(
Y n

)〉∥∥ �
∥∥T n

∥∥2∥∥Xn
∥∥∥∥Y n

∥∥ � ‖T‖2
cb

∥∥Xn
∥∥∥∥Y n

∥∥.

If, for any ε > 0, we can find Xε and Yε in En such that 〈Xε, Yε〉 = u and ‖Xε‖‖Yε‖ � ‖u‖ + ε, then we

obtain

∥∥(
T ∗ ⊙ T

)
(u)

∥∥ � ‖T‖2
cb‖Xε‖‖Yε‖ � ‖T‖2

cb

(
‖u‖ + ε

)
,

and further ‖T ∗ ⊙ T‖ � ‖T‖2
cb, by letting ε → 0.

For showing that this is possible, we recall the following well-known result. (See, for instance, Lance [15,

Lemma 4.4].)

Lemma 2.9. For every element x in a Hilbert B-module E and for every α ∈ (0, 1) there is an element

wα ∈ E such that x = wα|x|α.

The proof in [15] shows that wα can be chosen in the Hilbert C∗(|x|)-module xC∗(|x|), which is isomorphic

to C∗(|x|) via x 
→ |x|. Since |x|α is strictly positive in the C∗-algebra C∗(|x|), the element wα ∈ xC∗(|x|)
is unique and, obviously, when represented in C∗(|x|) it is wα = |x|1−α.

Corollary 2.10. Let E be a Hilbert B-module and let F be a B–C-correspondence. Choose x ∈ E, y ∈ F and

put u := x ⊙ y. Then for every ε > 0, there exist xε ∈ E and yε ∈ F such that xε ⊙ yε = u and
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‖xε‖‖yε‖ � ‖u‖ + ε,

that is, ‖x ⊙ y‖ = inf{‖x′‖‖y′‖: x′ ∈ E, y′ ∈ F, x′ ⊙ y′ = x ⊙ y}.

Proof. We have u = x ⊙ y = wα ⊙ |x|αy so that

‖u‖ � ‖wα‖
∥∥|x|αy

∥∥ α→1−−−−→ 1 ·
∥∥|x|y

∥∥ = ‖x ⊙ y‖ = ‖u‖,

since ‖wα‖ = supλ∈[0,‖x‖] λ1−α = ‖x‖1−α → 1, and since |x|α converges in norm to |x|. ✷

With the proof of this corollary we did not only conclude the proof of (3) ⇒ (1), but also the proof of

Theorem 1.3. ✷

Corollary 2.11. (Blecher [11, Theorem 4.3].) The internal tensor product norm of u ∈ E ⊙ F is

‖u‖ = inf
{

‖Xn‖
∥∥Y n

∥∥: n ∈ N, Xn ∈ En, Y n ∈ F n, Xn ⊙ Y n = u
}

, (2.1)

with the row space En := M1,n(E) and the internal tensor product Xn ⊙ Y n over Mn(B). That is, the

internal tensor product norm coincides with the module Haagerup tensor product norm (which is defined

by (2.1)). Moreover, since Mn(E ⊙ F ) is isomorphic to the internal tensor product Mn(E) ⊙ Mn(F ), the

internal tensor product is completely isometrically isomorphic to the module Haagerup tensor product.

After this digression on the Haagerup tensor product, let us return to maps fulfilling (3). However, we

weaken the conditions a bit. Firstly, we replace FT with F , so that now F is a B
a(E)–C-correspondence

fulfilling T (ax) = aT (x) =: ϑ(a)T (x). We still may define the map T ∗ ⊙ T on E∗ ⊙ E = span〈E, E〉, and if

T is CB, everything goes as before. Secondly, we wish to weaken the boundedness condition on T . We know

from Example 1.2 that if BE is nonunital, the CB-condition is indispensable. So, suppose that E is full and

that B = BE is unital.

Observation 2.12. In the prescribed situation, suppose E has a unit vector ξ. In that case, τ := T ∗ ⊙ T

is defined on all B = 〈ξ, ξ〉B ⊂ E∗ ⊙ E ⊂ B. Since τ(b∗b) = τ(b∗〈ξ, ξ〉b) = 〈T (ξb), T (ξb)〉 is positive, τ is

bounded by ‖τ(1)‖. From T (x) = T (x〈ξ, ξ〉) = (xξ∗)T (ξ), we conclude that ‖T (x)‖2 � ‖x‖2‖τ(1)‖. (This is

the same trick in Remark 1.7 that allowed to show that a map T : E → F fulfilling (3) without boundedness

and linearity, is linear provided E has a unit vector ξ.)

Even if E has no unit vector but B = BE still is unital, then a well-known result asserts that there is a

number n ∈ N such that En has a unit vector, say, ξn. (See Skeide [26, Lemma 3.2] for a proof.) If T is linear,

then T n: En → F n fulfills (3) without boundedness. By the preceding paragraph, T n, and a fortiori T , is

bounded by
√

‖τ(1)‖ with the same τ as obtained from T .

Finally, (T n)m = Tmn,m: Mm(En) → Mm(F n) is bounded by
√

‖τ‖, since Mm(En) has a unit vector

(with entries ξn in the diagonal) and ‖τm(1m)‖ = ‖τ(1)‖. So, T n, and a fortiori T , is completely bounded

by
√

‖τ‖.

The last missing piece in the proof of Theorem 1.1 is the following lemma. We obtain it as a corollary of

the proof of Lemma 2.8.

Lemma 2.13. ‖T‖cb �
√

‖τ‖.

Proof. Let bb∗ be in the unitball of B such that ‖τ(bb∗)‖ ≈ ‖τ‖. By the proof of Lemma 2.8, there exist

n ∈ N and Xn ∈ En with ‖Xn‖ � ‖b‖ such that 〈Xn, Xn〉 ≈ bb∗ and 〈T n(Xn), T n(Xn)〉 ≈ τ(〈Xn, Xn〉).
So, ‖τ‖ ≈ ‖〈T n(Xn), T n(Xn)〉‖ � ‖T n‖2 � ‖T‖2

cb. ✷
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3. CP-extendable maps: The KSGNS-construction revisited

In (1) ⇒ (2) we have written down the (strict unital) homomorphism ϑ:Ba(E) → B
a(FT ) in the form

ϑ := v(• ⊙ idF)v∗ with the unitary v: E ⊙ F → FT granted by the theorem in [28]. Then we have shown

that the block-wise map T :=
(

τ T ∗

T ϑ

)
is completely positive, by writing it as Ξ∗(• ⊙ idF)Ξ with a diagonal

map Ξ ∈ B
a
(( C

FT

)
,
(

B
E

)
⊙ F

)
. (Recall that it was necessary to unitalize τ if B was nonunital.) We wish to

illustrate that these forms for ϑ and T are not accidental, but they actually are characteristic for all strictly

CP-extendable maps T .

Let E be a Hilbert B-module, let F be a Hilbert C-module, and let T:Ba(E) → B
a(F ) be a CP-map.

Denote by (E, Ξ) the GNS-construction for T. Like every Hilbert Ba(F )-module, we may embed E into

Ba(F,E ⊙ F ) by identifying X ∈ E with the map X ⊙ idF : y 
→ X ⊙ y and adjoint X∗ ⊙ idF : X ′ ⊙ y 
→
〈X, X ′〉y. So, T(a) = Ξ∗(a ⊙ idF )Ξ where a ∈ B

a(E) acts by the canonical left action on the factor E of

E ⊙ F .

Lemma 3.1. The following conditions are equivalent:

1. T is strict, that is, bounded strictly converging nets in B
a(E) are sent to strictly converging nets

in B
a(F ).

2. The action of K(E) on the Ba(E)–C-correspondence E ⊙ F is nondegenerate.

3. The left action of the Ba(E)–C-correspondence E ⊙ F defines a strict homomorphism.

Proof. Recall that a correspondence, by definition, has nondegenerate left action, so that idE acts as identity.

It is well-known (and easy to show) that (2) and (3) are equivalent for every B
a(E)–C-correspondence.

(Indeed, since a bounded approximate unit for K(E) converges strictly to idE , for a strict left action the

compacts must act nondegenerately. And if K(E) acts nondegenerately, then this action extends to a unique

action of all Ba(E) that is strict, automatically. See Lance [15, Proposition 5.8] or the proof of Muhly, Skeide,

and Solel [16, Corollary 1.20].) Recall, also, that on bounded subsets, strict and ∗-strong topology coincide.

(See [15, Proposition 8.1].)

Now, if the left action of E⊙ F is strict, then for every bounded net (aλ)λ∈Λ converging strictly to a, we

have that (aλ ⊙ idF )(Ξ ⊙y) converges to (a⊙ idF )(Ξ ⊙y), and likewise for a∗
λ. In other words, Ξ∗(aλ ⊙ idF )Ξ

converges ∗-strongly, hence, strictly to Ξ∗(a ⊙ idF )Ξ. So, (3) ⇒ (1).

