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Abstract

Protein–protein interactions form the basis for a vast majority of cellular events, including signal transduction and

transcriptional regulation. It is now understood that the study of interactions between cellular macromolecules is

fundamental to the understanding of biological systems. Interactions between proteins have been studied through

a number of high-throughput experiments and have also been predicted through an array of computational meth-

ods that leverage the vast amount of sequence data generated in the last decade. In this review, I discuss some of

the important computational methods for the prediction of functional linkages between proteins. I then give a

brief overview of some of the databases and tools that are useful for a study of protein–protein interactions. I also

present an introduction to network theory, followed by a discussion of the parameters commonly used in analys-

ing networks, important network topologies, as well as methods to identify important network components, based

on perturbations.

Introduction
Proteins are the main catalysts, structural elements, sig-

nalling messengers and molecular machines of biological

tissues [1]. Protein–protein interactions (PPIs) are extre-

mely important in orchestrating the events in a cell.

They form the basis for several signal transduction path-

ways in a cell, as well as various transcriptional regula-

tory networks. The availability of complete and

annotated genome sequences of several organisms has

led to a paradigm shift from the study of individual pro-

teins in an organism to large-scale proteome-wide stu-

dies of proteins, which interact in a beautifully

concerted network of metabolic, signalling and regula-

tory pathways in a cell. In general, the behaviour of a

system is quite different from merely the sum of the

interactions of its various parts. As Anderson put it as

early as 1972, in his classic paper by the same title,

“More is different“ [2] — it is not possible to reliably

predict the behaviour of a complex system, despite a

good knowledge of the fundamental laws governing the

individual components. Comparative genomics at a pri-

mary sequence level has also indicated that species dif-

ferences are due more to the difference in the

interactions between the component proteins, rather

than the individual genes themselves [3]. Consequently,

several efforts have been made to identify these interac-

tions, in an attempt to understand biological systems

better [4-12]. The need to understand protein structure

and function has been a critical driving force for biologi-

cal research in the recent decades. With the advent of

high-throughput experiments to identify PPIs, more

knowledge on protein function has been obtained,

together with the development of several methods to

predict and study the interactions between proteins.

A wide variety of methods have been used to identify

protein–protein associations; these associations may

range from direct physical interactions inferred from

experimental methods to functional linkages predicted

on the basis of computational analyses. In the past,

experimental methods based on microarrays and yeast

two-hybrid, as well as computational methods based on

protein sequences and structures have been developed

and widely used. Given the difficulties in experimentally

identifying PPIs, a wide range of computational methods

have been used to identify protein–protein functional

linkages and interactions. These methods range from

identifying a single pair of interacting proteins at one

end, to the identification and analysis of a large network

of thousands of proteins, the latter as large as that of an

entire proteome of a given cell.* Correspondence: k.raman@bioc.unizh.ch
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Computational methods for prediction of
protein–protein functional linkages and
interactions
Methods based on genomic context

Domain fusion

The domain fusion or Rosetta Stone method was pro-

posed by Eisenberg and co-workers [13]. The method is

based on the hypothesis that if domains A and B exist

fused in a single polypeptide AB in another organism,

then A and B are functionally linked. Fig. 1A shows an

example to illustrate this point. The premise is that

since the affinity between proteins A and B is greatly

enhanced when A is fused to B, some interacting pairs

of proteins may have evolved from proteins that

included the interacting domains A and B on the same

polypeptide. Veitia [14] has proposed a kinetic back-

ground to the idea of gene fusion, suggesting the inclu-

sion of eukaryotic sequences to increase the robustness

of Rosetta Stone predictions. The argument basically

involves the fact that eukaryotes, with a larger volume,

cannot afford to accommodate separate proteins A and

B, as the required concentrations of A and B would be

prohibitively high, to achieve the same equilibrium con-

centration of AB. One limitation of this method is its

low coverage; it has the least coverage among the meth-

ods based on genomic context [15].

