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Abstract. Recently, the production of primordial black holes (PBHs) and secondary gravita-
tional waves (GWs) due to enhanced scalar power on small scales have garnered considerable
attention in the literature. Often, the mechanism considered to arrive at such increased
power involves a modification of the standard slow roll inflationary dynamics, achieved with
the aid of fine-tuned potentials. In this work, we investigate another well known method
to generate features in the power spectrum wherein the initial state of the perturbations is
assumed to be squeezed states. The approach allows one to generate features even in slow
roll inflation with a specific choice for the Bogoliubov coefficients characterizing the squeezed
initial states. Also, the method is technically straightforward to implement since the Bo-
goliubov coefficients can be immediately determined from the form of the desired spectrum
with increased scalar power at small scales. It is known that, for squeezed initial states, the
scalar bispectrum is strongly scale dependent and the consistency condition governing the
scalar bispectrum in the squeezed limit is violated. In fact, the non-Gaussianity parameter
f
NL

characterizing the scalar bispectrum proves to be inversely proportional to the squeezed
mode and this dependence enhances its amplitude at large wave numbers making it highly
sensitive to even a small deviation from the standard Bunch-Davies vacuum. These aspects
can possibly aid in leading to enhanced formation of PBHs and generation of secondary GWs.
However, we find that: (i) the desired form of the squeezed initial states may be challenging
to achieve from a dynamical mechanism, and (ii) the backreaction due to the excited states
severely limits the extent of deviation from the Bunch-Davies vacuum at large wave numbers.
We argue that, unless the issue of backreaction is circumvented, squeezed initial states cannot
lead to a substantial increase in power on small scales that is required for enhanced formation
of PBHs and generation of secondary GWs.
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1 Introduction

It is now almost half-a-century since it was originally argued that black holes could have
formed due to over-densities in the primordial universe [1, 2]. The investigations of such
primordial black holes (PBHs) have gained traction over the last few years with the obser-
vations of gravitational waves (GWs) from the mergers of binary black holes [3–6]. Several
current and upcoming observational efforts promise to provide constraints on the fraction of
the PBHs constituting the bulk of cold dark matter density in the current universe, a quan-
tity usually referred to as f

PBH
[7]. Motivated by these observational efforts, there has been

several attempts to build models of inflation that could generate considerable population of
PBHs over certain mass ranges (see, for example, refs. [8–12]).

It is well known that scales smaller than those associated with the cosmic microwave
background (CMB), say, with wave numbers k > 1Mpc−1, reenter the Hubble radius during
the radiation dominated epoch. If the scalar power over these small scales have enhanced
amplitudes (when compared to their COBE normalized values over the CMB scales), they
could, in principle, induce instantaneous collapses of energy densities of corresponding sizes,
thereby forming PBHs [13–15]. To achieve a higher amplitude in the inflationary scalar
perturbation spectrum (say, of the order of 10−2) at larger wave numbers, one has to suitably
model the background dynamics so that a departure from slow roll inflation arises at late
times. It has been found that, in single field models, inflationary potentials containing a
point of inflection can generate the required boost in the scalar power (see, for instance,
refs. [11, 16–18]). The inflection point in the potential leads to a transient epoch of ultra
slow roll inflation, which turns out to be responsible for the rise in the scalar power over
small scales. Other features, such as a bump or dip artificially added to the potential are
also known to boost the scalar power at larger wave numbers [19, 20]. There have also been
attempts to generate PBHs using other mechanisms such as models involving non-canonical
scalar fields [21, 22], inflation driven by multiple fields [23–27], inducing a non-trivial speed
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of sound during inflation [28–30], or a modified history of reheating and radiation dominated
era following inflation [31, 32].

Moreover, when the scalar power is boosted to large amplitudes, the second order tensor
perturbations that are sourced by the quadratic terms involving the first order scalar per-
turbations can dominate the contributions due to the original, inflationary, first order tensor
perturbations [33, 34]. In other words, the enhanced scalar power, apart from producing a
significant amount of PBHs, also leads to considerable amplification of the secondary GWs
at small scales or, equivalently, at large frequencies [35]. These GWs induced by the scalar
perturbations are expected to be stochastic and isotropic. There are several experiments and
observational surveys that constrain the dimensionless energy density of such a stochastic
gravitational wave background, say, Ω

GW
, observable today [36].

As we mentioned above, the enhancement in the scalar power over small scales can
be achieved with the aid of a brief period of departure from slow roll inflation. We should
point out here that such scenarios would also produce a strongly scale dependent bispectrum.
However, it has been shown that, in single field models of inflation wherein the deviation from
slow roll is brief, the consistency condition relating the bispectrum and the power spectrum
in the squeezed limit is indeed satisfied (in this context, see refs. [17, 37, 38]). This implies
that the magnitude of the scalar non-Gaussianity parameter, f

NL
, is at the most of order

unity over the range of wave numbers which contains enhanced power. As a result, any
corrections due to the bispectrum that has to be accounted for in the power spectrum proves
to be negligible in these models [17].

However, the aforementioned methods of modifying slow roll inflation to achieve suf-
ficient enhancement in the scalar power, and hence produce significant amount of PBHs
and secondary GWs, are known to pose certain challenges. They typically require extreme
fine-tuning of the parameters involved. Else, they may either prolong the duration of in-
flation beyond reasonable number of e-folds or alter the scalar spectral index n

S
and the

tensor-to-scalar ratio r over the CMB scales thereby leading to a tension with the constraints
from Planck data (see, for instance, refs. [11, 17]). There exists another approach to achieve
power spectra with the desired shape at small scales. The alternative method is to work
with non-vacuum, specifically, squeezed, initial states for the perturbations during inflation.
This method of evolving the perturbations with initial states other than the standard Bunch-
Davies vacuum is well known in the literature and has been discussed in various contexts (see,
for example, refs. [39–51]). These excited initial states for the perturbations can be expressed
in terms of the so-called Bogoliubov coefficients. As we shall see, the Bogoliubov coefficients
essentially provide us an independent function to introduce the desired features in the power
spectrum. However, while it is technically straightforward to arrive at the required power
spectrum with a suitable choice of the Bogoliubov coefficients, we encounter two drawbacks
with the proposed approach. On the one hand, it seems challenging to design a mechanism
that leaves the curvature perturbations in such an excited initial state. On the other hand,
we find that squeezed initial states lead to significant backreaction during the early stages of
inflation unless the state is remarkably close to the Bunch-Davies vacuum.

To illustrate these points, in this work, we shall focus on the popular lognormal shape of
amplification in the scalar power spectrum [35, 52]. In the following section, we shall briefly
describe the modes corresponding to squeezed initial states and discuss the corresponding
scalar power and bispectra. We shall consider suitable functional forms for the Bogoliubov
coefficients to produce the lognormal feature in the power spectrum and calculate the corre-
sponding scalar bispectrum analytically. We shall show that the bispectrum is significantly
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enhanced in the squeezed limit and that the consistency condition is strongly violated over
the range of wave numbers containing the lognormal feature. In other words, we find that
the cubic order non-Gaussian modifications to the scalar power spectrum can possibly dom-
inate the amplitude of the original scalar power around the feature for certain values of the
parameter that characterizes the deviations from the Bunch-Davies vacuum. In section 3,
we shall compute the observable quantities of interest, viz. f

PBH
and Ω

GW
, generated from

such an enhanced scalar power spectrum. In section 4, we shall first discuss possible mech-
anisms that can lead to the squeezed initial states for the curvature perturbation at early
times. Thereafter, we shall describe the issue of backreaction wherein we compute the energy
density associated with the perturbations evolved from squeezed initial states and compare
it against the background energy density. We argue that it is rather challenging to achieve
such specific initial states by invoking mechanisms operating prior to inflation. Moreover,
we find that the backreaction severely restricts the extent of deviation of the initial state
from the Bunch-Davies vacuum, particularly on small scales. This, in turn, implies that the
desired amplification in the power spectrum and the larger levels of non-Gaussianities cannot
be achieved in this approach unless the choice of the specific initial state is satisfactorily
justified and the issue of backreaction is overcome. We shall finally conclude in section 5
with a brief summary and outlook.

