This is the accepted manuscript made available via CHORUS. The article has been published as:

Constraining the p-Mode-g-Mode Tidal Instability with GW170817

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 122, 061104 — Published 13 February 2019

DOI: 10.1103/PhysRevLett.122.061104

Constraining the p-mode- g-mode tidal instability with GW170817

B. P. Abbott, ${ }^{1}$ R. Abbott, ${ }^{1}$ T. D. Abbott, ${ }^{2}$ F. Acernese, ${ }^{3,4}$ K. Ackley, ${ }^{5}$ C. Adams, ${ }^{6}$ T. Adams, ${ }^{7}$ P. Addesso, ${ }^{8}$ R. X. Adhikari, ${ }^{1}$ V. B. Adya,,${ }^{9,10}$ C. Affeldt,,${ }^{9,10}$ B. Agarwal, ${ }^{11}$ M. Agathos, ${ }^{12}$ K. Agatsuma, ${ }^{13}$ N. Aggarwal, ${ }^{14}$ O. D. Aguiar, ${ }^{15}$ L. Aiello, ${ }^{16,17}$ A. Ain, ${ }^{18}$ P. Ajith, ${ }^{19}$ B. Allen, ${ }^{9,20,10}$ G. Allen, ${ }^{11}$ A. Allocca, ${ }^{21,22}$ M. A. Aloy, ${ }^{23}$ P. A. Altin, ${ }^{24}$ A. Amato, ${ }^{25}$ A. Ananyeva, ${ }^{1}$ S. B. Anderson, ${ }^{1}$ W. G. Anderson, ${ }^{20}$ S. V. Angelova, ${ }^{26}$ S. Antier, ${ }^{27}$ S. Appert, ${ }^{1}$ K. Arai, ${ }^{1}$ M. C. Araya, ${ }^{1}$ J. S. Areeda, ${ }^{28}$ M. Arène, ${ }^{29}$ N. Arnaud, ${ }^{27},{ }^{30}$ K. G. Arun, ${ }^{31}$ S. Ascenzi, ${ }^{32,}{ }^{33}$ G. Ashton, ${ }^{5}$ M. Ast, ${ }^{34}$ S. M. Aston, ${ }^{6}$ P. Astone, ${ }^{35}$ D. V. Atallah, ${ }^{36}$ F. Aubin, ${ }^{7}$ P. Aufmuth, ${ }^{10}$ C. Aulbert, ${ }^{9}$ K. AultONeal, ${ }^{37}$ C. Austin, ${ }^{2}$ A. Avila-Alvarez, ${ }^{28}$ S. Babak, ${ }^{38,29}$ P. Bacon, ${ }^{29}$ F. Badaracco, ${ }^{16},{ }^{17}$ M. K. M. Bader, ${ }^{13}$ S. Bae, ${ }^{39}$ P. T. Baker, ${ }^{40}$ F. Baldaccini, ${ }^{41,}{ }^{42}$ G. Ballardin, ${ }^{30}$ S. W. Ballmer, ${ }^{43}$ S. Banagiri, ${ }^{44}$ J. C. Barayoga, ${ }^{1}$ S. E. Barclay, ${ }^{45}$ B. C. Barish, ${ }^{1}$ D. Barker, ${ }^{46}$ K. Barkett, ${ }^{47}$ S. Barnum, ${ }^{14}$ F. Barone,,${ }^{3,4}$ B. Barr, ${ }^{45}$ L. Barsotti, ${ }^{14}$ M. Barsuglia, ${ }^{29}$ D. Barta, ${ }^{48}$ J. Bartlett, ${ }^{46}$ I. Bartos, ${ }^{49}$ R. Bassiri, ${ }^{50}$ A. Basti, ${ }^{21,}{ }^{22}$ J. C. Batch, ${ }^{46}$ M. Bawaj, ${ }^{51,42}$ J. C. Bayley, ${ }^{45}$ M. Bazzan, ${ }^{52,53}$ B. Bécsy, ${ }^{54}$ C. Beer, ${ }^{9}$ M. Bejger, ${ }^{55}$ I. Belahcene, ${ }^{27}$ A. S. Bell, ${ }^{45}$ D. Beniwal, ${ }^{56}$ M. Bensch,,${ }^{9,10}$ B. K. Berger, ${ }^{1}$ G. Bergmann, ${ }^{9,10}$ S. Bernuzzi, ${ }^{57,58}$ J. J. Bero, ${ }^{59}$ C. P. L. Berry, ${ }^{60}$ D. Bersanetti, ${ }^{61}$ A. Bertolini, ${ }^{13}$ J. Betzwieser, ${ }^{6}$ R. Bhandare, ${ }^{62}$ I. A. Bilenko, ${ }^{63}$ S. A. Bilgili, ${ }^{40}$ G. Billingsley, ${ }^{1}$ C. R. Billman, ${ }^{49}$ J. Birch, ${ }^{6}$ R. Birney, ${ }^{26}$ O. Birnholtz, ${ }^{59}$ S. Biscans, ${ }^{1,14}$ S. Biscoveanu, ${ }^{5}$ A. Bisht, ${ }^{9,10}$ M. Bitossi, ${ }^{30,22}$ M. A. Bizouard, ${ }^{27}$ J. K. Blackburn, ${ }^{1}$ J. Blackman, ${ }^{47}$ C. D. Blair, ${ }^{6}$ D. G. Blair, ${ }^{64}$ R. M. Blair, ${ }^{46}$ S. Bloemen, ${ }^{65}$ O. Bock, ${ }^{9}$ N. Bode, ${ }^{9,10}$ M. Boer, ${ }^{66}$ Y. Boetzel, ${ }^{67}$ G. Bogaert, ${ }^{66}$ A. Bohe, ${ }^{38}$ F. Bondu, ${ }^{68}$ E. Bonilla, ${ }^{50}$ R. Bonnand, ${ }^{7}$ P. Booker,,${ }^{9} 10$ B. A. Boom, ${ }^{13}$ C. D. Booth, ${ }^{36}$ R. Bork, ${ }^{1}$ V. Boschi, ${ }^{30}$ S. Bose, ${ }^{69,18}$ K. Bossie, ${ }^{6}$ V. Bossilkov, ${ }^{64}$ J. Bosveld, ${ }^{64}$ Y. Bouffanais,,29 A. Bozzi, ${ }^{30}$ C. Bradaschia, ${ }^{22}$ P. R. Brady, ${ }^{20}$ A. Bramley, ${ }^{6}$ M. Branchesi,,${ }^{16,17}$ J. E. Brau,,70 T. Briant, ${ }^{71}$ F. Brighenti, ${ }^{72,73}$ A. Brillet, ${ }^{66}$ M. Brinkmann, ${ }^{9,10}$ V. Brisson, ${ }^{27}$, * P. Brockill, ${ }^{20}$ A. F. Brooks, ${ }^{1}$ D. D. Brown, ${ }^{56}$ S. Brunett, ${ }^{1}$ C. C. Buchanan, ${ }^{2}$ A. Buikema, ${ }^{14}$ T. Bulik, ${ }^{74}$ H. J. Bulten, ${ }^{75}, 13$ A. Buonanno,,${ }^{38,76}$ D. Buskulic, ${ }^{7}$ C. Buy, ${ }^{29}$ R. L. Byer, ${ }^{50}$ M. Cabero, ${ }^{9}$ L. Cadonati, ${ }^{77}$ G. Cagnoli, ${ }^{25, ~}{ }^{78}$ C. Cahillane, ${ }^{1}$ J. Calderón Bustillo, ${ }^{77}$ T. A. Callister, ${ }^{1}$ E. Calloni, ${ }^{79,4}$ J. B. Camp, ${ }^{80}$ M. Canepa, ${ }^{81,61}$ P. Canizares, ${ }^{65}$ K. C. Cannon, ${ }^{82}$ H. Cao,,${ }^{56}$ J. Cao, ${ }^{83}$ C. D. Capano, ${ }^{9}$ E. Capocasa, ${ }^{29}$ F. Carbognani, ${ }^{30}$ S. Caride, ${ }^{84}$ M. F. Carney, ${ }^{85}$ J. Casanueva Diaz, ${ }^{22}$ C. Casentini, ${ }^{32,33}$ S. Caudill, ${ }^{13,20}$ M. Cavaglià, ${ }^{86}$ F. Cavalier, ${ }^{27}$ R. Cavalieri, ${ }^{30}$ G. Cella, ${ }^{22}$ C. B. Cepeda, ${ }^{1}$ P. Cerdá-Durán, ${ }^{23}$ G. Cerretani, ${ }^{21,22}$ E. Cesarini, ${ }^{87,33}$ O. Chaibi, ${ }^{66}$ S. J. Chamberlin, ${ }^{88}$ M. Chan, ${ }^{45}$ S. Chao, ${ }^{89}$ P. Charlton, ${ }^{90}$ E. Chase, ${ }^{91}$ E. Chassande-Mottin, ${ }^{29}$ D. Chatterjee, ${ }^{20}$ Katerina Chatziioannou, ${ }^{92}$ B. D. Cheeseboro, ${ }^{40}$ H. Y. Chen, ${ }^{93}$ X. Chen, ${ }^{64}$ Y. Chen, ${ }^{47}$ H.-P. Cheng, ${ }^{49}$ H. Y. Chia, ${ }^{49}$ A. Chincarini, ${ }^{61}$ A. Chiummo, ${ }^{30}$ T. Chmiel, ${ }^{85}$ H. S. Cho, ${ }^{94}$ M. Cho, ${ }^{76}$ J. H. Chow, ${ }^{24}$ N. Christensen, ${ }^{95,66}$ Q. Chu, ${ }^{64}$ A. J. K. Chua, ${ }^{47}$ S. Chua, ${ }^{71}$ K. W. Chung, ${ }^{96}$ S. Chung, ${ }^{64}$ G. Ciani, ${ }^{52,53,49}$ A. A. Ciobanu, ${ }^{56}$ R. Ciolfi, ${ }^{97,}{ }^{98}$ F. Cipriano, ${ }^{66}$
C. E. Cirelli, ${ }^{50}$ A. Cirone, ${ }^{81,61}$ F. Clara, ${ }^{46}$ J. A. Clark,,${ }^{77}$ P. Clearwater, ${ }^{99}$ F. Cleva, ${ }^{66}$ C. Cocchieri, ${ }^{86}$ E. Coccia, ${ }^{16,17}$ P.-F. Cohadon, ${ }^{71}$ D. Cohen, ${ }^{27}$ A. Colla, ${ }^{100,35}$ C. G. Collette, ${ }^{101}$ C. Collins, ${ }^{60}$ L. R. Cominsky, ${ }^{102}$ M. Constancio Jr., ${ }^{15}$ L. Conti, ${ }^{53}$ S. J. Cooper, ${ }^{60}$ P. Corban, ${ }^{6}$ T. R. Corbitt, ${ }^{2}$ I. Cordero-Carrión, ${ }^{103}$ K. R. Corley, ${ }^{104}$ N. Cornish, ${ }^{105}$ A. Corsi, ${ }^{84}$ S. Cortese, ${ }^{30}$ C. A. Costa, ${ }^{15}$ R. Cotesta, ${ }^{38}$ M. W. Coughlin, ${ }^{1}$ S. B. Coughlin, ${ }^{36,91}$ J.-P. Coulon, ${ }^{66}$ S. T. Countryman, ${ }^{104}$ P. Couvares, ${ }^{1}$ P. B. Covas, ${ }^{106}$ E. E. Cowan, ${ }^{77}$ D. M. Coward, ${ }^{64}$ M. J. Cowart, ${ }^{6}$ D. C. Coyne, ${ }^{1}$ R. Coyne, ${ }^{107}$ J. D. E. Creighton, ${ }^{20}$ T. D. Creighton, ${ }^{108}$ J. Cripe, ${ }^{2}$ S. G. Crowder, ${ }^{109}$ T. J. Cullen, ${ }^{2}$ A. Cumming, ${ }^{45}$ L. Cunningham, ${ }^{45}$ E. Cuoco, ${ }^{30}$ T. Dal Canton, ${ }^{80}$ G. Dálya, ${ }^{54}$ S. L. Danilishin, ${ }^{10,9}$ S. D'Antonio, ${ }^{33}$ K. Danzmann, ${ }^{9,10}$ A. Dasgupta, ${ }^{110}$ C. F. Da Silva Costa, ${ }^{49}$ V. Dattilo, ${ }^{30}$ I. Dave, ${ }^{62}$ M. Davier, ${ }^{27}$ D. Davis, ${ }^{43}$ E. J. Daw, ${ }^{111}$ B. Day, ${ }^{77}$ D. DeBra, ${ }^{50}$ M. Deenadayalan, ${ }^{18}$ J. Degallaix, ${ }^{25}$ M. De Laurentis, ${ }^{79,4}$ S. Deléglise, ${ }^{71}$ W. Del Pozzo, ${ }^{21,22}$ N. Demos, ${ }^{14}$ T. Denker, ${ }^{9,10}$ T. Dent, ${ }^{9}$ R. De Pietri, ${ }^{57,58}$ J. Derby, ${ }^{28}$ V. Dergachev, ${ }^{9}$ R. De Rosa, ${ }^{79,4}$ C. De Rossi, ${ }^{25,30}$ R. DeSalvo, ${ }^{112}$ O. de Varona, ${ }^{9,10}$ S. Dhurandhar, ${ }^{18}$ M. C. Díaz, ${ }^{108}$ L. Di Fiore, ${ }^{4}$ M. Di Giovanni, ${ }^{113,98}$ T. Di Girolamo, ${ }^{79,4}$ A. Di Lieto, ${ }^{21,22}$ B. Ding, ${ }^{101}$ S. Di Pace, ${ }^{100,35}$ I. Di Palma, ${ }^{100,35}$ F. Di Renzo,,${ }^{21,22}$ A. Dmitriev, ${ }^{60}$ Z. Doctor, ${ }^{93}$ V. Dolique, ${ }^{25}$ F. Donovan, ${ }^{14}$ K. L. Dooley, ${ }^{36,86}$ S. Doravari, ${ }^{9,}{ }^{10}$ I. Dorrington, ${ }^{36}$ M. Dovale Álvarez, ${ }^{60}$ T. P. Downes, ${ }^{20}$ M. Drago, ${ }^{9,16,17}$ C. Dreissigacker, ${ }^{9,10}$ J. C. Driggers, ${ }^{46}$ Z. Du, ${ }^{83}$ P. Dupej, ${ }^{45}$ S. E. Dwyer, ${ }^{46}$ P. J. Easter, ${ }^{5}$ T. B. Edo, ${ }^{111}$ M. C. Edwards, ${ }^{95}$ A. Effler, ${ }^{6}$ H.-B. Eggenstein,,${ }^{9,10}$ P. Ehrens, ${ }^{1}$ J. Eichholz, ${ }^{1}$ S. S. Eikenberry, ${ }^{49}$ M. Eisenmann, ${ }^{7}$ R. A. Eisenstein, ${ }^{14}$ R. C. Essick, ${ }^{93}$ H. Estelles, ${ }^{106}$ D. Estevez, ${ }^{7}$ Z. B. Etienne, ${ }^{40}$ T. Etzel, ${ }^{1}$ M. Evans, ${ }^{14}$ T. M. Evans, ${ }^{6}$ V. Fafone, $,{ }^{32,} 33,{ }^{16}$ H. Fair, ${ }^{43}$ S. Fairhurst, ${ }^{36}$ X. Fan, ${ }^{83}$ S. Farinon, ${ }^{61}$ B. Farr, ${ }^{70}$ W. M. Farr, ${ }^{60}$ E. J. Fauchon-Jones, ${ }^{36}$ M. Favata, ${ }^{114}$ M. Fays, ${ }^{36}$ C. Fee, ${ }^{85}$ H. Fehrmann, ${ }^{9}$ J. Feicht, ${ }^{1}$ M. M. Fejer, ${ }^{50}$ F. Feng, ${ }^{29}$ A. Fernandez-Galiana, ${ }^{14}$ I. Ferrante, ${ }^{21,}{ }^{22}$ E. C. Ferreira, ${ }^{15}$ F. Ferrini, ${ }^{30}$ F. Fidecaro, ${ }^{21,22}$ I. Fiori, ${ }^{30}$ D. Fiorucci, ${ }^{29}$ M. Fishbach, ${ }^{93}$ R. P. Fisher, ${ }^{43}$ J. M. Fishner, ${ }^{14}$ M. Fitz-Axen, ${ }^{44}$ R. Flaminio,,${ }^{715}$ M. Fletcher, ${ }^{45}$ H. Fong, ${ }^{116}$ J. A. Font, ${ }^{23,117}$ P. W. F. Forsyth, ${ }^{24}$ S. S. Forsyth, ${ }^{77}$ J.-D. Fournier, ${ }^{66}$ S. Frasca,,${ }^{100,35}$ F. Frasconi, ${ }^{22}$ Z. Frei, ${ }^{54}$ A. Freise, ${ }^{60}$ R. Frey, ${ }^{70}$ V. Frey, ${ }^{27}$ P. Fritschel, ${ }^{14}$ V. V. Frolov, ${ }^{6}$ P. Fulda,,${ }^{49}$ M. Fyffe, ${ }^{6}$ H. A. Gabbard, ${ }^{45}$ B. U. Gadre, ${ }^{18}$ S. M. Gaebel, ${ }^{60}$ J. R. Gair, ${ }^{118}$