Conserved neighbourhood

If the genes that encode two proteins are neighbours on

the chromosome in several genomes, the corresponding

proteins are likely to be functionally linked [16]. This

method is particularly useful in case of prokaryotes,

where operons commonly exist, or in organisms where

operon-like clusters are observed. Fig. 1B shows an

example to illustrate this method. This method has been

reported to identify high-quality functional relationships

[17]. However, the method suffers from low coverage,

due to the dual requirement of identifying orthologues

in another genome and then finding those orthologues

that are adjacent on the chromosome [17]. Nevertheless,

this coverage is still higher than that of the Rosetta

Stone method [15]. Bork and co-workers have proposed

another approach that exploits the conservation of

divergently (bi-directionally) transcribed gene pairs [18].

The method is complementary to the existing gene

neighbourhood method, which focuses on operons,

where the genes are transcribed in a common orienta-

tion (co-directionally). They report the application of

this method, to successfully associate self-regulatory

transcription factors to their respective operons, enhan-

cing functional annotations [18].

Phylogenetic profiles

Identification of functional linkages between proteins

using phylogenetic profiles is based on the idea that

functionally linked proteins would co-occur in genomes.

The phylogenetic profile of a protein can be represented

as a ‘bit string’, encoding the presence or absence of the

protein in each of the genomes considered (see Fig. 1C).

Proteins having matching or similar phylogenetic pro-

files tend to be strongly functionally linked [19]. In a

study reported in 1999 [19], when only 17 fully

sequenced genomes were considered for analysis, the

function of a number of proteins in Escherichia coli

could be assigned correctly, by examining the similarity

of their phylogenetic profiles. Fig. 1C illustrates an

example, showing how two proteins A and B are likely

to be functionally linked, owing to the similarity of their

phylogenetic profiles across five genomes. This method

is in a sense the computational equivalent of the experi-

mental genetic approach of mapping a mutant gene’s

phenotype to the gene. Genes with similar phylogenetic

profiles essentially produce similar phenotypes, much

similar to a standard genetic mapping [17]. Bork and

co-workers [20] have used anti-correlated occurrences

of genes (complementary phylogenetic patterns, as

against co-occurrence) across genomes to identify sev-

eral analogous enzyme displacements (functionally

equivalent genes) in thiamine biosynthesis.

The online service Protein Link EXplorer (PLEX; http://

bioinformatics.icmb.utexas.edu/plex/) [21] allows for the

construction of phylogenetic profiles for any given

sequence, which can be compared to profiles of all other

proteins from 89 fully sequenced genomes that are stored

in the PLEX database. PLEX can also accept sophisticated

phylogenetic profile inputs and comparison parameters,

including individual organism or group-based profiles.

Gene neighbours and Rosetta stone links of all proteins

that match the query profile can also be investigated.

Methods based on co-evolution

Co-evolution can be defined as the joint evolution of

ecologically interacting species [22] and it implies the

evolution of a species in response to selection imposed

by another. Co-evolution thus requires the existence of

mutual selective pressure on two or more species [23].

Computational methods to predict PPIs through the

characteristics of co-evolution have been developed by

extrapolating concepts developed for the study of spe-

cies co-evolution to the molecular level [23,24]. An in

silico Two-hybrid (i2h) method has been proposed,

based on the study of correlated mutations in multiple

sequence alignments [25,26]. The premise is that co-

adaptation of interacting proteins can be detected by the

presence of a distinctive number of compensatory muta-

tions in corresponding proteins of different species. An

interaction index, defined based on the distribution of

correlation values is calculated. Correlated mutations
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can also been used to identify specific residues involved

at the interaction sites [26]. Fig. 1D illustrates how cor-

related mutations can be used to identify functional lin-

kages between proteins.

Protein interactions have also been predicted on the

basis of the comparison of evolutionary histories, or

phylogenetic trees, under the premise that interacting

proteins are subject to similar evolutionary pressures

resulting in similar topologies for the corresponding

trees [27-29]. A more recent method [30] uses the com-

plete network of phylogenetic tree similarities between

all protein pairs in the genome to reassess pairwise simi-

larity between the phylogenetic trees of any two pro-

teins, thereby accounting for the co-evolutionary

context of the proteins more effectively.