Before we proceed, we should clarify the conventions and notations that we shall adopt
in this work. We shall work with natural units such that ~ = c = 1 and set the reduced
Planck mass to beM

Pl
= (8πG)−1/2. We shall assume the background to be the spatially flat

Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element described by the scale factor a
and the Hubble parameter H. Note that η shall represent the conformal time coordinate and
an overprime shall denote differentiation with respect to η.

2 Squeezed initial states, scalar power and bispectra

In this section, we shall construct scalar power spectra with a lognormal peak from squeezed
initial states. We shall also calculate the associated scalar bispectra and utilize the result to
arrive at the corresponding non-Gaussian modifications to the power spectrum.

As far as the background dynamics is concerned, we shall have in mind the scenario
of slow roll inflation. Recall that, in such a case, while it is the combination of the nearly
constant Hubble parameter H

I
and the first slow parameter ǫ1 that determine the amplitude

of the scalar power spectrum, the first two slow roll parameters ǫ1 and ǫ2 determine the scalar
spectral index n

S
. Moreover, the tensor-to-scalar ratio r is determined by the first slow roll

parameter ǫ1. The values of these parameters can be chosen so that we achieve nearly scale
invariant scalar and tensor power spectra that are consistent with the recent constraints from
Planck over the CMB scales [53]. However, for convenience, in our calculations below, we
shall work with the de Sitter modes to describe the scalar perturbations. The modes, say,
fk(η), describing the scalar perturbations that emerge from initial conditions corresponding
to squeezed states can be expressed as [39–49, 51]

fk(η) =
iH

I

2M
Pl

√
k3 ǫ1

[

α(k) (1 + i k η) e−i k η − β(k) (1− i k η) ei k η
]

, (2.1)

where α(k) and β(k) are the so-called Bogoliubov coefficients. Note that the standard Bunch-
Davies initial conditions correspond to setting α(k) = 1 and β(k) = 0. The above modes
correspond to squeezed initial states that are excited states above the Bunch-Davies vacuum.
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We should also mention that the Bogoliubov coefficients α(k) and β(k) are not completely
independent functions, but satisfy the following constraint:

|α(k)|2 − |β(k)|2 = 1. (2.2)

This constraint arises due to the fact that the Wronskian associated with the differential
equation governing the scalar perturbations is a constant, which is determined by the initial
conditions imposed on the modes.

2.1 Power spectrum from squeezed initial states

The power spectrum of the scalar perturbations evolving from squeezed initial states can
be evaluated towards the end of inflation (i.e. as η → 0). Upon using the modes (2.1),
the resulting power spectrum can be expressed in terms of the Bogoliubov coefficients α(k)
and β(k) as follows:

P
S
(k) =

k3

2π2
|fk(η → 0)|2 = P0

S
(k) |α(k)− β(k)|2, (2.3)

where

P0
S
(k) =

H2
I

8π2M2
Pl
ǫ1

(2.4)

is the COBE normalized, nearly scale invariant spectrum with a small red tilt. Since we
are interested in the small scale features of the spectrum, for simplicity, we shall assume
that P0

S
(k) is strictly scale invariant with a COBE normalized amplitude over all the wave

numbers of our interest. We should hasten to add that introducing a small red tilt does
not affect our conclusions in the remainder of our discussion. We shall choose to work with
the following values of the primary slow roll inflationary parameters: H

I
= 4.16× 10−5M

Pl
,

ǫ1 = 10−2 and ǫ2 = 2 ǫ1. Also, note that the power spectrum is independent of an overall
phase factor and depends only on the relative phase factor between α(k) and β(k).

Let us now define δ(k) = β(k)/α(k). Then, upon using the constraint (2.2), the power
spectrum (2.3) can be written in terms of the function δ(k) as

P
S
(k) = P0

S
(k)

[ |1− δ(k)|2
1− |δ(k)|2

]

. (2.5)

For ease of modeling, we shall assume the relative phase factor between α(k) and β(k) to
be zero. We should clarify that this assumption is made just to simplify our calculations. It
can be relaxed, if needed, to model the spectrum with the phase factor taken into account.
Setting the relative phase factor to be zero essentially implies that δ(k) is real so that the
above expression for the scalar power spectrum reduces to

P
S
(k) = P0

S
(k)

{

[1− δ(k)]2

1− δ2(k)

}

. (2.6)

With the above form of the spectrum arising from squeezed initial states, we shall now
proceed to model the feature of our interest. Let us assume that the power spectrum has a
localized feature over a certain range of wave numbers, say, g(k), so that P

S
(k) is given by

P
S
(k) = P0

S
(k) [1 + g(k)] . (2.7)
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Upon comparing the above two equations, it is evident that the feature g(k) is related to δ(k)
as follows:

δ(k) =
−g(k)
2 + g(k)

(2.8)

It should be clear that we have essentially traded off the function g(k) for δ(k). In other words,
we can choose an initial squeezed state described by δ(k) to lead to the desired feature g(k)
in the power spectrum. In this work, we shall assume g(k) to be a lognormal function of the
wave number k. Such a form for the feature in the spectrum is often considered because of the
fact that, when departures from slow roll arise, many single field and two field models lead
to scalar power spectra whose shape near the peak can be roughly approximated by such a
function (see, for instance, refs. [25, 52, 54]). Also, it simplifies the calculations involved and
hence allows an easier comparison of the quantities f

PBH
and Ω

GW
against the observational

constraints [52, 55]. We shall assume that the function g(k) takes the form

g(k) =
γ

√

2π∆2
k

exp

[

− ln2(k/kf)

2∆2
k

]

, (2.9)

where γ represents the strength of the feature in the spectrum, ∆k determines the width
of the Gaussian and kf denotes the location of the peak of the lognormal distribution. It
is useful to note here that, given g(k), the Bogoliubov coefficients α(k) and β(k) can be
obtained to be

α(k) =
2 + g(k)

2
√

1 + g(k)
, β(k) =

−g(k)
2
√

1 + g(k)
. (2.10)

We should stress again that these expressions for α(k) and β(k) have been arrived at under
the assumption that their relative phase factor is zero. We should also point out that setting
γ = 0 leads to g(k) = 0, δ(k) = 0, α(k) = 1 and β(k) = 0. This recovers the standard Bunch-
Davies vacuum state and the scale invariant spectrum. Moreover, note that, for modes far
away from kf , i.e. for k ≫ kf or k ≪ kf , g(k) → 0, and we again recover the standard
Bunch-Davies vacuum state. Therefore, it should be clear that, in our scenario, it is only
modes around kf which evolve from non-vacuum initial states. Further, the strength of their
deviation from the vacuum state is proportional to the parameter γ.

In figure 1, we have plotted the scalar power spectra P
S
(k) containing a lognormal

feature with peaks located at four different wave numbers kf with suitable values for the
parameter γ. In the figure, we have also plotted the modified power spectra, i.e. P

S
(k)+P

C
(k)

[cf. eqs. (2.16) and (2.17)], that have been arrived at when the non-Gaussian modifications
are taken into account. The reason behind the specific choice of the values for the parameter γ
will become clear when we discuss the non-Gaussian modifications to spectra in a subsequent
subsection.