Conversely, suppose T is strict, and choose a bounded approximate unit (uλ)λ∈Λ for K(E). Then for

every element aΞ ⊙ y from the total subset Ba(E)Ξ ⊙ F of E ⊙ F , we have

∣∣(uλa − a)Ξ ⊙ y
∣∣2

=
〈
y,T

(
(uλa − a)∗(uλa − a)

)
y
〉

−→ 0,

so that limλ(uλ ⊙ idF )(aΞ ⊙ y) = limλ uλaΞ ⊙ y = aΞ ⊙ y. This shows (1) ⇒ (2). ✷

We now define the B–C-correspondence F := E∗ ⊙ E ⊙ F . If T is strict so that E ⊙ E∗ ∼= K(E) acts

nondegenerately on E ⊙ F , then the string

E ⊙ F = spanK(E)(E ⊙ F ) ∼= K(E) ⊙ (E ⊙ F ) ∼=
(
E ⊙ E∗

)
⊙ (E ⊙ F ) = E ⊙

(
E∗ ⊙ E ⊙ F

)
= E ⊙ F

of (canonical) identifications proves that the map (x′x∗)(X ⊙y) 
→ x′ ⊙ (x∗ ⊙X ⊙y) defines an isomorphism

E ⊙ F → E ⊙ F of Ba(E)–C-correspondences. To obtain the following theorem, we simply have to put the

preceding considerations together.3

3 This way to construct the B–C-correspondence F from a B
a(E)–Ba(F )-correspondence is, actually, from Bhat, Liebscher, and

Skeide [7, Section 3]. There, however, it is incorrectly claimed that the GNS-correspondence of a strict CP-map has strict left
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Theorem 3.2. Let E be a Hilbert B-module, let F be a Hilbert C-module, and suppose that T:Ba(E) → Ba(F )

is a strict CP-map. Then there exist a B–C-correspondence F and a map Ξ ∈ Ba(F, E ⊙ F) such that

Ξ∗(• ⊙ idF)Ξ = T.

Remark 3.3. For E = B so that Ba(B) = M(B), the multiplier algebra of B, this result is known as

KSGNS-construction for a strict CP-map from B into Ba(F ) (Kasparov [14]); see Lance [15, Theorem 5.6].

One may consider Theorem 3.2 as a consequence of the KSGNS-construction applied to T ↾ K(E) and the

representation theory of Ba(E) from Muhly, Skeide, and Solel [16]. Effectively, when T is a strict unital

homomorphism, so that E = TB
a(F ) and F := E∗ ⊙ E ⊙ F = E∗ ⊙T F , the theorem (and its proof)

specialize to [16, Theorem 1.4] (and its proof). We like to view Theorem 3.2 as a joint generalization of the

KSGNS-construction and of the representation theory, and the rapid joint proof shows that this point of

view is an advantage.

Observation 3.4. Like with all GNS- and Stinespring type constructions, also here we have suitable unique-

ness statements. The GNS-correspondence E together with the cyclicity condition E = spanBa(E)ΞBa(F )

is unique up to (cyclic-vector-intertwining) isomorphism of correspondences. Of course, this turns over to

E ⊙ F with the cyclic map Ξ ∈ Ba(F,E ⊙ F ) as with Stinespring construction (as mentioned many times

in the sequel of Bhat and Skeide [10, Example 2.16] when F = H is a Hilbert space). As for uniqueness

of F, this requires fullness of E. Indeed, since E ⊙ F with its action of Ba(E) is determined up unitary

equivalence, [16, Theorem 1.8 and Remark 1.9] tell us that F is unique if E is full, and that F may fail to

be unique if E is not full.

Corollary 3.5. Suppose E =
(

E1

E2

)
and F =

(
F1

F2

)
. Then the strict CP-map T acts block-wise from B

a(E) =
(

B
a(E1) B

a(E2,E1)

B
a(E1,E2) B

a(E2)

)
to Ba(F ) =

(
B

a(F1) B
a(F2,F1)

B
a(F1,F2) B

a(F2)

)
if and only if the map Ξ in Theorem 3.2 has the

diagonal form Ξ =
( ξ1

ξ2

)
.

We skip the simple proof.

Now, suppose T =
(

τ T ∗

T ϑ

)
:
( B E∗

E B
a(E)

)
→

( C F ∗

F B
a(F )

)
is a block-wise CP-map with strict 22-corner ϑ.

There is no harm in assuming that C is unital. And if B is not unital, unitalize τ . For unital B, the extended

linking algebra is Ba
(

B
E

)
and the strict topology of all corners but Ba(E), coincides with the norm topology.

Therefore, T is strict. So, except for the possibly necessary unitalization, we see that the form we used in

the proof (1) ⇒ (2) to establish that the constructed T is completely positive, actually, is also necessary.

(If unitalization is necessary, then ξ1 is an element of a B̃–C̃-correspondence.) We arrive at the factorization

theorem for strictly CP-extendable maps, which is the analogue to the theorem in Skeide [28].

Theorem 3.6. Let B be a unital C∗-algebra and let C be a C∗-algebra. Then for a map T from a Hilbert

B-module E to a Hilbert C-module F the following conditions are equivalent:

1. T admits a strict block-wise extension to a CP-map T =
(

τ T ∗

T ϑ

)
:
( B E∗

E B
a(E)

)
→

( C F ∗

F B
a(F )

)
.

2. There exist a B–C-correspondence F, an element ξ1 ∈ F and a map ξ2 ∈ Ba(F, E ⊙ F) such that

T = ξ∗
2(• ⊙ ξ1).

As for a criterion that consists in looking just at T , we are reluctant to expect too much. Clearly,

such a T must be completely bounded. If T is completely bounded, by appropriate application of Paulsen

action. (This is false, in general, as the map T = idBa(E) shows. The results in [7] are, however, correct, as strictness is never used
for E but always only in the combination as tensor product E ⊙ F .) For that reason, we preferred to discuss this here carefully,
including also the precise statements in Lemma 3.1.
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[18, Lemma 7.1], T should extend to the operator system
(
C1 E∗

E CidE

)
⊂

( B E∗

E B
a(E)

)
. But to extend this fur-

ther, we would have to tackle problems like extending CP-maps from an operator systems to the C∗-algebra

containing it. We do not know if the special algebraic structure will allow to find a solution to our spe-

cific problem. But, in general, existence of such extensions is only granted if the codomain is an injective

C∗-algebra. We do not follow the question in these notes.

We close this section with an alternative proof of (2) ⇒ (1) in Theorem 1.3.

Corollary 3.7. In the situation of (2) of Theorem 1.3, T is a T ∗ ⊙ T -map.

Proof. Recall that the proof (2) ⇒ (3) shows us that ϑ is unital and strict. Unitalizing if necessary, we get ξ1

and ξ2. Since ϑ is a unital homomorphism, ξ2 must be an isometry with ξ2ξ∗
2 commuting with all a⊙idF. This

together with span(Ba(E) ⊙ idF)ξ2FT = E ⊙ F, implies that ξ2 is unitary. We get ‖〈T n(Xn), T n(X ′ n)〉‖ =

‖〈Xn ⊙ ξ1, X ′ n ⊙ ξ1〉‖ � ‖τ‖‖〈Xn, X ′ n〉‖2, so T ∗ ⊙ T is bounded. ✷

We think that it is the class of strictly CP-extendable maps that truly merits to be called CP-maps

between Hilbert modules, and not the more restricted class of CP-H-extendable maps.

4. CPH-semigroups

In the preceding sections we have seen when a map T from a full Hilbert B-module E to a Hilbert

C-module F is a τ -map for some CP-map τ from B to C: If and only if it is CP-H-extendable, that is, if

and only if it is a CPH-map into the Hilbert C-submodule generated by T (E), FT . If E is not full, then this

may be repaired easily by making B smaller. If a CP-H-extendable map is not a CPH-map, then this may

be repaired easily by making F smaller. In fact, we have seen that replacing F with FT , we turn T even

into a strictly CPH0-map E → FT . In that case, the CPH-extension T =
(

τ T ∗

T ϑ

)
is even unique.

Similarly, the conditions in Theorem 1.3 tell when a semigroup T = (Tt)t∈R+
of maps Tt on a full

Hilbert B-module E is CP-H-extendable, that is, when each map Tt is CP-H-extendable. In this case, it is

even clear that the (unique) maps τt turning the Tt into τt-maps, form a CP-semigroup τ on B. However,

the situation is considerably different, when we ask if the Tt are actually CPH-maps. In the sequel, we

shall see that no such semigroup will ever fulfill E = ETt
for all t, unless all τt are homomorphic (see

Observation 4.16) and, therefore, the Tt are ternary homomorphisms. We shall see that we may replace the

unfulfillable condition E = ETt
with a weaker minimality condition (Definition 4.10) involving the whole

semigroup, which also will guarantee existence of (unique) strictly CPH0-extensions Tt =
(

τt T ∗

t

Tt ϑt

)
which

even form a semigroup themselves. Understanding this, requires results from Bhat and Skeide [10] about

the GNS-product system of a CP-semigroup (replacing Paschke’s GNS-construction for a single CP-map)

and about the relation between product systems and strict E0-semigroups on Ba(E) from Skeide [20,26].

The construction of minimal CPH-semigroups involves results about existence of E0-semigroups for product

systems from Skeide [22,24,25].