Other methods

Although homology-based methods are often quite use-

ful for inferring PPIs, there are occasions where homol-

ogy-based methods may not be effective. For example,

Mika and Rost have illustrated earlier that homology-

based inference of physical PPIs are accurate only at

high levels of sequence identity [31]. Further, homology-

based inference of PPIs work better within species than

across species, for low and high levels of sequence simi-

larity [31].

Functional linkages may also be derived by the analy-

sis of correlated mRNA expression levels, or protein

co-expression. These techniques do not require any

homology information [17], as they rely on the mea-

surement of additional expression data. These techni-

ques can, therefore, find unique relationships among

proteins. The premise of all expression clustering

methods is that proteins do not work in isolation and

are often co-expressed with functionally related pro-

teins. By altering the conditions for performing the

experiments, enough variation in gene expression can

be observed to identify co-expressing genes. Protein

co-expression analysis is preferable since mRNA levels

and protein levels have often been found to be poorly

correlated.

Gene expression data has also been shown to be use-

ful in understanding the dynamics of PPI networks

[32-34]. Lu and collaborators [33] integrated gene

Figure 1 Prediction of functional linkages between proteins, based on different methods. (A) Method of domain fusion. The figure

shows proteins predicted to interact by the Rosetta stone method (domain fusion). Each protein is shown schematically with boxes representing

domains. Proteins P2 and P3 in Genomes 2 and 3 are predicted to interact because their homologues are fused in the first genome. (B) Gene

neighbourhood. The figure shows four hypothetical genomes, containing one or more of the genes A, B and C. Since the genes A and B are

co-localised in multiple genomes (1–4), they are likely to be functionally linked with one another. (C) Phylogenetic profiles. The figure shows

five hypothetical genomes, each containing one or more of the proteins A, B, C and D. The presence or absence of each protein is indicated by

1 or 0, respectively, in the phylogenetic profiles given on the right. Identical profiles are highlighted — proteins A and B are functionally linked

(dotted line), whereas proteins C and D, which have different phylogenetic profiles (shown in grey) are not likely to be functionally linked. (D)

Correlated mutations. The alignments of two protein families are shown; conserved residues in either alignment are shown in the same colour

(blue and green). Correlated mutations in either alignment (coloured red) are indicated by arrow marks. Common sub-trees of the phylogenetic

trees are highlighted in yellow. The presence of correlated mutations in each family suggests that the corresponding sites may be involved in

mediating interactions between the proteins from each family.
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expression profiles (from a mice model of asthma) into

a network of mouse PPIs derived from the BIND data-

base. They found that highly connected proteins, or hub

proteins in the network have less variable gene expres-

sion profiles compared to proteins at the network per-

iphery. Mande and collaborators have described the

construction of ‘conditional networks’ by integrating

gene expression data under different conditions into

protein functional linkage networks [34]. These net-

works present a picture of the dynamics of the func-

tional linkages between proteins; a comparative analysis

of four different conditional networks illustrates impor-

tant responses in wild-type and mutant Escherichia coli

cells treated with ultra-violet rays.

Efforts to mine experimental protein–protein associa-

tion information from literature have also been made.

For example, Hogue and co-workers have described an

support vector machine (SVM)-based approach to mine

the biomedical literature for PPIs [35]. Databases such

as the STRING include such computationally mined

interactions [36]. Eisenberg and co-workers have

described an approach to identify abstracts that discuss

PPIs from literature, which may then be manually

scanned to identify PPIs [37]. This approach forms the

basis for the rapid expansion of the database of interact-

ing proteins (DIP) [37]. Zaki and collaborators have

described a method based on pairwise similarity of pro-

tein sub-sequences, to predict PPIs [38].

Experimental methods

Although this review primarily deals with computational

methods for predicting PPIs, I here briefly outline some

experimental methods for assessing PPIs, for the sake of

completeness. There are a number of experimental tech-

niques such as yeast-two hybrid [39], affinity purifica-

tion/mass spectrometry [4,5,9,11,40] and protein

microarrays [41-43], which are reviewed in detail else-

where [44,45]. These form the basis of several large-

scale datasets on PPIs.