2.2 The associated scalar bispectrum and the non-Gaussianity parameter

We shall now proceed to calculate the corresponding scalar bispectra to eventually take into
account the non-Gaussian modifications to the power spectra. In scenarios involving slow roll
inflation, the scalar bispectrum, say, G(k1,k2,k3), is known to consist of seven contributions,
which arise from the cubic order action governing the scalar perturbations [56–58]. Of these
seven contributions, six arise due to the bulk terms in the third order action, while the seventh
arises due to a field redefinition carried out to absorb the boundary terms [59, 60]. Amongst
these contributions, in the situation of interest, it is known that the first, second, third
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Figure 1. The scalar power spectra with a lognormal shape obtained from suitably chosen squeezed
initial states have been plotted for different sets of the parameters γ and kf that determine the strength
and the location of the peaks. Note that, we have plotted the original spectra P

S
(k) (in red) as well

as the modified spectra P
S
(k)+P

C
(k) (in blue), where P

C
(k) denotes the non-Gaussian modifications

to the power spectrum [cf. eqs. (2.16) and (2.17)]. We have illustrated the spectra for the following
four values of kf : 10

5 Mpc−1 (as solid curves), 5 × 105 Mpc−1 (as dashed-dotted curves), 109 Mpc−1

(as dashed curves) and 1013 Mpc−1 (as dotted curves). We have chosen the corresponding values of γ
to be 4.5, 1.2, 5.5 × 10−4 and 4.5 × 10−8, respectively. We have set the width ∆k of the lognormal
distribution to be unity in all the cases. The features in the original spectra P

S
(k) with peaks around

109 Mpc−1 and 1013 Mpc−1 are not as discernible as those at the two other locations due to the small
values of γ. Hence, in these two cases, we have included insets to highlight the function g(k) [cf.
eq. (2.9)] instead. The parameter γ has been chosen so that, when the non-Gaussian modifications
are taken into account, all the power spectra have roughly the same amplitudes at their peaks.

and the seventh terms, say, G1(k1,k2,k3), G2(k1,k2,k3), G3(k1,k2,k3) and G7(k1,k2,k3),
dominate the contributions due to the remaining terms. Note that the three vectors k1, k2

and k3 form the edges of a triangle. As we shall discuss in the following subsection, it is the
bispectrum evaluated in the so-called squeezed limit of the triangular configuration, i.e. when
k1 → 0 and k2 ≃ k3 ≃ k, that is expected to contribute to the non-Gaussian modifications
to the power spectrum (see, for instance, refs. [61–63]).

The scalar bispectrum in slow roll inflation with squeezed initial states can be cal-
culated easily using the de Sitter modes (2.1) describing the scalar perturbations (see, for
example, refs. [42, 44, 46–49]). Since the resulting expressions are somewhat lengthy, we
relegate them to an appendix. We have listed the complete expressions for dominant con-
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tributions G1(k1,k2,k3), G2(k1,k2,k3), G3(k1,k2,k3) and G7(k1,k2,k3) in appendix A. It
is useful to note that, in the squeezed limit, the dominant contributions to the scalar bis-
pectrum at the wave number kf , corresponding to the location of the peak in the power
spectrum P

S
(k), can be obtained to be

lim
k1≪kf

k31 k
3
f [G1(k1,kf ,−kf) +G3(k1,kf ,−kf)] = k31 k

3
f [G1(kf) +G3(kf)]

≃
H4

I

16M4
Pl
ǫ1

kf
k1

γ
√

2π∆2
k



2 +
γ

√

2π∆2
k



 ,

(2.11a)

lim
k1≪kf

k31 k
3
f G2(k1,kf ,−kf) = k31 k

3
f G2(kf)

≃
H4

I

16M4
Pl
ǫ1

kf
k1

γ
√

2π∆2
k



2 +
γ

√

2π∆2
k



 ,

(2.11b)

lim
k1≪kf

k31 k
3
f G7(k1,kf ,−kf) = k31 k

3
f G7(kf)

≃
H4

I
ǫ2

16M4
Pl
ǫ21



1 +
γ

√

2π∆2
k



 . (2.11c)

In the above expressions, as is usually done in the context of slow roll inflation, we have
combined the contributions G1(kf) and G3(kf), as they have a similar dependence on the wave
numbers (see, for instance, ref. [60]). We should clarify that the above expressions are the
dominant contributions for the values of γ we have worked with. The striking property of the
contributions G1(kf)+G3(kf) and G2(kf) is their dependence on the squeezed mode as 1/k1.
This property of the bispectrum in case of squeezed initial states is well known [44, 46, 48].
On the other hand, note that, G7(kf) is independent of k1 in the limit k1 ≪ kf . Therefore,
at the leading order, the bispectrum around kf is inversely proportional to the squeezed
mode k1.

Consider an observational survey extending over a certain range of scales such as, say, the
measurements of the anisotropies in the CMB, which spans a few decades in wave numbers.
In such a case, we can calculate the squeezed limit of the bispectrum assuming k1 to be the
smallest wave number within the range. In practice, this implies that 1 . k/k1 . 104 over the
CMB scales. Therefore, for squeezed initial states, the bispectrum in the squeezed limit will be
proportionately large and, hence, the associated non-Gaussianity parameter can be expected
to be of a similar order. Note that, in this work, we are interested in examining phenomena
leading to formation of PBHs and generation of secondary GWs which occur at much smaller
scales. For such observations spanning several decades in wave numbers, it seems reasonable
again to choose k1 to be the smallest observable wave number. Therefore, in our calculations,
we shall set the value of squeezed mode to be k1 ≃ 10−4Mpc−1, which roughly corresponds
to the Hubble scale today. Such a choice can clearly lead to a considerable enhancement in
the amplitude of the scalar bispectrum and the corresponding non-Gaussianity parameter at
the small scales of interest. Moreover, we should mention that, because of this boost in the
amplitude, the consistency condition relating the scalar bispectrum to the power spectrum
in the squeezed limit can be expected to be violated over these scales.
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10−8
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Figure 2. The dominant contributions to the dimensionless scalar bispectra in the squeezed limit, viz.
k31 k

3 times G1(k) +G3(k), G2(k) and G7(k), have been plotted (in red, blue and green, respectively)
for non-vacuum initial states which lead to scalar power spectra with lognormal peaks. We have
plotted the contributions to the dimensionless bispectra for the four sets of values for the parameters
γ and kf (as solid, dashed-dotted, dashed and dotted curves) we had considered in the previous figure.
It is clear that the bulk terms GC(k) with C = {1, 2, 3} dominate the contributions to the bispectrum.
In contrast, as expected, the boundary term G7(k) has a much smaller amplitude and mimics the
shape of the power spectrum.

In figure 2, we have plotted the behavior of the bispectrum in the squeezed limit for
the four set of values for the parameters of γ and kf we considered earlier. Notice that the
amplitudes of the bispectra are significantly enhanced around the locations of the peaks in
the power spectra. The amplitudes retain their slow roll values away from the peaks. The
amplification of several orders of magnitude around kf arises evidently due to the dependence
of the bispectrum on the squeezed mode as 1/k1, as we discussed above. We should stress
that this amplification occurs even for a relatively small value of the parameter γ, which
quantifies the deviations from the Bunch-Davies vacuum. We find that, for a larger k, we
require a smaller value of γ to achieve the same level of enhancement of the bispectrum. In
other words, the bispectrum becomes increasingly sensitive to deviations from the standard
vacuum state at smaller scales.