Let us first fix the sort of semigroup we wish to look at. Recall that an E-semigroup is a semigroup of

endomorphisms on a ∗-algebra, and that an E0-semigroup is a semigroup of unital endomorphisms on a

unital ∗-algebra.

Definition 4.1. A semigroup T = (Tt)t∈R+
of maps Tt: E → E on a Hilbert B-module E is

1. a (strictly) CP-semigroup on E if it extends to a CP-semigroup T = (Tt)t∈R+
of maps Tt =

(
τt T ∗

t

Tt ϑt

)

acting block-wise on the extended linking algebra of E (with strict ϑt);

2. a (strictly) CPH(0)-semigroup on E if it is a (strictly) CP-semigroup where the ϑt can be chosen to

form an E(0)-semigroup and where the τt can be chosen such that each Tt is a τt-map.
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Observation 4.2. In the sequel, frequently the results will depend on that B is a unital C∗-algebra. Recall

that, by the discussion preceding Theorem 3.6, in this case T being a strictly CP-semigroup (and so forth)

on a Hilbert B-module, simply means that each Tt is strict. In that case, we will just say, T is a strict

CP-semigroup (and so forth).

In the sequel, we shall address the following problems: We give a version of the decomposition in Theo-

rem 3.6 for strict CP-semigroups; Theorem 4.4. In order to prepare better for the case of CPH-semigroups,

we are forced to be more specific than in Section 3; see the extensive Observation 4.3. Then, we examine

to what extent this version for CPH-semigroups corresponds to the single map results from Skeide [28]

and Theorem 1.3. The version in Theorem 4.7 for CP-H-extendable semigroups of the single map result

in [28] is preliminary for the result Theorem 4.8 on CPH-semigroups. The latter result parallels rather The-

orem 4.4 (hypothesizing that there is CPH-extension of the CP-H-extendable semigroup T ), than proving

existence of a CPH-extension, as in Theorem 1.3, from CP-H-extendability under (here, unfulfillable) cyclic-

ity conditions. The result that parallels Theorem 1.3 most, is Theorem 4.11 on minimal CP-H-extendable

semigroups on full Hilbert modules over unital C∗-algebras. The minimality condition in (4.4) limits this

theorem automatically to the case where the associated CP-semigroups have full GNS-systems. In this case,

however, we can prove existence (based on the corresponding existence results of E0-semigroups for such full

product systems). We show that all minimal CP-H-extendable semigroups on a fixed full Hilbert B-module

and associated with a fixed CP-semigroup on B, are cocycle equivalent; Corollary 4.13.

We start by discussing what we can say about strict CP-semigroups on Ba(E) in general. As the basis

for Theorem 3.6 and the other results in Section 3 is Paschke’s GNS-construction for a single CP-map τ ,

here we will need the version of the GNS-construction for CP-semigroups from Bhat and Skeide [10].

Let τ = (τt)t∈R+
be a CP-semigroup on a unital C∗-algebra B. Bhat and Skeide [10, Section 4] provide

the following:

• A product system E⊙ = (Et)t∈R+
of B-correspondences. That is, E0 = B (the trivial B-correspondence),

and there are bilinear unitaries us,t: Es⊙Et → Es+t such that the product (xs, yt) 
→ xsyt := us,t(xs⊙yt)

is associative and such that u0,t and ut,0 are left and right action, respectively, of B = E0 on Et.

• A unit ξ⊙ = (ξt)t∈R+
(that is, the elements ξt ∈ Et fulfill ξ0 = 1 and ξsξt = ξs+t), such that

τt = 〈ξt, •ξt〉,

and the smallest product subsystem of E⊙ containing ξ⊙ is E⊙. (The pair (E⊙, ξ⊙) is determined by

these properties up to unit-preserving isomorphism, and we refer to it as the GNS-construction for τ

with GNS-system E⊙ and cyclic unit ξ⊙.)

• If E⊙ is not minimal, then the subcorrespondences

Et = span{bnξtn
· · · b1ξt1

b0: tn + · · · + t1 = t} (4.1)

of Et form a product subsystem of E⊙ that is isomorphic to the GNS-system.

Now let T = (Tt)t∈R+
be a CP-semigroup on the unital C∗-algebra B

a(E). (For this, B need not even be

unital.) Denote by E⊙ = (Et)t∈R+
its GNS-system and by Ξ⊙ = (Ξt)t∈R+

its cyclic unit. Like in Lemma 3.1,

the semigroup T is strict if and only if the correspondences Et ⊙ E have strict left action. (To see this, it

is crucial to know the form in (4.1) of a typical element in the GNS-system.) Like in Theorem 3.2, if T is

strict, we get B-correspondences Et := E∗ ⊙Et ⊙E (actually, BE-correspondences if E is not full) and maps

in Ba(E, E ⊙ Et), also denoted by Ξt, such that Tt = Ξ∗
t (• ⊙ idt)Ξt.

In addition to the properties discussed in Section 3, we see that the Et form a product system of

BE-correspondences via
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us,t: Es ⊙ Et = E∗ ⊙ Es ⊙ E ⊙ E∗ ⊙ Et ⊙ E −→ E∗ ⊙ Es ⊙ Et ⊙ E −→ E∗ ⊙ Es+t ⊙ E = Es+t,

and the Ξt compose as

Ξs+t = (idE ⊙ us,t)(Ξs ⊙ idt)Ξt. (4.2)

(Note that, modulo the flaw in Bhat, Liebscher, and Skeide [7] regarding strictness of the GNS-construction

mentioned in Footnote 3, all this has already been discussed in [26] and in [7].) Of course, every product

system E⊙ with a family of maps Ξt ∈ B
a(E, E ⊙ Et) satisfying (4.2), defines a strict CP-semigroup T

on Ba(E) by setting Tt := Ξ∗
t (• ⊙ idt)Ξt. But only if E⊙ and the Ξt arise as described, we will speak of the

product system of T.

It is worth to collect some properties of the product system E⊙ of T and the Ξt.

Observation 4.3.

1. Recall, that a ⊙ idt ∈ B
a(E ⊙ Et), when composed with an element Xt ∈ Et ⊂ B

a(E, E ⊙ Et), is

nothing but the left action of a ∈ Ba(E) on Xt ∈ Et. Therefore, it is sometimes convenient to write

aXt instead of (a ⊙ idt)Xt. Note, too, that by the way how Et ⊙ E is canonically identified with

E ⊙ Et = E ⊙ E∗ ⊙ Et ⊙ E = spanK(E)Et ⊙ E, we get

x ⊙
(
y∗ ⊙ Xt ⊙ z

)
=

(
xy∗

)
Xtz ∈ E ⊙ Et.

2. By the way how Et is generated from Ξ⊙ as expressed in (4.1), it follows from (4.2) that

E ⊙ Et = span
{

(an ⊙ idt)(Ξtn
an−1 ⊙ utn−1,tn−2+···+t1

) · · · (Ξt3
a2 ⊙ ut2,t1

)(Ξt2
a1 ⊙ idt1

)Ξt1
x

}
.

(If E is full, one may show that E⊙ and the Ξt are determined uniquely by T and that cyclicity condition.

But we do not address uniqueness here.) Observe that it suffices to choose the ak, which a priori run

over all Ba(E), only from the rank-one operators. Doing so and tensoring with E∗ from the left, we

get

Et = span
{(

y∗
n ⊙ Ξtn

⊙ zn

)
· · ·

(
y∗

1 ⊙ Ξt1
⊙ z1

)}

= span
{((

y∗
n ⊙ idtn

)
Ξtn

zn

)
· · ·

((
y∗

1 ⊙ idt1

)
Ξt1

z1

)}
.

This means, E⊙ is generated as a product system by the family of subsets E∗ ⊙ Ξt ⊙ E of Et.

3. For both exploiting the preceding cyclicity condition and making notationally the connection with the

construction of a product system for strict E-semigroups on B
a(E), it is convenient to replace the

maps Ξt with their adjoints vt := Ξ∗
t : E ⊙ Et → E. Using the same product notation xyt := vt(x ⊙ yt)

as for the us,t, Eq. (4.2) transforms into the associativity condition

(xys)zt = x(yszt). (4.3)

It follows from the cyclicity condition that we know vt fulfilling associativity if we know each vt on

elements x ⊙ yt where yt is from the subset E∗ ⊙ ΞtE = E∗ ⊙ Ξt ⊙ E of Et. In particular, for checking

if vt is an isometry, it suffices to check that each vt is isometric on such elements.

4. Observe that T is unital if and only if the vt are coisometries. (If E is full, this means that E⊙ is

necessarily full.) On the other hand, T is an E-semigroup if and only if for each t, v∗
t vt is a projection in

the relative commutant of Ba(E)⊙idt in B
a(E⊙Et). (This happens, for instance, if the vt are isometries,

so that v∗
t vt = idE⊙idt

commutes with everything.) In this case, necessarily (a ⊙ idt)Ξt = ΞtTt(a).
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Therefore, in the cyclicity condition for E ⊙ Et, all an can be put through to the right, where they are

applied to x, and the remaining Ξtk
, following (4.2), multiply together to give Ξt. We conclude that

E ⊙ Et = ΞtE. (Since Ξt is a partial isometry, no closure of the image of Ξt is necessary.) In other

words, if T is an E-semigroup, then the Ξt are coisometries, that is, the vt are isometries. If T is an

E0-semigroup, then the vt are even unitaries.