In the yeast-two hybrid assay, two fusion proteins are

created: the ‘bait’ (a protein of interest with a DNA-

binding domain attached to its N-terminus) and the

‘prey’ (its potential interaction partner, fused to an acti-

vation domain). If the ‘bait’ and the ‘prey’ interact, their

binding forms a functional transcriptional activator,

which in turn activates reporter genes or selectable mar-

kers [39]. This assay has been adapted for high-through-

put analyses of PPIs [46,47].

Gavin and collaborators have described the purifica-

tion of complexes of 1739 proteins from S. cerevisiae

(including the complete set of 1143 human orthologues)

using tandem affinity purification coupled to mass spec-

trometry, illustrating the complexity of connectivity

between protein complexes [4]. Mass spectrometry has

also been used to construct a large-scale map of human

protein interactions [11].

Protein microarrays aid in the detection of in vitro

binary interactions of various types — protein–protein,

protein–lipid or antigen–antibody interactions. Proteins

covalently attached to a solid support are screened with

fluorescently labelled probes (proteins or lipids), to iden-

tify interactions [41]. A high density yeast protein

microarray comprising 5800 yeast proteins was devel-

oped and used to identify novel calmodulin and phos-

pholipid binding proteins [41].

Although many of these assays can identify PPIs with

high confidence, they still have their share of false posi-

tives and can suffer from a limited reproducibility.

Nevertheless, high-throughput experimental analyses of

PPIs are quite important in obtaining the protein inter-

action map of a cell. Further, combining results from

multiple experiments as well as computational methods

for predicting functional linkages (as is done in data-

bases such as the STRING) is likely to further improve

our understanding of the complex web of interactions

within a cell.

Databases and tools for analysis of PPIs
In this section, I review some of the important databases

that house data on PPIs, as well as some useful tools for

the visualisation and analysis of PPIs. Protein interaction

databases have also been reviewed in [44]. Some of the

important databases containing data about PPIs are dis-

cussed below. Some more examples of databases useful

for researching PPIs are given in Table 1.

STRING

STRING (Search Tool for the Retrieval of Interacting

Genes/Proteins; http://string.embl.de/) [36,48] is a pre-

computed database for the exploration and analysis of

protein–protein associations. The associations are

derived from high-throughput experimental data, mining

of databases and literature, analyses of co-expressed

genes and also from computational predictions, includ-

ing those based on genomic context analysis. STRING

employs a unique scoring framework based on bench-

marks of the different types of associations against a

common reference set, to produce a single confidence

score per prediction. The graphical user interface is

appealing and user-friendly, backed by an excellent

visualisation engine. Medusa http://coot.embl.de/

medusa/, a general graph visualisation tool, is a front

end (interface) to the STRING protein interaction data-

base [49].

HPRD

Human Protein Reference Database (HPRD; http://www.

hprd.org/) [50] integrates information relevant to the
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function of human proteins in health and disease. The

database is almost completely manually curated by biol-

ogists who have read and interpreted over 300,000 pub-

lished articles during the annotation process. Data

pertaining to thousands of PPIs, post-translational modi-

fications, enzyme/substrate relationships, disease asso-

ciations, tissue expression and sub-cellular localisation

have been extracted from literature into the database.

DIP

The DIP (Database of Interacting Proteins; http://dip.

doe-mbi.ucla.edu/) database [51] catalogues experimen-

tally derived PPIs. Due to the variety of experiments and

their corresponding reliabilities, DIP applies some qual-

ity assessment methods to pick out subsets of most reli-

able interactions. The DIP is generally considered as a

valuable benchmark or verify the performance of any

new method for prediction of PPIs.