The non-Gaussianity parameter associated with the scalar bispectrum G(k1,k2,k3) is
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k1/k3
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k
2
/k

3

-1.5317

-0.0177

1.4963

Figure 3. The non-Gaussianity parameter log |f
NL

| has been plotted as a density plot in the k1/k3–
k2/k3 plane, for the first of the four sets of parameters we had introduced in figure 1. We have set
k3 = kf and varied k1/k3 over the range [5 × 10−4, 1] in arriving at this figure. Note that the f

NL

parameter has a largely ‘local’ shape, with its maximum amplitude (in red) occurring in the so-called
flattened limit corresponding to the left edge of the triangle.

defined as [60, 64]

f
NL
(k1,k2,k3) = −10

3

1

(2π)4
k31 k

3
2 k

3
3 G(k1,k2,k3)

×
[

k31 PS
(k2)PS

(k3) + two permutations

]−1

. (2.12)

The dimensionless parameter f
NL
(k1,k2,k3) can be calculated using the expressions (2.7),

(2.9) and (A.1) for the power spectrum, the function g(k) and the bispectrum. In order to
understand the complete shape of the scalar bispectrum, in figure 3, we have illustrated the
non-Gaussianity parameter as a density plot in the k1/k3–k2/k3 plane for the first of the
four sets of parameters for γ and kf we had introduced earlier (see the caption of figure 1).
The figure clearly illustrates the fact that the non-Gaussianity parameter has a largely ‘local’
shape. As is well known, its amplitude is the largest in the flattened limit, i.e. along the
line k2/k3 = 1 − k1/k3 which describes the left edge of the triangle in the figure 3. This
shape evidently depends on the choice of k3, which in this illustration has been set to be the
location of the peak kf .

Let us now turn to consider the behavior of the parameter f
NL

in the squeezed limit. In
such a limit, on utilizing the results (2.11), we obtain the value of f

NL
at the location of the

peak in the power spectrum P
S
(k) to be

lim
k1≪kf

fSL

NL
(k1,kf ,−kf) = fSL

NL
(kf) ≃ −5 ǫ1

6

kf
k1

γ
√

2π∆2
k





2 + γ√
2π∆2

k

1 + γ√
2π∆2

k



 . (2.13)

In figure 4, we have plotted the behavior of f
NL
(k) in the squeezed limit for the four sets of

parameters we have mentioned earlier. We find that, for these choices of the parameters, the
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Figure 4. The non-Gaussianity parameter f
NL

(k) in the squeezed limit has been plotted (in red) for
the four set of parameters (as solid, dashed-dotted, dashed and dotted curves) leading to lognormal
spectra we had considered in the first two figures. We have also plotted the quantity fCR

NL
(k) (in blue)

for all the cases to illustrate the fact that the consistency condition is strongly violated around the
region of the peaks in the power spectra.

value of f
NL

is of order 107 around kf , while it has the slow roll value of 10−2 away from kf .
Also, we find that the consistency condition — viz. that fCR

NL
(k) = 5 [n

S
(k)− 1] /12, where

n
S
(k) = 1 + d lnP

S
(k)/d ln k is the scalar spectral index — is strongly violated around the

lognormal peak as expected, while it is satisfied sufficiently far away from the peak. It has
been argued that any calculation of f

NL
has to account for the so-called local observer effect

(in this context, see, for instance, refs. [65, 66]). This essentially means that, to arrive at the
observable value of the non-Gaussianity parameter in the squeezed limit, we need to subtract
the part of f

NL
satisfying the consistency relation from its total value. In the scenario of

interest, around the peaks in the power spectra, the quantity fCR

NL
(k) is negligible compared

to the magnitude of the f
NL

obtained from the squeezed initial states. The main conclusions
we can draw from the above considerations are twofold. Firstly, for perturbations evolved
from non-vacuum initial states, the non-Gaussianity parameter f

NL
is inversely proportional

to the value of squeezed mode. Hence, it has a rather large amplitude over small scales
for the values of the parameter γ we have considered. Secondly, the amplitude of f

NL
is

highly sensitive to even minor deviations from standard vacuum state. As we shall discuss in
the following subsection, the large value for the non-Gaussianity parameter in the squeezed
limit leads to substantial modifications to the original power spectrum. This should be
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contrasted with scenarios involving, say, ultra slow roll inflation, wherein the consistency
condition governing the scalar bispectrum is satisfied in the squeezed limit and hence the
non-Gaussian corrections to the power spectrum prove to be either negligible or identically
zero [17, 38].

2.3 Non-Gaussian modifications to the scalar power spectrum

Having arrived at the bispectrum and the corresponding non-Gaussianity parameter, let us
now proceed to calculate the non-Gaussian modification to the scalar power spectrum [17,
62, 63, 67, 68]. Recall that the non-Gaussianity parameter f

NL
is usually introduced through

the following relation (see ref. [69]; also see, for example, refs. [60, 64]):

R(η,x) = RG (η,x)− 3

5
f
NL

[

RG (η,x)
]2
, (2.14)

where R is the scalar perturbation and RG denotes the Gaussian contribution. In Fourier
space, this relation can be written as (see, for instance, refs. [60, 63])

Rk = RG

k − 3

5
f
NL

∫

d3p

(2π)3/2
RG

p RG

k−p. (2.15)

If one uses this expression for Rk and evaluates the corresponding two-point correlation
function in Fourier space, one obtains that [17, 62, 63]

〈R̂k R̂k′〉 = 2π2

k3
δ(3)(k + k′)

[

P
S
(k) +

(

3

5

)2 k3

2π
f2
NL

∫

d3p
P

S
(p)

p3
P

S
(|k − p|)
|k − p|3

]

, (2.16)

where P
S
(k) is the original scalar power spectrum defined in the Gaussian limit, while the

second term represents the leading non-Gaussian modifications. It can be easily shown that
the non-Gaussian modification to the scalar power spectrum, say, P

C
(k), can be expressed

as

P
C
(k) =

(

12

5

)2

f2
NL

∫ ∞

0
ds

∫ 1

0

dd

(s2 − d2)2
P

S
[k (s+ d)/2]P

S
[k (s− d)/2]. (2.17)

We should clarify a few points at this stage of our discussion. We should mention that
the quantity f

NL
has been assumed to be local in arriving at the above expression for the

correction to the power spectrum P
C
(k). Therefore, we shall work with the value f

NL
in

the squeezed limit when calculating the non-Gaussian modifications to the power spectrum.
(Recall that, around kf , the scalar bispectrum had a largely ‘local’ shape, as illustrated in
figure 3.) Moreover, the parameter f

NL
in the squeezed limit in our scenario is highly scale

dependent in the sense that it is large around kf (for the values of the parameter γ we
have worked with), but is completely negligible away from it. Hence, when calculating the
modifications to the spectrum, in eq. (2.17), we have assumed f

NL
to be a function of k. In

figure 1, we have plotted the modified spectra, viz. P
S
(k)+P

C
(k), as well as the spectra P

S
(k)

we had originally constructed. Note that the non-Gaussian modifications P
C
(k) dominate

at small scales around the peaks in the original power spectra. In fact, it is due to the
dependence of the non-Gaussianity parameter f

NL
on the squeezed mode as 1/k1 that we

have been able to achieve the required boost in the power spectrum [of O(10−2)] at small
scales. Also, we should point out that, given a γ, the amplification due to the non-Gaussian
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modifications are larger at a higher kf . It is due to this reason that, for a larger kf , we have
worked with a smaller value of γ. We have chosen these parameters so that, when the non-
Gaussian modifications are taken into account, the modified power spectra have comparable
amplitudes at their maxima despite the varying amplitudes of the peaks in their original
spectra. We should clarify that the large, cubic order, non-Gaussian corrections do not lead
to a breakdown of the perturbation theory since the scalar power spectra are of O(10−2)
even when the modifications due to the scalar bispectra have been taken into account (cf.
figure 1).

It is worthwhile to highlight another related point at this stage of our discussion. We
find that the widths of the modified power spectra are larger than the widths of the original
power spectra which were dictated by the parameter ∆k that we have set to unity. This is
because of the nature of the integrand involved that describes the non-Gaussian correction
given in eq. (2.17). The appearance of the integration variables s and d in the arguments of
the original power spectrum as well as the limits of the integrals involved contribute to the
widening of the peak and a slight shift of power towards larger wave numbers in the final
modified spectra.

3 Formation of PBHs and generation of secondary GWs

In this section, we shall calculate the observable quantities f
PBH

(M) and Ω
GW

(f) using the
scalar power spectra with the non-Gaussian corrections taken into account.