5. Since [20] ([26] (preprint 2004) for full E over general C∗-algebras), it is known that every strict

E0-semigroup (E-semigroup) T on Ba(E) comes along with a product system E⊙ and a family

vt: E ⊙ Et → E of unitaries (adjointable isometries) fulfilling (4.3), such that Tt = vt(• ⊙ idt)v
∗
t . If

E is full, since [22,24] this is referred to as left dilation (left semi-dilation) of E⊙ to E. It is known that

product system and left (semi-)dilation are essentially unique. (It is part of the extensive [25, Proposi-

tion 6.3] to explain in which sense these objects are unique.) In fact, it is not difficult to verify that the

left (semi-)dilation constructed above, coincides with the one constructed in [26]. But we do not need

this information. If E is not full, then we speak of left quasi-dilation (left quasi-semidilation).

This lengthy observation prepares the ground for Theorem 4.8. But logically it belongs here, where strict

CP-semigroups on Ba(E) are discussed. Of course, the statements regarding single CP-maps acting block-

wise on Ba
(

E1

E2

)
remain true for strict CP-semigroups. That is Ξt =

( ξ1

ξ2
t

)
∈ B

a
((

E1

E2

)
,
(

E1

E2

)
⊙Et

)
. Again,

when E1 = B ∋ 1 and E2 = E (so that B
a
(

E1

E2

)
is the extended linking algebra of E), we identify ξ1

t with

the elements ξt := ξ1
t 1 ∈ Et. We put vt = ξ2

t

∗
, getting:

Theorem 4.4. Let B be a unital C∗-algebra. Then for a semigroup T = (Tt)t∈R+
of maps on a Hilbert

B-module E the following conditions are equivalent:

1. T is a strict CP-semigroup.

2. There exist a product system E⊙ = (Et)t∈R+
of B-correspondences, a unit ξ⊙ for E⊙, and a family

(vt)t∈R+
of maps vt ∈ Ba(E ⊙ Et, E) fulfilling (4.3), such that Tt = vt(• ⊙ ξt).

Remark 4.5. Note that E is not required full. But, unitality of B enters in two ways. Firstly, B must be

unital in order to obtain the unit ξ⊙ in the product system. (Recall that the term unit is not defined if

B is nonunital.) Secondly and more importantly, the construction of the product system E⊙ starts from

a strict CP-semigroup T on Ba
(

B
E

)
. For both facts the fact that B

a
(

B
E

)
is the extended linking algebra

appearing in the definition of CP-semigroup on E and the fact that the CP-extension T of T be strict, it is

indispensable that B is unital; see Observation 4.2.

If B is nonunital (for instance, because we wish to consider E as full), then the construction of the

product system may be saved provided T really may be extended to a CP-semigroup acting strictly on the

bigger algebra Ba
(

B
E

)
. This requires that the semigroup T itself extends to a semigroup of strict maps on

Ba(B, E) ⊃ E. It also requires that there is a strict CP-semigroup on B
a(B) = M(B) extending τ . If all

this is fulfilled, then instead of a unit for the product system E⊙ we obtain a family of maps ξ1
t ∈ B

a(B, Et)

fulfilling a condition similar to (4.2). While a product system can be obtained from τ on nonunital B also

when τ is not strict, existence of the maps ξ1
t is unresolvably interwoven with strictness of τ .

We do not address these questions here. We just mention that there have already been several instances

where such multiplier spaces Ba(B, Et) and their strict tensor products like Ba(B, Es) ⊙str Ba(B, Et) :=

spanstr(Es ⊙ idt)Es = B
a(B, Es ⊙ Et) popped up. It would be interesting to formulate a theory of prod-

uct systems for them, extending what has been said in Skeide [26, Section 7]. Families of maps like Ξt

fulfilling (4.2) (and, of course, Ξ0 = 1 ∈ M(B)) would generalize the concept of unit.

Observation 4.6. Note that E⊙ need not be the GNS-system of τ . Of course, it contains the GNS-

system, because it contains the unit ξ⊙ that gives back τ as τt = 〈ξt, •ξt〉. Also the product sys-
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tem of BE-correspondences constructed as before from the strict CP-semigroup ϑ on Ba(E) given by

ϑt = vt(• ⊙ idt)v
∗
t on B

a(E) sits inside E⊙. More precisely, by Observation 4.3(2), Et is generated by(
B
E

)∗ ⊙ Ξt ⊙
(

B
E

)
and, by diagonality of Ξt, we have

( B
E

)∗

⊙ Ξt ⊙
( B

E

)
=

( B
0

)∗

⊙
(

ξ1
t 0

0 0

)
⊙

( B
0

)
+

(
0

E

)∗

⊙
(

0 0

0 ξ2
t

)
⊙

(
0

E

)
.

And
( c

0

)∗⊙
(

ξ1
t 0
0 0

)
⊙

(
d

0

)
can be identified with the element c∗ξtd from the subset generating the GNS-system

of τ , while
( 0

y

)∗ ⊙
( 0 0

0 ξ2
t

)
⊙

(
0
z

)
can be identified with the element y∗ ⊙ ξ2

t ⊙ z from the subset generating

the product system of ϑ. It is clear that the product system of ϑ, consisting of BE-correspondences (that

may also be viewed as B-correspondences), must be smaller than E⊙ if E is non-full. But it may be smaller

even if E is full. (Think of E = B, where τ is the identity and ϑ a CP-semigroup with nonfull GNS-

system.)

The situation in this observation, namely, that neither of the product systems of the diagonal corners τ

and ϑ need coincide with the product system E⊙ of T, creates not little discomfort. This improves if T is a

strict CPH-semigroup, to which we now gradually switch our attention.

For instance, we know that ϑt = vt(• ⊙ idt)v
∗
t is an endomorphism if and only if v∗

t vt is a projection

commuting with Ba(E) ⊙ idt. We also know that, if E⊙ actually is the product system of ϑ, then the vt will

be isometries. But, if E⊙ is too big, then there is no a priori reason, why the vt should be isometries.

It is one of the scopes of the following theorem to contribute an essential part in the proof that the vt

actually are isometries. A second scope is to present the semigroup version of the theorem in Skeide [28].

(This will allow to show that the condition E = ETt
can be rarely fulfilled, and by what it has to be replaced.

It will also lead to a notion of minimal CPH-semigroups.)

Theorem 4.7. Let B be a unital C∗-algebra and let T = (Tt)t∈R+
be a family of maps on a Hilbert B-module E.

Then the following conditions are equivalent:

1. T is a CP-H-extendable semigroup.

2. There are a product system E⊙ of B-correspondences, a unit ξ⊙ for E⊙, and a family of (not necessarily

adjointable) isometries vt: E ⊙ Et → E fulfilling (4.3), such that

Tt = vt(• ⊙ ξt).

Proof. Of course, given the ingredients in (2), the maps Tt defined there are CP-H-extendable. The semi-

group property follows from the unit property of ξ⊙ and from (4.3). This shows (1).

Now let T be a CP-H-extendable semigroup. Denote by τ a CP-semigroup on B such that each Tt is

a τt-map. Do the GNS-construction for τ to obtain (E⊙, ξ⊙). Recall that Et is spanned by elements as

in (4.1). Then

x ⊙ (bnξtn
· · · b1ξt1

) 
−→ Tt1

(
Tt2

(
. . . Ttn−1

(
Ttn

(xbn)bn−1

)
. . . b2

)
b1

)
(tn + · · · + t1 = t)

extend to well-defined isometries vt: E ⊙ Et → E fulfilling all the requirements of (2). (In order to compute

inner products of two elements of the form as in (4.1), one first has to assure, by splitting pieces ξr of

the unit suitably into ξr′ξr′′ , that both elements belong to the same tuple tn + · · · + t1 = t. We leave the

remaining statements to the reader.) ✷

Note that E is not required full. (It should be specified that also in this case, by a CP-H-extendable

map T on E we mean that T is a CPH-map into ET . Likewise, in the semigroup version it is required that
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the τt turning Tt into τt-maps, form a semigroup.) This is, why τ is not unique. If we wish to emphasize a

fixed CP-semigroup τ , we say T is a CP-H-extendable semigroup associated with τ .

The proof also shows that (E⊙, ξ⊙) may be chosen to be the GNS-construction for τ . But for the backward

direction, this is not necessary.

If, by any chance, we find E⊙ and ξ⊙ such that the vt can be chosen adjointable (so that they form a left

quasi-semidilation), then we get that T is a strict CPH-semigroup. (Define the members of the semigroup T

in the very same way as the single map T in the proof of (1) ⇒ (2) in Theorem 1.3.) If the vt can even be

chosen unitary (so that they form a left quasi-dilation), then T turns out to be a strict CPH0-semigroup.

After Observations 4.3 and 4.6 and after Theorem 4.7, we now are prepared to prove the opposite direction,

too:

Theorem 4.8. Let B be a unital C∗-algebra and let T = (Tt)t∈R+
be a family of maps on a Hilbert B-module E.