Predictome

The Predictome [52] database houses links between the

proteins of 44 genomes based on the implementation of

gene context functional linkage methods, viz. chromoso-

mal proximity, phylogenetic profiling and domain

fusion. It also contains information on large-scale

experimental screenings of PPI data, from experiments

such as yeast two-hybrid, immuno-co-precipitation and

correlated expression. The Predictome database is pre-

sently accessible through the visual front-end provided

by VisANT [53], which is a versatile tool for visualisa-

tion and analysis of interaction data. Website http://

visant.bu.edu/.

Tools for network analysis and visualisation

In this section, I briefly discuss some of the useful soft-

ware tools available for the analysis and visualisation of

biological networks. A comprehensive review of the

tools useful for the visualisation of networks has been

published elsewhere [54]. Some more examples of tools

useful for network visualisation and analysis are given in

Table 2.

Cytoscape Cytoscape http://www.cytoscape.org/[55] is a

software platform for visualising molecular interaction

networks and integrating these interactions with gene

expression profiles. The tool is best used in conjunction

with large databases of gene expression data, protein–

protein, protein–DNA, and genetic interactions that are

increasingly available for humans and model organisms.

Cytoscape supports several algorithms for the layout of

networks. Several useful plug-ins are available for Cytos-

cape, to extend its capabilities. A notable example is the

NetworkAnalyzer plug-in [56], which can be used to

compute various network parameters.

Pajek Pajek http://pajek.imfm.si/ is a program (only for

Windows-based operating systems) for the analysis and

visualisation of very large networks; it can even handle

networks with > 105 nodes. Pajek also includes a variety

of network layout algorithms, including force-directed

layout algorithms such as Fruchterman–Reingold [57].

Pajek is highly versatile and can also be used to study

network dynamics.

Analyses of network structure
The field of network theory has witnessed a number of

advances in the past [58-60], many of which are

Table 1 Databases and resources useful for researching PPIs.

Database URL Resources Refs.

BIND Peer-reviewed bio-molecular interaction database containing published interactions
and complexes

http://bind.ca/ [79]

BioGRID Protein and genetic interactions from major model organism species http://www.thebiogrid.org/ [80]

COGs Orthology data and phylogenetic profiles http://www.ncbi.nlm.nih.gov/COG/ [81,82]

DIP Experimentally determined interactions between proteins http://dip.doe-mbi.ucla.edu/ [51]

HPRD Human protein functions, PPIs, post-translational modifications, enzyme–substrate
relationships and disease associations

http://www.hprd.org/ [50,83]

IntAct Interaction data abstracted from literature or from direct data depositions by expert
curators

http://www.ebi.ac.uk/intact/ [84]

iPFAM Physical interactions between those Pfam domains that have a representative
structure in the Protein DataBank (PDB)

http://ipfam.sanger.ac.uk/ [85]

MINT Experimentally verified PPI mined from the scientific literature by expert curators http://mint.bio.uniroma2.it/mint/ [86]

Predictome Experimentally derived and computationally predicted functional linkages http://visant.bu.edu/ [52]

ProLinks Protein functional linkages http://mysql5.mbi.ucla.edu/cgi-bin/
functionator/pronav

[87]

SCOPPI Domain–domain interactions and their interfaces derived from PDB structure files and
SCOP domain definitions

http://www.scoppi.org/ [88]

STRING Protein functional linkages from experimental data and computational predicttions http://string.embl.de/ [36,48]
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impacting the analyses of biological networks such as

PPI networks. In this section, I discuss some of the

important network parameters useful in the analysis of

networks and understanding their characteristics,

important network topologies, as well as some of

the measures that can be used to analyse perturbations

to networks. Detailed reviews of the application

of network theory to biology have been published

elsewhere [61,62].

Network parameters

Network theory provides a quantifiable description of

networks; there are several network measures that

enable the comparison and characterisation of complex

networks:

Connectivity (or) Degree

The most elementary characteristic of a node is its

degree, k, which represents the number of links the

node has, to other nodes in the network.

Degree distribution

The degree distribution, P(k), gives the probability that a

selected node has exactly k links. P(k) is obtained by

counting the number of nodes N(k) with k = 1, 2, ...

links and dividing by the number of nodes N. The

degree distribution allows to distinguish between various

network topologies [61].