Given a primordial scalar power spectrum P
S
(k), there exists a standard procedure to

arrive at the corresponding f
PBH

(M) characterizing the fraction of PBHs constituting dark
matter today. Let us quickly recall the essential points in this regard. We shall focus on
scales that reenter the Hubble radius during the radiation dominated epoch. In such a case,
the observable f

PBH
can be expressed in terms of the mass M of the PBHs as follows (in this

context, see the reviews [70–73]):

f
PBH

(M) =
( γ∗
0.2

)3/2
(

β(M)

1.46× 10−8

) (

g∗,k
g∗,eq

)−1/4 ( M

M⊙

)−1/2

, (3.1)

where β(M) denotes the fraction of the energy density of PBHs to the total energy density
of the universe at the time of their formation. The quantities g∗,k and g∗,eq are the number
of effective relativistic degrees of freedom at the time of formation of the PBHs and at
matter-radiation equality, respectively, while γ∗ denotes the efficiency of the process leading
to the formation of black holes. We shall set g∗,k = 106.75 , g∗,eq = 3.36 and γ∗ = 0.2, as is
often done in this context. If we now assume that perturbations beyond a threshold density
contrast, say, δc, are responsible for the formation of PBHs, then the function β(M) is given
by

β(M) ≃ 1

2

[

1− erf

(

δc
√

2σ2(R)

)]

, (3.2)

where erf(z) is the error function. The variance σ2(R) is related to the primordial scalar
power spectrum P

S
(k) through the integral

σ2(R) =
16R4

81

∫ ∞

0
d lnk k4 P

S
(k)W 2(k,R), (3.3)
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where W (k,R) is a window function with a smoothening radius R, which we shall assume to
be a Gaussian of the form W (k R) = e−(k2 R2)/2. Note that the length scale R is related to
the mass M of PBHs through the expression

R = 4.72× 10−7
( γ

0.2

)−1/2
(

g∗,k
g∗,eq

)1/12 ( M

M⊙

)1/2

Mpc . (3.4)

Therefore, given a power spectrum P
S
(k) we can first compute the variance σ2(R). We

should clarify that we shall make use of the scalar power spectrum with the non-Gaussian
modifications taken into account, i.e. we shall consider P

S
(k) + P

C
(k). We can then make

use of the above relation between R and M and the expression for β(M) to finally arrive at
f
PBH

(M) utilizing eq. (3.1). It is well known that the threshold of the density contrast δc is
a crucial parameter since f

PBH
is exponentially sensitive to it. The value of δc is expected

to lie in the range 0.3–0.65 (see refs. [74–77], see however the recent discussion [78]). For
the purposes of illustration, we shall work with δc = 1/3 and 0.5. We should clarify that
the exact value of this parameter does not affect the primary conclusions we draw about the
mechanism of generating PBHs from squeezed initial states.

As we mentioned, the amplification of scalar power at small scales invariably produces
secondary GWs of significant strength as they are sourced by the second order scalar per-
turbations [33, 34, 79, 80]. With the scalar power spectra obtained from squeezed initial
states, we shall also proceed to calculate the dimensionless energy density Ω

GW
of the sec-

ondary GWs today as a function of the frequency, say, f . The calculations involved are well
understood [52, 81–84]. We should mention here that, as we had done in the calculation of
f
PBH

(M), we shall take into account the non-Gaussian modifications to the power spectrum
to arrive at Ω

GW
(f) [62, 63]. Recall that we are focusing on scales that reenter the Hub-

ble radius during the radiation dominated epoch. In such a case, the second order tensor
perturbations induced by the scalar perturbations oscillate in the sub-Hubble regime. Upon
averaging over small time scales corresponding to these oscillations, the power spectrum of
the secondary tensor perturbations, say, Ph(k, η), can be expressed in terms of the scalar
power spectrum as follows (see, for instance, refs. [82, 85–87]):

Ph(k, η) =
2

81 k2 η2

∫ ∞

0
dv

∫ 1+v

|1−v|
du

[

4 v2 − (1 + v2 − u2)2

4u v

]2

P
S
(k v)P

S
(k u)

×
[

I2
c (u, v) + I2

s (u, v)
]

, (3.5)

where the functions Ic(u, v) and Is(u, v) are given by [81, 82]

Ic(v, u) = − 27π

4 v3 u3
Θ
(

v + u−
√
3
)

(v2 + u2 − 3)2, (3.6a)

Is(v, u) = − 27

4 v3 u3
(v2 + u2 − 3)

[

4 v u+ (v2 + u2 − 3) log

∣

∣

∣

∣

3− (v − u)2

3− (v + u)2

∣

∣

∣

∣

]

(3.6b)

with Θ(z) denoting the step function. The dimensionless energy density associated with the
secondary GWs Ω

GW
(k, η), evaluated at late enough times when the modes are inside the

Hubble radius during the radiation dominated epoch, is given by

Ω
GW

(k, η) =
1

24

(

k

aH

)2

Ph(k, η). (3.7)
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Figure 5. The quantity f
PBH

(M) (on the left, for δc = 1/3 and 0.5 in red and blue, respectively) and
the dimensionless energy density of GWs Ω

GW
(f) (on the right) have been plotted for the cases of the

four lognormal spectra with the non-Gaussian modifications to the power spectrum taken into account
that were illustrated in figure 1. The various constraints on f

PBH
(M) from different observations have

also been indicated (on top of the figure on the left) over the corresponding mass ranges. We have
also included the sensitivity curves of the various ongoing and upcoming observational missions of
GWs (as shaded regions in the top part of the figure on the right). The intersections of the curves
with the shaded regions translate to constraints on the parameter γ which determines the extent of
deviation of the initial state from the Bunch-Davies vacuum.

The observable quantity of interest, viz. the energy density of secondary GWs evaluated
today Ω

GW
(f) (with f being the frequency associated with the wave number k), can be

written in terms of the quantity Ω
GW

(k, η) above as

h2Ω
GW

(k) ≃ 1.38× 10−5
( g∗,k
106.75

)−1/3
(

Ωr h
2

4.16× 10−5

)

Ω
GW

(k, η), (3.8)

where Ωr denotes the present day dimensionless energy density of relativistic matter and
h is the usual parameter introduced to describe the Hubble parameter today as H0 =
100h km s−1Mpc−1.

In figure 5, we have plotted the quantities f
PBH

(M) and Ω
GW

(f) for the four power
spectra we have obtained from squeezed initial states with the non-Gaussian modifications
taken into account [cf. eqs. (2.16) and (2.17)]. We have also included the constraints on
f
PBH

(M) that are presently available from different datasets in the various mass ranges
(see refs. [70, 88]; for recent discussions of the constraints over specific mass ranges, see
refs. [89, 90]). Moreover, we have illustrated the sensitivity curves of the various GW ob-
servatories and missions (in this context, see ref. [36]). As expected, the enhancements in
the scalar power on small scales lead to proportional amplifications in f

PBH
(M) and Ω

GW
(f)

over the corresponding masses and frequencies. Also, due to the nature of the integrals that
determine Ph(k, η) [cf. eq. (3.5)], the peaks of Ω

GW
(f) are considerably wider when com-

pared to the peaks of the scalar power spectra. As can be seen from the figure, the predicted
f
PBH

(M) and Ω
GW

(f) curves already intersect the various constraints and sensitivity curves.
These constraints immediately translate to bounds on the parameter γ which determines
the strength of the feature in the scalar power spectra. Recall that, the Bogoliubov coeffi-
cient β(k) is proportional to γ [cf. eq. (2.10)]. So, in our scenario of PBHs and secondary
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GWs produced from excited initial states, evidently, the limits on f
PBH

and Ω
GW

directly
constrain the non-vacuum nature of the states from which the perturbations evolve.