Then the following conditions are equivalent:

1. T is a strict CPH-semigroup (CPH0-semigroup).

2. There exist a product system E⊙, a unit ξ⊙ for E⊙, and a left quasi-semidilation (a left quasi-dilation)

(vt)t∈R+
of E⊙ to E, such that Tt = vt(• ⊙ ξt).

Proof. Only the direction (1) ⇒ (2) is yet missing. So, let T be a strict CPH-semigroup on E and T a suitable

strict CPH-extension to the extended linking algebra Ba
(

B
E

)
of E and construct everything as for (1) ⇒ (2)

of Theorem 4.4. So, Et =
(

B
E

)∗ ⊙Et ⊙
(

B
E

)
and vt is the (co)restriction of Ξ∗

t :
(

B
E

)
⊙ Et →

(
B
E

)
to the map

ξ2
t

∗
: E ⊙ Et → E. By Observation 4.6, Et is generated by its subset

( B
0

)∗

⊙
(

ξ1
t 0

0 0

)
⊙

( B
0

)
+

(
0

E

)∗

⊙
(

0 0

0 ξ2
t

)
⊙

(
0

E

)
,

and by Observation 4.3(4), it is sufficient to check isometry of vt: E ⊙ Et → E for x ⊙ yt where yt are chosen

from that subset. So, we have to check

〈
xyt, x′y′

t

〉
=

〈
x ⊙ yt, x′ ⊙ y′

t

〉

where x, x′ ∈ E and yt, y′
t ∈

(
B
0

)∗ ⊙
(

ξ1
t 0
0 0

)
⊙

(
B
0

)
∪

(
0
E

)∗ ⊙
( 0 0

0 ξ2
t

)
⊙

(
0
E

)
. Now, for elements yt and

y′
t in the first set (which generates the GNS-system of τ), Theorem 4.7 tells us that vt in this case is

isometric. For elements yt and y′
t in the second set (which generates the product system of ϑ), it is easy

to see that the vt in this case give back the vt of ϑ, which, we know, are isometric. So, it remains to check

the case where yt =
( c

0

)∗ ⊙ Ξt ⊙
(

d

0

)
is from the first set and y′

t =
( 0

y

)∗ ⊙ Ξt ⊙
(

0
z

)
is from the second

set.

We use all the notation from Observation 4.3(1). Additionally, note that by the proof of Lemma 2.5, it

follows that

(
0 0

0 a

)
Ξt =

(
0 0

0 idE

)
Ξt

(
0 0

0 ϑt(a)

)
=

(
0 0

0 ξ2
t ϑt(a)

)

and further

ΞtΞ
∗
t

(
0 0

0 a

)
Ξt =

(
0 0

0 ξ2
t ξ2

t

∗
ξ2

t ϑt(a)

)
=

(
0 0

0 ξ2
t ϑt(a)

)
=

(
0 0

0 a

)
Ξt,

because ξ2
t is a partial isometry. We find
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〈
xyt, x′y′

t

〉
=

〈
Ξ∗

t

((
0

x

)
⊙

(
c

0

)∗

⊙ Ξt ⊙
(

d

0

))
, Ξ∗

t

((
0

x

)
⊙

(
0

y

)∗

⊙ Ξt ⊙
(

0

z

))〉

=

〈(
0

x

)
⊙

(
c

0

)∗

⊙ Ξt ⊙
(

d

0

)
, ΞtΞ

∗
t

(
0 0

0 xy∗

)
Ξt

(
0

z

)〉

=

〈(
0

x

)
⊙

(
c

0

)∗

⊙ Ξt ⊙
(

d

0

)
,

(
0 0

0 xy∗

)
Ξt

(
0

z

)〉

=

〈(
0

x

)
⊙

(
c

0

)∗

⊙ Ξt ⊙
(

d

0

)
,

(
0

x

)
⊙

(
0

y

)∗

⊙ Ξt ⊙
(

0

z

)〉

=
〈
x ⊙ yt, x′ ⊙ y′

t

〉
,

so the vt are, indeed, isometries. And, of course, ϑ is an E0-semigroup if and only if the vt are unitary. ✷

Every product system E⊙ can be recovered easily from a strict E-semigroup ϑ acting on a suitable E.

Indeed, take E = L2(E⊙), the direct integral
∫ ∞

0
Eα dα over the product system. (If E⊙ is just a product

system, then we have to stick to the counting measure on R+, that is, E =
⊕

t∈R+
Et. If E⊙ is a continuous

product system in the sense of Skeide [21, Section 7], we take the Lebesgue measure and E is the norm

closure of the continuous sections with compact support.) Then the obvious isomorphism from E ⊙ Et

onto the submodule
∫ ∞

t
Eα dα of E defines a left semidilation vt, and ϑ defined by ϑt := vt(• ⊙ idt)v

∗
t has

product system E⊙. (Thanks to E0 = B, the module E is full. For the direct sum this is clear. For the

continuous case, fullness follows from fullness of E0 and from existence for every x0 ∈ E0 of a continuous

section assuming that value x0 at α = 0.) It is easy to see that for a continuous product system, ϑ is

strongly continuous. Also, by Skeide [25, Appendix A.1] applied to the unitalization of τ , the GNS-system

of a strongly continuous and contractive CP-semigroup τ on a unital C∗-algebra is continuous.

The backward implication of Theorem 4.8 gives the following:

Corollary 4.9. Let τ be a (strongly continuous) CP-semigroup (of contractions) on the unital C∗-algebra B.

Then there exists a (strongly continuous) CPH-semigroup T on a full Hilbert B-module associated with τ .

If we can construct for the (continuous) GNS-system or any (continuous) product system containing it an

E0-semigroup, then we even get a (strongly continuous) CPH0-semigroup T . For the existence results of such

E0-semigroups, however, it is indispensable that this product system E⊙ is full. Continuous product systems

(B unital!) are full; see [24, Lemma 3.2]. (Note that this is a result that does not hold for von Neumann

correspondences.) GNS-systems of so-called spatial CP-semigroups (continuous or not) embed into a full

product system; see Bhat, Liebscher, and Skeide [8]. (It is strongly full in the von Neumann case; see [25,

Theorem A.15].) Of course, the GNS-system of a Markov semigroup is full. For Markov semigroups, there is

an easy way to construct E0-semigroup, to which we will come back in Section 5. For nonunital semigroups,

we have to stick to the existence result in Skeide [24], which generalizes to modules the proof in Skeide [22] of

Arveson’s fundamental result [3] that every product system of Hilbert spaces comes from an E0-semigroup

on B(H). (The von Neumann case is dealt with in [25].) We see that all Markov semigroups and most

CP-semigroups have CPH-semigroups with which they are associated.

We conclude this section by drawing some consequences from Theorem 4.7. In particular, we wish to find

information how to make sure that a CP-H-extendable semigroup is a strict CPH-semigroup.

Well, given a unital C∗-algebra B and a CP-H-extendable semigroup on a Hilbert B-module E associated

with a CP-semigroup τ on B, (the proof of) Theorem 4.7 provides us with isometries vt: E ⊙ Et → E such

that Tt = vt(• ⊙ ξt), where (E⊙, ξ⊙) is the GNS-constructions for τ . Of course, if these vt are adjointable,

we are done by establishing T as a strict CPH-semigroup. An excellent way of making sure that the vt have

adjoints, would be if we could show that they are actually unitaries. In that case, T would even be a strict

CPH0-semigroup.
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We leave apart the question of adjointability, when the vt are nonsurjective. (Anyway, the situation that

the GNS-system of τ sits adjointably in the product system of some CPH-extension T as in Theorem 4.8

is not very likely. But for full E it would be a necessary condition. And, anyway, except that Theorem 4.8

does not give a criterion by “looking alone at T ”, together with Corollary 4.9 it gives already a quite

comprehensive answer to most questions.) vt being surjective, means

E = span
{

Tt1

(
Tt2

(
. . . Ttn

(x)bn−1 . . .
)
b1

)
b0: n ∈ N, t1 + · · · + tn = t, bi ∈ B, x ∈ E

}
. (4.4)

Since vs(E ⊙ Es) ⊃ vs(vt(E ⊙ Et) ⊙ Es) = vs+t(E ⊙ Es+t) for whatever CP-H-extendable semigroup T , the

right-hand side decreases with t. So, it is sufficient to require that (4.4) holds for some t0 > 0.

Definition 4.10. A CP-H-extendable semigroup T on a Hilbert B-module E (E full or not, B unital or not)

is minimal, if T fulfills (4.4) for some t0 > 0.

Note that if E is full (so that τ is unique) and if T is minimal, then also the GNS-system of τ (B unital

or not; see Remark 4.5) is necessarily full. We are now ready to characterize minimal CP-H-extendable

semigroups (which, therefore, are also CPH0-semigroups) on full Hilbert modules over unital C∗-algebras.