Clustering Coefficient

The clustering coefficient was first defined by Watts

and Strogatz [58]. The clustering coefficient, C, for a

node is a notion of how connected the neighbours of a

given node are (cliquishness). The average clustering

coefficient for all nodes in a network is taken to be the

network clustering coefficient. In an undirected graph,

if a vertex vi has ki neighbours, ki(ki - 1)/2 edges could

exist among the vertices within the neighbourhood

(Ni). The clustering coefficient for an undirected graph

G(V, E) (where V represents the set of vertices in the

graph G and E represents the set of edges) can then be

defined as

C
e jk

ki ki
v v N ei j k i jk


 

2

1

|{ }|

( )
; , , .E (1)

The average clustering coefficient characterises the

overall tendency of nodes to form clusters or groups. C

(k) is defined as the average clustering coefficient for all

nodes with k links.

Characteristic Path Length

The characteristic path length, L, is defined as the num-

ber of edges in the shortest path between two vertices,

averaged over all pairs of vertices. It measures the typi-

cal separation between two vertices in the network [58].

Intuitively, it represents the network’s overall navigabil-

ity [61].

Network Diameter

The network diameter d is the greatest distance (short-

est path, or geodesic path) between any two nodes in a

network [63]. It can also be viewed as the length of the

‘longest’ shortest path in the network.

d d u v
u v




max ( , )
, G

G (2)

where dG(u, v) is the shortest path between u and v in

G. A few authors have also used this term to denote the

average geodesic distance in a network (which translates

to the characteristic path length), although strictly the

two measures are distinct.

Betweenness

Betweenness is a centrality measure of a vertex within a

graph [64]. For a graph G(V, E), with n vertices, the

betweenness CB(v) of a vertex v is defined as

C v st v

st
B

s v t

( )
( )

  
 


V

(3)

where sst is the number of shortest paths from s to t,

and sst(v) is the number of shortest paths from s to t

that pass through a vertex v. A similar definition for

Table 2 Examples of tools useful for the visualisation of networks and PPIs.

Tool URL Features Refs.

BioLayout Express
3D

http://www.biolayout.org/ Facilitates microarray data analysis [89]

Cytoscape http://www.cytoscape.org/ Versatile; implements many visualisation algorithms; many plug-ins available [55]

Large Graph
Layout (LGL)

http://sourceforge.net/projects/lgl Especially useful for dynamic visualisation of large graphs (105 nodes, 106 edges);
force-directed layout algorithm

[90]

Osprey http://biodata.mshri.on.ca/osprey/
servlet/Index

Provides network filters, connectivity filters, many layouts and facilitates dataset
superimposing

[91]

Pajek http://vlado.fmf.uni-lj.si/pub/
networks/pajek/

Especially useful for the analysis of very large networks [92]

Visant http://visant.bu.edu/ Especially facilitates analysis of gene ontologies [53]

Yed http://www.yworks.com/products/
yed/

General purpose graph editor -
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‘edge betweenness’ was given by Girvan and Newman

[65]. Nodes with a higher betweenness lie on a larger

number of shortest paths in a network.

Network topologies

The understanding of the topology or the architectural

principles of a biological network can directly give an

insight into various network characteristics. There are

several known topologies of networks, characterised by

their distinctive network parameters. The following are

some network models that are relevant to the under-

standing of biological networks.

Random networks

The Erdös–Rényi model of a random network starts

with N nodes and connects each pair of nodes with a

probability p, which creates a graph with approximately

pN(N - 1)/2 randomly placed links. The node degrees

follow a Poisson distribution indicating that most nodes

have approximately the same number of links. The char-

acteristic path length is proportional to the logarithm of

the network size L ~ log N. C(k) is independent of k

[61].