4 Challenges associated with squeezed initial states

In the last two sections, we have illustrated that a specific choice for the Bogoliubov coeffi-
cient β(k) can lead to the desired lognormal peak in the scalar power spectrum [cf. eqs. (2.7),
(2.9) and (2.10)]. We have also shown that, since the cubic order non-Gaussian corrections
prove to be significant in the squeezed limit in the non-vacuum initial states, it is possible to
choose a relatively small value for β(k) to arrive at large peaks in the effective scalar power
spectrum. We have also examined the possible imprints of such power spectra on the extent
of PBHs produced and the secondary GWs generated on small scales. In this section, we
shall discuss some of the challenges associated with squeezed initial states.

4.1 Possible mechanisms to generate squeezed states

The first task before us is to justify the choice of the squeezed initial states of our interest.
In other words, we need to examine whether there exist mechanisms that can generate the
specific form of β(k) that we have considered. Note that, we have assumed that the curva-
ture perturbation is in the non-vacuum initial state at some early time, say, ηi, when the
smallest wave number of our interest, viz. k1 ≃ 10−4Mpc−1, is adequately inside the Hubble
radius. In this subsection, we shall discuss mechanisms that can possibly excite the curvature
perturbations to such an initial state and the challenges associated with them.

The first possibility would be to consider effects due to high energy physics. For instance,
since the large scale modes emerge from sub-Planckian length scales during the initial stages
of inflation, it has been argued that trans-Planckian physics may modify the dynamics of the
perturbations during the early stages (for the original discussion, see ref. [39]). But, in the
absence of a viable model of quantum gravity to take into account the high energy effects,
the equations describing the perturbations are often modified by hand. The modifications
essentially introduce an energy scale into the equations of motion governing the perturbations,
beyond which the new physics operates, while ensuring that the standard equations are
satisfied at lower energies. One of the approaches that has been extensively examined in this
context involves modifying the dispersion relation governing the perturbations (for example,
see the review [48]). In this context, while the super-luminal dispersion relations are known
to leave the primordial spectrum largely unaffected, the sub-luminal dispersion relations have
been shown to lead to significant production of particles resulting in stronger features in the
power spectrum [48]. However, the produced particles result in significant backreaction (a
point which we shall discuss in the following subsection) making them unviable. We also
find that, in some of the approaches, the power spectrum is modified on large scales, since
they emerge from the sub-Planckian length scales at high energies (see, for instance, ref. [91]).
Another popular method that has been considered to take into account the high energy effects
involves the imposition of non-trivial initial conditions on the standard modes as they emerge
from the Planckian regime [92]. Such an approach is known to only result in oscillations in
the power spectrum over a wide range of scales [93, 94].

Another possibility that can leave the curvature perturbation in an excited state during
the early stages of inflation would be to consider an initial epoch of non-inflationary phase.
Often, one either considers a radiation dominated phase or an initial period wherein the scalar
field is rolling rapidly (in this context, see, for instance, refs. [95, 96]; for recent discussions,
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see refs. [97, 98]). Again, in such cases, the power spectrum seems to be modified only on
large scales and it often displays a sharp drop in power over these scales. Moreover, we should
add that, in such scenarios, it is possible that a certain range of wave numbers would have
never been inside the Hubble radius. Therefore, there can arise some ambiguity in the initial
conditions that are to be imposed on these modes. Moreover, we should mention that, if such
a pre-inflationary mechanism is to excite the state of the curvature perturbation at the small
wave numbers kf of interest, the mechanism should involve changes that occur as rapidly as
k−1
f (for a recent related discussion, see, for example, ref. [99]). Yet another possibility would

be to consider two stages of slow roll inflation with either a brief departure from slow roll or
even a break from inflation sandwiched between them. But, these are exactly the scenarios
of ultra slow roll and punctuated inflation that have been considered to generate increased
power on small scales so as to lead to enhanced formation of PBHs and higher strengths
of secondary GWs [11, 16–18]). Apart from single field models, as had mentioned in the
introductory section, there also exist inflationary scenarios involving two fields which can
lead to a rapid rise in power on small scales [25, 27, 100]. Often, in this context, there arises
a sharp turn in the trajectory of the fields, essentially giving rise to particle production and
therefore a non-trivial form of β(k) (in this context, see the discussion in ref. [27]). However,
these models involve a certain level of fine tuning of the field trajectory and the form of β(k)
will be dependent on the details of the model. Importantly, we should mention that, in such
cases, the features are generated as the modes of interest leave the Hubble radius during the
epochs of deviations from slow roll. Actually, this is true of any inflationary scenario. This
implies that it is difficult to generate features on small scales as we desire by inducing or
introducing transitions in or between inflationary phases at very early stages.

In fact, there exists one more possibility. One can treat the curvature perturbation that
we are considering as associated with a test field in an inflationary regime driven by another
source (for scenarios wherein the dominating background is driven by another scalar field,
see, for instance, refs. [101, 102]; for situations wherein the perturbations are dominated by,
say, the Higgs field, see refs. [82, 103]). The source that dominates the background dynamics
either prior to inflation or in the early stages of the inflationary regime can excite the modes
associated with the curvature perturbations leaving it in a squeezed state. Let us illustrate
the points we wish to make in this regard by starting with the aid of an example. Consider
a situation wherein the Fourier mode ψk of a quantum field satisfies an equation of motion
of the following form:

ψ′′
k +

(

k2 + µ2 k20 η
2
)

ψk = 0, (4.1)

where µ and k0 denote scales associated with the system. The solution to such a differential
equation can be expressed in terms of the parabolic cylinder functions and by comparing the
asymptotic forms of the solutions at early and late times, one can immediately show that the
number of particles produced in such a case is given by (in this context, see the discussions
in the recent work [99])

|β(k)|2 = e−k2/(µk0). (4.2)

In fact, such a result should not come as a surprise. One encounters an equation of motion of
the above form when one considers a complex scalar field that is evolving in the background
of a constant electric field in flat spacetime, leading to the well known Schwinger effect [104].
Note that the above Bogoliubov coefficient (to be precise, its modulus squared) is a Gaussian,
which is close to the form that we desire. However, since it is not of the lognormal shape, it
is peaked at k = 0 rather than at a non-zero k. Moreover, it has a maximum value of unity,
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whereas we require an additional parameter (such as γ) to be able to tune the amplitude
of β(k).

Let us now discuss mechanisms that can possibly help us achieve the desired β(k) in
a FLRW universe. A good starting point seems to be to construct situations in which the
equation governing either the curvature perturbation or a test scalar field has the same form
as eq. (4.1) above so that we can at least arrive at a Gaussian form for |β(k)|2. Recall that
the Mukhanov-Sasaki variable vk associated with the curvature perturbation satisfies the
equation

v′′k +

(

k2 − z′′

z

)

vk = 0, (4.3)

where z =
√
2 ǫ1MPl

a. Evidently, we require z′′/z = −µ2 k20 η2 if we are to achieve the
|β(k)|2 mentioned above [cf. eq. (4.2)]. In such a case, the generic solution to z can be
immediately expressed in terms of a linear combination of the parabolic cylinder functions
(as the modes vk themselves can be). But, we find that the generic solution for z does
not remain positive definite, which is unacceptable (due to the form of z quoted above).
Therefore, the proposal does not seem viable. If we now instead consider a massive, test
scalar field of mass µ in a radiation dominated universe, one arrives at an equation governing
the modes exactly as in eq. (4.1). Interestingly, one indeed obtains a spectrum of particles
as in eq. (4.2) when the evolution of massive scalar fields are examined in certain scenarios
involving radiation dominated universes (in this context, see ref. [105]). If such a scenario
is acceptable, there still remains the task of converting the Gaussian distribution for |β(k)|2
into a lognormal distribution. Remarkably, if we replace k2 by f2(k) with f(k) = ln (k/kf),
we indeed arrive at a |β(k)|2 which has a lognormal shape. However, the challenge is to
justify the replacement of k2 by a generic function f2(k). At first sight this seems possible if
we modify the dispersion relation so that ω2(k) = k2 is replaced by ω2(k) = f2(k). However,
note that, since the field is evolving in a FLRW universe, such a modified dispersion relation
would apply to the physical wave number k/a rather than to k itself (in this context, see
the discussion in ref. [48]). Clearly, such a choice modifies the equation (4.1) and hence
the solutions completely. More importantly, as we pointed out, it has been established that
strong modifications to the dispersion relation will lead to a copious amount of particle
production which backreacts significantly on the background (in this context, also see the
following subsection on the issue of backreaction). The above set of arguments suggests that
it is rather difficult to construct mechanisms that lead to the form of β(k) that we have
worked with.