Theorem 4.11. Let τ be a CP-semigroup on a unital C∗-algebra B, and denote by (E⊙, ξ⊙) its GNS-system

and cyclic unit. Let E be a full Hilbert B-module. Then the formula Tt = vt(• ⊙ ξt) establishes a one-to-one

correspondence between:

1. Left dilations vt: E ⊙ Et → E of E⊙ to E.

2. Minimal CP-H-extendable semigroups T on E associated with τ .

In either case, ϑ with ϑt = vt(• ⊙ idt)v
∗
t is the unique strict E-semigroup on Ba(E) making T =

(
τ T ∗

T ϑ

)

a CPH0-extension of T .

Proof. Let vt be a left dilation. Then the τt-maps Tt := vt(• ⊙ ξt) define a CPH0-semigroup T on E. Since

Et = span{bnξtn
· · · b1ξt1

b0: n ∈ N, t1 + · · · + tn = t, bi ∈ B},

we see that

Tt1

(
Tt2

(
. . . Ttn

(x)bn−1 . . .
)
b1

)
b0 = xξtn

· · · b1ξt1
b0

is indeed total in vt(E ⊙ Et) = E. Conversely, if T is CP-H-extendable semigroup, we know see that

vt: x ⊙ ξtn
· · · b1ξt1

b0 
−→ Tt1

(
Tt2

(
. . . Ttn

(x)bn−1 . . .
)
b1

)
b0

defines isometries fulfilling (4.3), which are unitary if and only if T is minimal. Of course, vt(x ⊙ ξt) = Tt(x)

so that the two directions are inverses of each other. This shows the one-to-one correspondence.

Finally, if ϑt is another endomorphism of Ba(E), making Tt a CPH-extension of Tt, then by the argument

preceding Corollary 2.7, we have ϑt(a)Tt(x) = Tt(ax). So,

ϑt(a)Tt1

(
Tt2

(
. . . Ttn

(x)bn−1 . . .
)
b1

)
b0 = Tt1

(
ϑt−t1

(a)Tt2

(
. . . Ttn

(x)bn−1 . . .
)
b1

)
b0

= · · · = Tt1

(
Tt2

(
. . . Ttn

(ax)bn−1 . . .
)
b1

)
b0,

that is, ϑt = vt(• ⊙ idt)v
∗
t . ✷
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Observation 4.12. Recall that left dilations of E⊙ to E give rise to strict E0-semigroups on Ba(E) that are

all in the same cocycle equivalence class, and that every element in that cocycle equivalence class arises from

such a left dilation. But different left dilations may have the same E0-semigroup; see, again, [25, Proposi-

tion 6.3]. But it is the left dilations that are in one-to-one correspondence with the minimal CP-H-extendable

semigroups. This underlines, once more, the importance of the concept of left dilations of a product system

in addition to that of E0-semigroups associated with that product system.

There is a cocycle version of the uniqueness result for the construction in [28] proved by using the left

dilations in Theorem 4.11. We state it without proof.

Corollary 4.13. Let T and T ′ be two minimal CP-H-extendable semigroups on the same (necessarily full)

Hilbert module E over the unital C∗-algebra B.

Then T and T ′ are associated with the same CP-semigroup τ on B if and only if there is a unitary left

cocycle for ϑ satisfying ut: Tt(x) 
→ T ′
t(x).

Moreover, if ut exists, then it is determined uniquely and ϑ′
t = utϑt(•)u∗

t .

So, minimal CP-H-extendable semigroups on the same E associated with the same τ are no longer

unitarily equivalent, but cocycle equivalent. We leave apart the question, when two minimal CP-H-extendable

on the same E but to possibly different τ have cocycle equivalent ϑ, that is, their τ have isomorphic

GNS-systems. The equivalence induced among Markov semigroups by their GNS-systems has been examined

in Bhat and Skeide [10, Section 7]. It leads to a different sort of cocycles.

Observation 4.14. CP-H-extendable semigroups associated with the same fixed CP-semigroup τ may be

added (direct sum), and the sum of minimal ones is again minimal. So, even if E is full, minimality does not

fix E and T up to cocycle equivalence. There is no a priori reason why two different E should be isomorphic.

Example 4.15. Let τ = idB be the trivial semigroup. So, CP-H-extendable semigroups associated with τ are

just the semigroups of (a priori not necessarily adjointable) isometries on Hilbert B-modules. It follows that

Tt(x)b = Tt(xb) so that minimality means Tt(E) = E. In other words, minimal CP-H-extendable semigroups

associated with idB are precisely the unitary semigroups. Of course, (for suitable B, for instance, for B = C)

there are nonisomorphic full Hilbert B-modules.

However, if E is full and countably generated (over unital B, so that B is in particular σ-unital), then

E∞ ∼= B∞; see Lance [15, Proposition 7.4]. So, minimal CP-H-extendable semigroups on different countably

generated full E associated with the same τ may, first, be lifted to B∞ and, then, they are cocycle equivalent.

In other words, the original semigroups are stably cocycle equivalent.

Observation 4.16. Whatever the CP-H-extendable semigroup T is, if B is unital, then

ETt
= span Tt(E)B = span vt(E ⊙ ξtB) = vt(E ⊙ Ft),

where Ft = span BξtB ⊂ Et is the GNS-correspondences of the single CP-map τt. It is a typical feature of

the GNS-system that Fs+t ⊂ spanFsFt ⊂ Es+t is smaller than Es+t unless τ is an E-semigroup, because

Fs+t
∼= span Bξs ⊙ ξtB � span Bξs ⊙ BξtB = Fs ⊙ Ft.

Remark 4.17. If T is not minimal, then the ranges of the vt decrease, say, to E∞. Moreover, it is clear that

the vt (co)restrict to unitaries E∞ ⊙ Et → E∞, that is, they form a left quasi-dilation of E⊙ to E∞. It

is unclear if E∞ is full, even if E is full and E⊙ is full, or if E∞ may be possibly {0}. But in any case,

T (co)restricts to a minimal strictly CPH0-semigroup on E∞ associated with τ . Necessarily, τ (co)restricts

to a CP-semigroup on BE∞
.
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It might be worth to compare the results in this section with Heo and Ji [12], who investigated semigroups

that, in our terminology, are CP-H-extendable, but who call them CP-semigroups.

5. An application: CPH-dilations

Since Asadi drew attention to τ -maps T : E → B(G, H) for CP-maps τ : B → B(G), it is an open question

what they might be good for. In this section, we make the first attempt to give them an interpretation; and

our point is to interpret them as a notion that generalizes the notion of dilation of a CP-map τ : B → C
to a homomorphism ϑ:Ba(E) → B

a(F ) to the notion of CPH-dilation. In particular, in the situation

of semigroups, our new more relaxed version of dilation allows for new features: While CP-semigroups

that allow weak dilations to an E0-semigroup (also E0-dilations), are necessarily Markov, our results from

Section 4 allow us to show that many nonunital CP-semigroups allow CPH-dilations to E0-semigroups,

CPH0-dilations.

Let us start with a CP-map τ : B → C with unital B, and with a τ -map T : E → F . Denoting by (F, ζ)

the GNS-construction for τ , by [28] we get a (unique) isometry v: E ⊙ F → F such that T (x) = v(x ⊙ ζ).

If FT is complemented in F , that is, if v is adjointable, then ϑ: a 
→ v(a ⊙ idF)v∗ is a strict homomorphism

from Ba(E) to Ba(F ). Now, if ξ is a unit vector (that is, 〈ξ, ξ〉 = 1) in E, we may define the representation

b 
→ ξbξ∗ of B on E. We find

〈
v(ξ ⊙ ζ), ϑ

(
ξbξ∗

)
v(ξ ⊙ ζ)

〉
=

〈
ξ ⊙ ζ,

(
ξbξ∗ ⊙ idF

)
(ξ ⊙ ζ)

〉
= 〈ζ, bζ〉 = τ(b), (5.1)

so that the following diagram commutes.

B τ

ξ•ξ∗

C

Ba(E)
ϑ

Ba(F )

〈v(ξ⊙ζ),•v(ξ⊙ζ)〉

It is clear that just any quintuple (F, ζ, E, v, ξ) of a B–C-correspondence F, an element ζ ∈ F, a Hilbert

B-module E, an adjointable isometry v: E ⊙ F → F , and a unit vector ξ ∈ E will do, if we put τ := 〈ζ, •ζ〉
and ϑ := v(• ⊙ idF)v∗.

If also ζ is a unit vector (so that τ is unital, and also v(ξ ⊙ ζ) is a unit vector), such a situation is

called a weak dilation of the Markov map (that is, a unital CP-map) τ . Here ‘weak’ is referring to that the

embedding B → ξBξ∗ means identifying B with a corner in B
a(E) (and likewise C → (ξ ⊙ ζ)C(ξ ⊙ ζ)∗) and

that ξξ∗ • ξξ∗ = ξ〈ξ, •ξ〉ξ∗ is just the conditional expectation onto that corner (and likewise for the corner

of Ba(F ) isomorphic to C).