Small-world networks

Small-world networks are characterised by two proper-

ties: (i) individual nodes have few neighbours, but (ii)

most nodes can be reached from one another through

few steps, often referred to as ‘six degrees of separation’

[66]. Small-world networks have been generated by re-

wiring regular ring-lattice-like networks [58]. A regular

ring-lattice resembles a (circular) string of beads, where

each node (bead) is linked to one node on either side,

and is also additionally connected to the immediate

neighbour of those nodes. Thus, each node is linked to

four nodes nearest to it on the ‘string’. The ring-lattice

is rewired as follows: the original links in the lattice are

replaced by random ones with a probability 0 ≤ j ≤ 1,

introducing varying amounts of disorder, which takes

the network from complete regularity to complete disor-

der (randomness). The re-wiring process allows the

small-world model to interpolate between a regular lat-

tice and a (more or less) random graph. When j = 0,

there is no re-wiring and the regular lattice remains

unchanged. The clustering coefficient for this lattice

tends to 0.75 for large k. The regular lattice, however,

does not show the small-world effect. Mean geodesic

distances between vertices tend to L/4k for large L.

When j = 1, every edge is re-wired to a new random

location and the graph is almost a random graph, with

typical geodesic distances on the order of log L/ log k,

but very low C ≃ 2k/L [67]. As Watts and Strogatz

showed by numerical simulation, however, there exists a

sizeable region in between these two extremes of j, for

which the model generates a network that has both low

path lengths and high clustering. Small-world networks

have a characteristic path length of the same order as

random networks (L ≳ log N), but have a clustering

coefficient much higher than that of random networks

(C ≫ Crandom). The small-world topology has been

observed in networks such as film actor networks,

power grids and the neural network of the nematode

Caenorhabditis elegans [58].

Scale-free Networks

Scale-free networks are characterised by a power-law

degree distribution; the probability that a node has k

links is given by P(k) ~ k-g, where g is the degree expo-

nent [59]. The value of g determines many properties of

the system. For smaller values of g, the role of the

‘hubs’, or highly connected nodes, in the network

becomes more important. For g > 3, hubs are not rele-

vant, while for 2 <g < 3, there is a hierarchy of hubs,

with the most connected hub being in contact with a

small fraction of all nodes. Scale-free networks have a

high degree of robustness against random node failures,

although they are sensitive to the failure of hubs. The

probability that a node is highly connected is statistically

more significant than in a random graph. The properties

of a scale-free network are often determined by a rela-

tively small number of highly connected hubs. The Bara-

bási–Albert scale-free network model [59] involves the

construction of a network through an iterative proce-

dure. Beginning with a network having m0 nodes, in

each subsequent iteration, a single node is added to the

network, with m ≤ m0 links to existing nodes. The prob-

ability with which this node connects to the existing

nodes of the network is directly proportional to the con-

nectivity of the existing nodes (’rich get richer’ phenom-

enon). The probability pi with which the new node

connects to an existing node i, is given as

p
ki

k jj
i 

 G

where ki is the degree of node i and the denominator

represents the sum of the degrees of all nodes in the

network (G). After n iterations, the model leads to a

network with m0 + n nodes and mn edges. The network

generated by this model has a power-law degree distri-

bution characterised by g = 3. Scale-free networks with

2 <g < 3, a range commonly observed in many biological

networks, are ultra-small, with a characteristic path

length L ~ log log N, significantly smaller than that of

random networks (log N) [61].

Analysis of network perturbations

Networks can be perturbed through the removal of nodes

and edges. A typical analysis would be to probe the effect

of disrupting a node and its corresponding edges. Net-

works of different topologies vary in their resilience to
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various types of perturbations. A number of studies have

been carried out to analyse the response of networks to

the deletion of their nodes and edges. A review of how

nodes in a network can be prioritised based on network

analysis has been presented elsewhere [68].

Barabási and co-workers have analysed the response of

scale-free and random networks to various types of

‘attacks’ [69]. In particular, they have analysed the net-

works representing the topologies of the Internet and

the World-Wide Web. The common observation is that

scale-free networks are quite insensitive to random node

removals; they are highly robust in the face of random

node failures and the characteristic path length was

found to be almost unaffected. This is intuitively reason-

able, since most of the vertices in these networks have

low degree and therefore lie on few paths between

others; thus their removal rarely affects communications

substantially. On the other hand, directed attacks target-

ing the highly connected hubs led to a rapid disruption

of the communication through the network. The charac-

teristic path length was found to increase very sharply

with the fraction of hubs removed and typically only a

small fraction of the hubs needed to be ‘knocked out’

before essentially all communication through the net-

work was destroyed [67,69].