4.2 Limits due to backreaction

In this subsection, we shall discuss another challenge that arises with the squeezed initial
states we have worked with. When the perturbations are evolved from non-vacuum initial
states, we must ensure that the energy density associated with the excited states is less than
the energy density driving the inflationary background. If the densities become comparable,
then, evidently, the perturbations can start affecting the background dynamics. This issue is
often referred to as the backreaction problem (see, for instance, refs. [41, 48, 50, 106–108]).
We shall now arrive at constraints on the parameter γ that determines the strength of the
squeezed states by demanding that the issue of backreaction is avoided in the situation we
are considering.

The task ahead is to calculate the energy density associated with the curvature pertur-
bations when they are assumed to be in a squeezed initial state. We find that the energy
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density associated with the curvature perturbations in the de Sitter limit that we are con-
sidering can be expressed as follows:

ρ
R

= ρ(1)
R

+ ρ(2)
R

≃ 1

2π2 a4

∫ ∞

−η−1

dk k3 |β(k)|2

+
H2

I

8π2 a2

∫ −η−1

0
dk k

{

2 |β(k)|2 − [α(k)β∗(k) + α∗(k)β(k)]

}

. (4.4)

where β(k) is the Bogoliubov coefficient which indicates the extent of deviation from the
Bunch-Davies vacuum. There are a couple of clarifying remarks we should make regarding
this expression. Firstly, in arriving at the above expression, we have subtracted the contri-
bution due to the Bunch-Davies vacuum, which, upon regularization, is known to correspond
to (see, for example, refs. [109, 110])

ρBD

R
=

61H4
I

960π4
. (4.5)

Clearly, this is sub-dominant to the background energy density which behaves as ρ
I
=

3H2
I
M2

Pl
(since H

I
/M

Pl
< 10−5). Secondly, it should be evident that we have divided the

total energy density into two parts, with the first part ρ(1)
R

arising from the contributions due

to the modes that are in the sub-Hubble domain at any instance, while the second part ρ(2)
R

corresponds to modes that are in the super-Hubble domain. At early times, when all the
modes are well inside the Hubble radius, it is the first part that dominates (in this context,
see, for instance, refs. [41, 49]). This result can be easily understood in simple instances
such as, say, power law inflation. In such cases, as is well known, the curvature perturba-
tion behaves in a manner similar to that of a massless scalar field. The expression ρ(1)

R
is

essentially the same as the energy density of a massless scalar field in the sub-Hubble limit.
Note that the energy density ρ(1)

R
behaves as a−4. In other words, the energy density is the

largest at early times when the initial conditions are imposed on the modes of interest in the
sub-Hubble regime. We shall soon see that this behavior severely restricts the amplitude of
the parameter γ.

As we discussed above, it is the sub-Hubble contribution ρ(1)
R

that dominates in the
expression (4.4) for ρ

R
at early times. Recall that, in the scenario we are considering, β(k)

is determined by the lognormal function g(k) [cf. eqs. (2.9) and (2.10)] that describes the
feature in the scalar power spectrum. Since g(k) is a Gaussian with the strength γ at its
maximum [cf. eq. (2.9)], we have g(k) . γ for all k. We have always worked with values such
that γ . O(1). Therefore, we can approximate the expression for β(k) that is to be used in
the integral describing ρ(1)

R
[cf. eq. (4.4)] as β(k) ≃ −g(k)/2. This simplifies the evaluation

of ρ(1)
R

, and we obtain the energy density of the perturbations in terms of the parameters γ,
kf and ∆k to be

ρ
R
≃ ρ(1)

R
≃ γ2 e4∆

2

k

16π5/2∆k

(

kf
a

)4

. (4.6)

We should stress again that we have subtracted the contribution due to the Bunch-Davies
vacuum in arriving at this expression. Due to this reason, we should also add that no
regularization is required to arrive at the above result. Hence, ρ

R
→ 0 when γ → 0, as

expected. We find that the relative difference between the above approximate estimate of
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ρ(1)
R

[obtained by assuming that β(k) ≃ −g(k)/2] and the exact estimate is at most of O(1).
Therefore, for convenience, we shall use the approximate estimate to arrive at the bound on
the parameter γ in our scenario.

For the backreaction to be negligible in our scenario, we require that ρ
R
≪ ρ

I
, where,

as we mentioned, ρ
I
= 3H2

I
M2

Pl
is the energy density of the background during inflation.

This requirement leads to the condition

γ2 e4∆
2

k

∆k

(

kf
aH

I

)4

≪ 48π5/2
(

M
Pl

H
I

)2

. (4.7)

During inflation, the value of the Hubble parameterH
I
is related to the tensor-to-scalar ratio r

through the relation (H
I
/M

Pl
)2 ≃ r A

S
, where A

S
≃ 2.11 × 10−9 is the COBE normalized

scalar amplitude over the CMB scales. Since the energy density ρ
R

is the largest at early
times, let us evaluate it at the time when the smallest wave number of interest, say, kmin,
leaves the Hubble radius, i.e. when kmin = aminHI

. At such a time, as we have set ∆k = 1,
the above inequality reduces to (upon ignoring the constant coefficients)

γ ≪ 109/2√
r

(

kmin

kf

)2

. (4.8)

It seems reasonable to set kmin = k1/10 ≃ 10−5Mpc−1 (recall that we had earlier chosen
k1 = 10−4Mpc−1). If we choose kf = 105Mpc−1, which is the smallest of the values for kf
that we had considered, then we arrive at γ ≪ 10−16.5/

√
r. In other words, for r ≃ 10−3,

we require γ < 10−15. For a larger kf , clearly, the limits on γ are even stronger. If kf ≃
1013Mpc−1 and r ≃ 10−3, we require that γ < 10−30. Evidently, γ can be larger if the
tensor-to-scalar ratio is smaller, i.e. when the scale of inflation is lower. Nevertheless, even
for an extreme value of r ≃ 10−30 as suggested by the recent arguments based on the trans-
Planckian censorship conjecture (in this context, see, for instance, ref. [111]), we require
γ < 10−2 for kf ≃ 105Mpc−1 and γ < 10−17 for kf ≃ 1013Mpc−1. We have instead worked
with γ ≃ 1 for kf = 105Mpc−1 and γ ≃ 10−8 for kf = 1013Mpc−1. Clearly, for a more
reasonable r, the constraints on γ are considerably more severe. Under such conditions, f

NL

and hence the non-Gaussian modifications will prove to be small and we will not be able to
achieve the desired level of amplification of the corrected power spectrum P

S
(k) +P

C
(k). In

fact, γ is so tightly constrained by the backreaction that we are essentially left with the slow
roll results.

There are two related points we wish to make here. Firstly, one may wonder if the energy
associated with the curvature perturbation ρ

R
itself may support accelerated expansion.