What, if we do not have a unit vector in E or if τ is not unital? Let us make two observations: Firstly,

as long as ξ is a unit vector, the condition that the preceding diagram commutes is actually equivalent to

the apparently stronger condition that the diagram

B τ C

Ba(E)
ϑ

〈ξ,•ξ〉

B
a(F )

〈v(ξ⊙ζ),•v(ξ⊙ζ)〉

commutes. For this, ζ need not be a unit vector. (In fact, substituting in (5.1) ξbξ∗ with a ∈ B
a(E), the

same computation yields 〈v(ξ ⊙ ζ), ϑ(a)v(ξ ⊙ ζ)〉 = τ(〈ξ, aξ〉), and inserting a = ξbξ∗ gives back the original

equation.) Secondly, in the expectation the τ -map T := v(•⊙ζ) occurs as 〈v(ξ⊙ζ), •v(ξ⊙ζ)〉 = 〈T (ξ), •T (ξ)〉.
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In this form, the diagram makes sense also if we replace the ξ in the left factor and the ξ in the right factor

of the inner products with an arbitrary pair x, x′ of elements of E:

Definition 5.1. Let τ : B → C be a CP-map. A homomorphism ϑ:Ba(E) → Ba(F ) is a CPH-dilation of τ if

E is full and if there is a map T : E → F such that the diagram

B τ C

Ba(E)
ϑ

〈x,•x′〉

B
a(F )

〈T (x),•T (x′)〉

commutes for all x, x′ ∈ E. (We do not require that B and C are unital.) If E is not necessarily full, then

we speak of a CPH-quasi-dilation. A CPH-(quasi)dilation is strict if ϑ is strict. A CPH-(quasi-)dilation is

a CPH0-(quasi-)dilation if ϑ is unital.

Requiring dilation instead of quasi-dilation, means excluding trivialities. (Without that, E may be very

well {0}.) Of course, a CPH-dilation may be turned into a CPH0-dilation, by replacing F with ϑ(idE)F . It

is strict if and only if ϑ(idE)F = span ϑ(K(E))F . In a CPH-quasi-dilation, the diagram does not give any

information about the component of T (x) in (ϑ(idE)F )⊥. In that case, it is convenient to replace T with

ϑ(idE)T and apply the following results to the latter map considered as map into ϑ(idE)F .

Proposition 5.2. If ϑ is a CPH0-quasidilation of a CP-map τ , then every map T making the diagram commute

is a τ -map fulfilling T (ax) = ϑ(a)T (x).

Proof. Inserting a = idE into the diagram, we see that T is a τ -map. Also, for arbitrary a ∈ B
a(E) and

x, x′ ∈ E, we get 〈T (x), ϑ(a)T (x′)〉 = 〈T (x), T (ax′)〉. A brief argument shows that this implies ϑ(a)T (x) =

T (ax). (Indeed, on FT := span T (E)C ⊂ F , we know we get a (strict, unital) representation ϑT :Ba(E) →
Ba(FT ) that acts on the generating subset T (E) in the stated way. That is, we have 〈y, ϑ(a)y′〉 = 〈y, ϑT (a)y′〉
for all y, y′ ∈ FT . From this, one easily verifies that |ϑ(a)y − ϑT (a)y|2 = 0, so, ϑ(a)y = ϑT (a)y for all

y ∈ FT .) ✷

The ϑ-left linearity of T looks like something we would know already from Lemma 2.5 and the discussion

following it. Note, however, that this discussion is based entirely on the assumption that the extension

T =
(

τ T ∗

T ϑ

)
is a CP-map—a hypothesis we still do not yet know to be true. In fact, we will prove it in the

following theorem only for strict CPH0-dilations and unital B. And still there it turns out to be surprisingly

tricky.

From now on we shall assume that B is unital.

Theorem 5.3. If ϑ is a strict CPH0-dilation of a CP-map τ , then every map T making the diagram commute

is a strict CPH0-map.

Proof. We shall show that T =
(

τ T ∗

T ϑ

)
is CP, so that T is strictly CPH0. We wish to imitate the proof of

complete positivity in the step (1) ⇒ (2) in Section 2. But we have to face the problem that the multiplicity

correspondence of ϑ does no longer coincide with the GNS-correspondence of τ ; it just contains it.

Denote by (Fτ , ζ) the GNS-construction for τ . Doing the representation theory for the strict unital

homomorphism ϑ, we get a B–C-correspondence Fϑ := E∗ ⊙ϑF and a unitary v: E ⊙Fϑ → F, x′ ⊙(x∗ ⊙y) 
→
ϑ(x′x∗)y such that ϑ = v(• ⊙ idFϑ

)v∗. By Proposition 5.2, one easily verifies that

〈
x, x′

〉
ζ 
−→ x∗ ⊙ T

(
x′

)
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determines a bilinear unitary from Fτ onto E∗ ⊙ FT ⊂ Fϑ. We shall identify Fτ ⊂ Fϑ, so that ζ ∈ Fϑ. We

have

v
(
x ⊙

〈
x′, x′′

〉
ζ
)

= v
(
x ⊙

(
x′ ∗ ⊙ T

(
x′′

)))
= ϑ

(
xx′ ∗

)
T

(
x′′

)
= T

(
x

〈
x′, x′′

〉)
.

Since span〈E, E〉 ∋ 1 and v and T are linear, it follows that T (x) = v(x ⊙ ζ).

Since FT need not be complemented in F , also Fτ need not be complemented in Fϑ. But, we still have

a map
(

ζ

v∗

)
∈ B

r
((

C
F

)
,
(

B
E

)
⊙ Fϑ

)
. We find

((
b x∗

x′ a

)
⊙ idFϑ

) (
ζ

v∗

) (
c

y

)
=

(
bζc + (x∗ ⊙ idFϑ

)v∗y

x′ ⊙ ζc + (a ⊙ idFϑ
)v∗y

)
, (5.2)

so that

〈((
b1 x∗

1

x′
1 a1

)
⊙ idFϑ

) (
ζ

v∗

) (
c1

y1

)
,

((
b2 x∗

2

x′
2 a2

)
⊙ idFϑ

) (
ζ

v∗

) (
c2

y2

)〉

= c∗
1

〈
ζ, b∗

1b2ζ
〉
c2 + c∗

1

〈
ζ, b∗

1

(
x∗

2 ⊙ idFϑ

)
v∗y2

〉
+

〈(
x∗

1 ⊙ idFϑ

)
v∗y1, b2ζ

〉
c2

+
〈(

x∗
1 ⊙ idFϑ

)
v∗y1,

(
x∗

2 ⊙ idFϑ

)
v∗y2

〉
+ c∗

1

〈
x′

1 ⊙ ζ, x′
2 ⊙ ζ

〉
c2 + c∗

1

〈
x′

1 ⊙ ζ, (a2 ⊙ idFϑ
)v∗y2

〉

+
〈
(a1 ⊙ idFϑ

)v∗y1, x′
2 ⊙ ζ

〉
c2 +

〈
(a1 ⊙ idFϑ

)v∗y1, (a2 ⊙ idFϑ
)v∗y2

〉

= c∗
1τ

(
b∗

1b2

)
c2 + c∗

1

〈
T (x2b1), y2

〉
+

〈
y1, T (x1b2)

〉
c2 +

〈
y1, ϑ

(
x1x∗

2

)
y2

〉

+ c∗
1τ

(〈
x′

1, x′
2

〉)
c2 + c∗

1

〈
T

(
a∗

2x′
1

)
, y2

〉
+

〈
y1, T

(
a∗

1x′
2

)〉
c2 +

〈
y1, ϑ

(
a∗

1a2

)
y2

〉

=

〈(
c1

y1

)
,T

((
b1 x∗

1

x′
1 a1

)∗ (
b2 x∗

2

x′
2 a2

)) (
c2

y2

)〉
.

Taking appropriate sums of such expressions, we see that T is completely positive. ✷

Observation 5.4. It is crucial that we define an embedding from Fτ into Fϑ by fixing its values on 〈x, x′〉ζ.

Only if E is full, this determines an isometry on all of Fτ . And to be sure ζ exists, B has to be unital.

If B is nonunital (still E full), then instead of ζ we may look at elements 〈x, x′〉 ⊗ c + N in the GNS-

correspondence Fτ = (B ⊗ C)/N. We define Fτ → Fϑ as 〈x, x′〉 ⊗ c + N 
→ x∗ ⊙ T (x′)c. Instead of (5.2), we

consider the elements

lim
λ

(
(buλ ⊗ c + N) + (x∗ ⊙ idFϑ

)v∗y

x′ ⊙ (uλ ⊗ c + N) + (a ⊙ idFϑ
)v∗y

)

in
(

B
E

)
⊙Fϑ, where (uλ)λ∈Λ is an approximate unit in span〈E, E〉 for B. Everything in the long computation

of the proof of Theorem 5.3 goes through as before, showing that T is a strictly CPH0-map. But in this

experimental section we do not intend to be exhaustive, and stick to the simplest case where E is full over

unital B.

Appealing to Theorem 1.3, (3) ⇒ (2), and Observation 1.4(4), we get the following:

Corollary 5.5. If E is full over unital B and ϑ:Ba(E) → B
a(F ) is a strict unital homomorphism for which

there exists a linear map T : E → F such that T (ax) = ϑ(a)T (x), then each such T is a strict CPH0-map

and ϑ is a strict CPH0-dilation of the CP-map T ∗ ⊙ T .

Note that, without fixing τ , every homomorphisms ϑ is a CPH-dilation of the CP-map τ = 0. So,

CPH-dilation is meaningful only with reference to a fixed CP-map.