Jeong and co-workers have analysed the effect of node

deletions on S. cerevisiae PPI network [70]. They report

that although proteins with five or fewer links consti-

tuted about 93% of the total number of proteins, only

about 21% of them were essential. On the other hand,

only 0.7% of the proteins had more than 15 links, but

single deletion of 62% of these proved lethal. This

implies that highly connected proteins with a central

role in the architecture of the network are three times

more likely to be essential than proteins with only a

small number of links to other proteins.

Another comprehensive analysis of vulnerability of

complex networks to various types of attacks has been

discussed in [71]. In addition to node deletions studied

earlier [69], they have also studied the effects of edge

removals. Further, for each case of attacks on vertices

and edges, four different attacking strategies were

employed: removals by the descending order of the

degree and the betweenness centrality, calculated for

either the initial network or the modified network dur-

ing the iterative removal procedure. They report that

the removals based on the re-calculated degrees and

betweenness centralities are often more harmful than

the attack strategies based on the initial network’s para-

meters, underlining the importance of the changes in

network structure following the removal of important

edges or nodes.

Wingender and co-workers have proposed a measure,

known as pairwise disconnectivity index [72], which

quantifies how crucial a node or an edge (or a group of

nodes/edges) is, for sustaining the communication

between connected pairs of vertices in a directed net-

work. This is one metric that explicitly considers paths

between the various nodes in a network; it is thus quite

useful in analysing how node deletions in a network can

disrupt the flow of information.

We have earlier reported an analysis of the number of

disrupted shortest paths in the network, to identify

nodes that may be critical to a network [73]. Network

analysis has also been used for identifying pathways to

drug resistance [74]. Ge and collaborators have devel-

oped an ‘information flow analysis’, to identify proteins

central for information transmission in interactome net-

works of S. cerevisiae and C. elegans [75]; the proteins

so identified were also likely to be essential for survival.

The method employs confidence scores for PPIs and

also considers multiple paths in a network while evalu-

ating the importance of each protein [75]. The analysis

of node deletions from PPI networks has been used for

the identification of potential drug targets [73,76].

Conclusions
PPI networks provide a simplified overview of the web

of interactions that take place inside a cell. The vast

amounts of sequence data that have been generated

have been leveraged to make better predictions of inter-

actions and functional associations between proteins, as

well as individual protein functions. By integrating

experimental methods for determining PPIs and compu-

tational methods for prediction, a lot of useful data on

PPIs have been generated, including a number of high-

quality databases.

Although the analyses of PPI networks has produced

several useful results, often improving our understand-

ing of the underlying biology, they are not without

flaws. One of the key flaws of the existing methods to

delineate such large-scale protein interaction networks

is the limited reproducibility of such experiments;

further, it is suspected that what is examined is only a

small fraction of the entire proteome [77]. However,

most databases do combine multiple methods for pre-

dicting interactions, as well as results from multiple

high-throughput experiments, mitigating this problem to

a certain extent. Further, these networks often paint a

static picture of the overwhelmingly complex dynamic

interactions that take place in a cell. An improved

model of these interactions must consider both the

dynamics (temporal changes in the interactions) as well

as the strengths of each of the interactions. The global

overview presented by such interaction maps is no

doubt useful, but the finer details of the interactions

may be significantly important for our ability to make

testable predictions about biological systems [78].
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Nevertheless, protein interaction maps have many

practical applications and hold the key to understanding

complex biological systems. With a large amount of

high-throughput data being generated at various levels,

computational analyses of these data, to identify associa-

tions and interactions between various proteins, form a

fundamental step in our quest to understand the organi-

sation of complex biological systems. As Dennis Bray

put it rather eloquently [78], “We have a new continent

to explore and will need maps at every scale to find our

way“.
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