Since ρ(1)
R

∝ a−4, conservation of energy suggests that, at early times, the pressure associated

with the excited states should be given by p(1)
R

= ρ(1)
R
/3. Upon explicit calculation, we find

that this is indeed the case (in this context, also see refs. [49, 50]). In other words, the pressure
associated with the excited initial states does not possess the equation of state required to
drive inflation. Secondly, since the energy density of the perturbations ρ(1)

R
dies down as

a−4, one may imagine that it could decay rapidly enough permitting the background energy
density to dominate. Given ρ

R
at a = amin, we find that the number of e-folds after which

the energy density associated with the perturbations becomes sub-dominant to ρ
I
is given by

N ≃ 1

4
ln

(

γ2 r

109

)

+ ln

(

kf
kmin

)

. (4.9)
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For the values of the various quantities we have worked with, say, γ ≃ 1, kf = 105Mpc−1

and kmin = 10−5Mpc−1, if we choose a tensor-to-scalar ratio of r ≃ 10−3, we find that it
will take as many as 16 e-folds before the background energy density begins to dominate.
This duration will be more prolonged for larger values of kf . Clearly, backreaction is a rather
serious issue that needs to be accounted for.

5 Conclusions

In this work, we had explored a possible mechanism for the production of PBHs and GWs
wherein the primordial scalar perturbations were evolved from squeezed initial states. The
advantage of the mechanism is the fact that it is completely independent of the actual model
that drives the background dynamics during inflation. All we require is typical slow roll
inflation which leads to a power spectrum that is consistent with the recent CMB data on
large scales. By choosing specific forms for the Bogoliubov coefficients that characterize
the squeezed states, we had constructed scalar power spectra with a lognormal feature at
small scales. It is well known that, in such cases, the scalar bispectra in the squeezed limit is
inversely proportional to the value of the squeezed mode, a dependence which we expected to
utilize so that we obtain significantly high values for the scalar non-Gaussianity parameter f

NL

at large wave numbers. We had hoped that this property can lead to large non-Gaussian
modifications to the scalar power spectrum, which in turn can amplify the power considerably
at small scales. While the proposal seemed feasible, there were two challenges that we had
encountered. Mathematically, it was rather easy to construct squeezed initial states that led
to a sharp rise in power on small scales, when the non-Gaussian modifications were taken into
account. However, we had found that it can be a challenge to design scenarios that excite the
curvature perturbation to such an initial state during the early stages of inflation. Moreover,
we had found that the backreaction on the inflationary background due to the excited state
of the perturbations strongly limits the extent of deviation from the Bunch-Davies vacuum.
In fact, the bounds due to the backreaction are so strong that the slow roll results remain
valid.

Let us make a few further clarifying remarks at this stage of our discussion. The
consistency condition relating the bispectrum and the power spectrum is known to be violated
for modes that evolve from the non-vacuum initial states (i.e. around the peaks in the
original power spectra). As a result, we had expected that the contributions to the non-
Gaussianity parameter due to the so-called local observer effect that has to be subtracted
will be small when compared to the actual value f

NL
over these wave numbers (in this context,

see refs. [65, 66]). Motivated by the largely local form of the scalar bispectrum in the squeezed
limit, we had utilized the corresponding f

NL
to calculate the non-Gaussian modifications to

the power spectrum [17, 61–63]. We had hoped that the non-Gaussian modifications will
dominate leading to enhanced power at small scales. However, we had found that the issue
of backreaction put paid to the proposal.

Before we conclude, we would like to comment on four issues and their possible resolu-
tions in the approach of generating PBHs and GWs from squeezed initial states.

1. Note that we have arrived at the scalar bispectrum by calculating the integrals involved
over the domain−∞ < η < 0. In other words, we have assumed that the initial squeezed
state was chosen in the infinite past, i.e. as η → −∞. It may be argued that if we
choose to work with non-vacuum initial states, then the initial conditions need to be
imposed at a finite initial time, say, ηi. We believe that our results and conclusions will

– 20 –



hold as long as ηi ≪ −1/kmin, where, recall that, we have set kmin ≃ k1/10, with k1
being the smallest wave number of observational interest, which we have assumed to
be 10−4Mpc−1.

2. The method by which we have calculated modifications to the power spectrum due to
the scalar non-Gaussianity parameter is strictly valid for an f

NL
of the local type. In

other words, f
NL

ought to be a constant independent of scale. However, in our scenario,
the f

NL
we obtain is strongly scale dependent. There are two points that we believe

support the method we have adopted. Firstly, in order to mimic the local behavior of
f
NL
, we have chosen to work with its value in the squeezed limit (in this context, also

see ref. [61]). Secondly, and interestingly, we find that, near the wave numbers corre-
sponding to the peaks of the power spectra, the non-Gaussianity parameter f

NL
seems

to have a strongly local shape. We should add here that a formal approach to arrive
at the modifications to the power spectrum would be to calculate the loop corrections
at the appropriate order. While such an effort seems worthwhile, we believe that, since
the parameter f

NL
is largely local around the maximum in the power spectrum, our

calculations can be considered to be fairly suggestive.

3. In our approach, we have accounted for the cubic order non-Gaussianities by considering
the corresponding modifications to the scalar power spectrum. This approach seems
adequate to account for the non-Gaussian modifications to the density parameter Ω

GW

describing the stochastic GW background [62, 63, 67]. However, when calculating
the density of PBHs formed, the non-Gaussianities are expected to also modify the
probability distribution of the density contrast and hence the number of PBHs at the
time of their formation [cf. eq. (3.2)]. We should mention that this effect needs to be
accounted for separately [112].

4. Lastly, it may be interesting to explore if the contributions due to the higher order
correlations such as the trispectrum may rescue our proposal and lead to large non-
Gaussian modifications despite the strong constraints on γ due to the backreaction [68,
113]. For instance, we had seen that, in the squeezed limit, f

NL
had behaved as kf/k1.

If the non-Gaussianity parameter, say, τ
NL
, characterizing the trispectrum (in this

context, see ref. [114]) in a squeezed initial state behaves in a stronger fashion, it seems
possible that the higher order terms may modify the power spectrum adequately to
circumvent the limits on γ. However, even if this works out, one concern would remain.
We had seen that, despite the large value of f

NL
, the amplitude of the modified power

spectrum was of the order of 10−2 (for the original values of γ we had worked with).
If the non-Gaussian modifications due to the trispectrum prove to be significant, it is
possible that these higher order contributions will also affect the validity of perturbation
theory. One will have to ensure that the amplitude of the corrected power spectrum
remains smaller than unity even when further contributions are taken into account.
Probably, the conditions for the validity of the perturbation theory at higher orders
would severely restrict the extent of deviations from the Bunch-Davies vacuum. We
are currently exploring these issues.

We would like to close by pointing out that, the various arguments we have considered in this
work suggest that the initial state of the curvature perturbations is likely to be remarkably
close to the Bunch-Davies vacuum, in particular, on small scales.
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A The dominant contributions to the scalar bispectrum

In this appendix, we shall provide the complete expressions describing the dominant contri-
butions to the scalar bispectrum evaluated in a squeezed initial state. For a generic α(k)
and β(k), these contributions are given by the following expressions (in this context, see for
example, refs. [42, 46, 48, 49]):

G1(k1,k2,k3) =
H4

I

32M4
Pl
ǫ1

|α1|2 |α2|2 |α3|2
k1 k2 k3

(1− δ1) (1− δ2) (1− δ3)

k21
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1 + δ∗1 δ
∗
2 δ

∗
3

k
T
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k
T
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∗
3
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1 +
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∗
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]

+complex conjugate + two permutations, (A.1a)
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H4

I

64M4
Pl
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H4

I
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× (k22 − k23)
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G7(k1,k2,k3) =
H4

I
ǫ2

32M4
Pl
ǫ21

{

1

(k1 k2)3
|α1|2 |α2|2 (1− δ1) (1− δ∗1) (1− δ2) (1− δ∗2)

+ two permutations

}

, (A.1d)

where k
T
= k1 + k2 + k3 and, for convenience, we have set α(ki) = αi and δ(ki) = δi for

i = {1, 2, 3}. Note that, we can write

|α(k)|2 =
[

1− |δ(k)|2
]−1

(A.2)

so that the complete bispectrum can be expressed in terms of the function δ(k), which in
turn is determined by the feature g(k) in the power spectrum [cf. eqs. (2.7) and (2.8)].
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