T need not be unique, not even up to unitary equivalence.
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Example 5.6. Let F be such that F ⊕ F ∼= F as Ba(E)–C-correspondences. If T is good enough to make

the diagram commute, then so is either map Ti sending x to T (x) in the i-component of F ⊕ F . Essentially,

given τ and ϑ, it is undetermined how FT sits inside F and even F ⊥
T for different T need not be isomorphic.

However, as usual, if we require, for given F , that the map T fulfills FT = F , then we know that up

to unitary automorphism u of F leaving ϑ invariant, there is at most one T . Note that the unitaries on

FT
∼= E ⊙ F not changing ϑ, have to commute with ϑ(Ba(E)) ∼= Ba(E) ⊙ idF. For full E, this means

u ∼= idE ⊙ υ for some automorphism υ ∈ Ba,bil(F) of the GNS-correspondence F of τ .

We see, different minimal T are distinguished by “shoving around” (with υ) the cyclic vector ζ that

occurs in T (x) = v(x ⊙ ζ). But doing so, under minimality, we get unitarily equivalent things. This gets

much more interesting in the semigroup case, to which we switch now, where this “shoving around” has

to be done compatibly with the semigroup structure. Recall that even for a single CP-map τ not between

C∗-algebras but on a C∗-algebra, it is required that the dilating map ϑ does not only dilate τ , but that

for each n the power ϑ◦n dilates the power τ◦n. In particular, we will see that the usual concept of weak

dilation of a CP-semigroup (of which CPH-dilations are a generalization) means that the corresponding

semigroup T has to leave the vector ξ fixed.

Let us begin with this situation of weak dilation, by continuing the report on results from Bhat and

Skeide [10]. We mentioned already in Section 4 that for every CP-semigroup τ on a unital C∗-algebra B, we

get the GNS-construction (E⊙, ξ⊙) consisting of a product system E⊙ and unit ξ⊙ for E⊙ that generates E⊙

and that gives back τ as τt = 〈ξt, •ξt〉. The semigroup τ is Markov if and only if the unit ξ⊙ is unital, that

is, if 〈ξt, ξt〉 = 1 for all t. Starting from a product system with a unital unit, [10] provide the following

additional ingredients:

• A left dilation vt: E ⊙ Et → E of E⊙ to a (by definition full) Hilbert module E. So, the maps ϑt: a 
→
vt(a ⊙ idt)v

∗
t define a strict E0-semigroup on B

a(E).

• A unit vector ξ ∈ E such that ξξt = ξ. It is readily verified that the triple (E, ϑ, ξ) is a weak dilation

of τ in the sense that

〈
ξ, ϑt

(
ξbξ∗

)
ξ
〉

= τt(b).

In other words, if we define the projection p := ξξ∗ ∈ Ba(E) and identify B with the corner ξBξ∗ =

pBa(E)p of Ba(E), then pϑt(a)p = τt(pap) ∈ Ba(E).

If (E⊙, ξ⊙) is the GNS-construction, then the dilation constructed in [10] is minimal in the sense that

ϑR+
(ξBξ∗) generates E out of ξ. Such a minimal dilation is unique up to suitable unitary equivalence.

Now, if we define Tt(x) := xξt, we see that the diagram

B τt B

Ba(E)
ϑt

〈x,•x′〉

B
a(E)

〈Tt(x),•Tt(x′)〉 (5.3)

commutes for all x, x′ ∈ E and all t ∈ R+. The special property of the dilation from [10] is the existence

of the unit vector ξ ∈ E fulfilling ξξt = ξ, that is, Tt leaves ξ fixed. But for that the diagram commutes,

effectively just any left dilation vt will do. For any product system E⊙, any unit ξ⊙ and any left dilation

vt: E ⊙ Et → E to a full Hilbert B-module E (so that all Et are necessarily full, too), the formulae

τt := 〈ξt, •ξt〉, ϑt := vt(• ⊙ idt)v
∗
t , and Tt(x) := xξt provide us with a strict CPH0-dilation of τt. For this it

is not necessary that the τt form a Markov semigroup. Of course, also the corresponding Tt form a (strict)

CP-semigroup (which is Markov if and only if τt is Markov).
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Definition 5.7. An E0-semigroup ϑ on Ba(E) for a full Hilbert B-module E is a CPH0-dilation of a CP-

semigroup τ on B if there exists a CPH0-semigroup T on E making Diagram (5.3) commute for all t ∈ R+.

(We use all variants as in Definition 5.1.)

If τt is not Markov, then [10] provide a weak dilation to an E-semigroup. But τt cannot posses a weak

dilation to an E0-semigroup. On the contrary, we see that τt can possess a CPH0-dilation:

Observation 5.8. Finding a strict CPH(0)-dilation for a CP-semigroup τ , is the same as finding a

CPH(0)-semigroup T associated with that τ . So, all our results from Section 4 are applicable.

1. From Corollary 4.9, we recover existence of a strict CPH-dilation. (As said, we knew this from the

stronger existence of a weak dilation in [10].)

2. But, in particular, as in the discussion following Corollary 4.9, from existence of E0-semigroups for full

product systems, we infer that every CP-semigroup, Markov or not, with full product system admits a

strict CPH0-dilation.

3. In the case of CPH0-dilations, also the notion of minimality and the results about uniqueness up to

cocycle conjugacy remain intact. It is noteworthy that for a weak E0-dilation of a (necessarily) Markov

semigroup, minimality of the weak dilation coincides with minimality of the associated CPH0-semigroup.

We see that CPH-semigroups and CPH-dilations are to some extent two sides of the same coin—a coin

that can be expressed as in the diagram of CPH-dilation in (5.3). CPH-maps put emphasis of the map

between the modules, and under suitable cyclicity requirements the remaining corners τ (if E is full) and

ϑ (if FT = F ) follow. CPH-dilations put emphasis on that there is a relation between the diagonal corners.

While the notion of CPH-dilation underlines that we are in front of a generalized dilation of a CP-semigroup

to an endomorphism semigroup (namely, where there is no longer a cyclic vector, and if it is there it need

no longer be fixed by the associated CPH-semigroup), the notion of CPH-semigroup underlines that there

is, at least under good cyclicity conditions, a single object, the CPH-semigroup, that encodes everything

and that may be studied separately.

We close by some considerations regarding situations related with CPH-dilations, which might be inter-

esting. This is not any concrete evidence, but for now mere speculation. But if some of these situations,

in the future, really will turn out to be interesting, the mutual relation between CPH-dilations and CPH-

semigroups, in particular the results of Section 4, will find their applications. After all, while so far all

publications about CPH-maps and CP-H-extendable semigroups are justified only by claiming interest “on

their own”, our considerations here, though rather speculative, are the first pointing into the direction of

potential applications.

Let us have a different look at Diagram (5.3). Note that the map K: (x, x′) 
→ K
x,x′

:= 〈x, •x′〉 is

a completely positive definite or CPD-kernel over the set E from B
a(E) to B in the sense of Barreto,

Bhat, Liebscher, and Skeide [6, Section 3.2]; see also the survey Skeide [27]. The maps Tt amount to a

transformation semigroup of the indexing set E. We may generalize CPH-dilation of a CP-semigroup τ

on B to the situation

B τt B

A
θt

K
σ,σ′

A
K

Tt(σ),Tt(σ′)

where θ is an endomorphism semigroup on a unital C∗-algebra A and where K is a fixed CPD-kernel

over S from A to B. Note, however, that this situation is not too much more general. Effectively, K has a
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Kolmogorov decomposition (E,κ) consisting of an A–B-correspondence E and a map κ: S → E such that

K
σ,σ′

= 〈κ(σ), •κ(σ′)〉 and E = span Aκ(S)B.

A natural question is if Tt extends as a map E → E (automatically a τt-map). Another question is if

A is Ba(E), and, if not, if there is an E-semigroup ϑ on B
a(E) such that the left action of θt(a) on E

is the same as ϑt applied to the operator on E given by the left action of a. (These questions are direct

generalizations of the same questions for usual dilations of CP-semigroups: Does every dilation to A give

rise to a dilation to Ba(E) where E is the GNS-correspondence of the conditional expectation?)

We also may ask, if this setting has a useful interpretation in terms of Morita equivalence. If A = Ba(E)

and if E is full, then K(E) is Morita equivalent to B. We may say, Ba(E) is strictly Morita equivalent

to M(B). The CPD-kernel somehow encodes the necessary information about the Morita equivalence trans-

form: The identification B = E∗⊙E = E∗⊙B
a(E)⊙E gives rise to the kernel Kx,x′

(a) = x∗⊙a⊙x′ = 〈x, ax′〉.
How is the transform Tt reflected in the picture of Morita equivalence? Is the Kolmogorov construction for

K
Tt(σ),Tt(σ′) in a reasonable way contained in E? Of course, Morita equivalence is invertible. Is the “inverse”

CPD-kernel L from B to A defined by L
x′,x(b) := (x′ ∗)∗ ⊙ b ⊙ x∗ = x′bx∗ of any use?

Answers to these questions will have to wait for future investigation.
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