L. Gammaitoni, ${ }^{41}$ M. R. Ganija, ${ }^{56}$ S. G. Gaonkar, ${ }^{18}$ A. Garcia, ${ }^{28}$ C. García-Quirós, ${ }^{106}$ F. Garuf, ${ }^{79,4}$ B. Gateley, ${ }^{46}$ S. Gaudio, ${ }^{37}$ G. Gaur, ${ }^{119}$ V. Gayathri, ${ }^{120}$ G. Gemme, ${ }^{61}$ E. Genin, ${ }^{30}$ A. Gennai, ${ }^{22}$ D. George, ${ }^{11}$ J. George, ${ }^{62}$ L. Gergely, ${ }^{121}$ V. Germain, ${ }^{7}$ S. Ghonge, ${ }^{77}$ Abhirup Ghosh, ${ }^{19}$ Archisman Ghosh, ${ }^{13}$ S. Ghosh, ${ }^{20}$ B. Giacomazzo, ${ }^{113,} 98$ J. A. Giaime,,2,6 K. D. Giardina, ${ }^{6}$ A. Giazotto, ${ }^{22,}{ }^{\dagger}$ K. Gill, ${ }^{37}$ G. Giordano, ${ }^{3,4}$ L. Glover, ${ }^{112}$ E. Goetz, ${ }^{46}$ R. Goetz, ${ }^{49}$
B. Goncharov, ${ }^{5}$ G. González, ${ }^{2}$ J. M. Gonzalez Castro, ${ }^{21,22}$ A. Gopakumar, ${ }^{122}$ M. L. Gorodetsky, ${ }^{63}$ S. E. Gossan, ${ }^{1}$ M. Gosselin,,30 R. Gouaty, ${ }^{7}$ A. Grado, ${ }^{123,4}$ C. Graef, ${ }^{45}$ M. Granata, ${ }^{25}$ A. Grant, ${ }^{45}$ S. Gras, ${ }^{14}$ C. Gray, ${ }^{46}$ G. Greco, ${ }^{72,73}$ A. C. Green, ${ }^{60}$ R. Green, ${ }^{36}$ E. M. Gretarsson, ${ }^{37}$ P. Groot, ${ }^{65}$ H. Grote, ${ }^{36}$ S. Grunewald, ${ }^{38}$ P. Gruning, ${ }^{27}$ G. M. Guidi, ${ }^{72,73}$ H. K. Gulati, ${ }^{110}$ X. Guo, ${ }^{83}$ A. Gupta, ${ }^{88}$ M. K. Gupta, ${ }^{110}$ K. E. Gushwa, ${ }^{1}$ E. K. Gustafson, ${ }^{1}$ R. Gustafson, ${ }^{124}$ O. Halim, ${ }^{17,16}$ B. R. Hall, ${ }^{69}$ E. D. Hall, ${ }^{14}$ E. Z. Hamilton, ${ }^{36}$ H. F. Hamilton, ${ }^{125}$
G. Hammond, ${ }^{45}$ M. Haney, ${ }^{67}$ M. M. Hanke, ${ }^{9,10}$ J. Hanks, ${ }^{46}$ C. Hanna, ${ }^{88}$ M. D. Hannam, ${ }^{36}$ O. A. Hannuksela, ${ }^{96}$ J. Hanson, ${ }^{6}$ T. Hardwick, ${ }^{2}$ J. Harms, ${ }^{16,17}$ G. M. Harry, ${ }^{126}$ I. W. Harry, ${ }^{38}$ M. J. Hart, ${ }^{45}$ C.-J. Haster, ${ }^{116}$ K. Haughian, ${ }^{45}$ J. Healy, ${ }^{59}$ A. Heidmann, ${ }^{71}$ M. C. Heintze, ${ }^{6}$ H. Heitmann, ${ }^{66}$ P. Hello, ${ }^{27}$ G. Hemming, ${ }^{30}$ M. Hendry, ${ }^{45}$ I. S. Heng, ${ }^{45}$ J. Hennig, ${ }^{45}$ A. W. Heptonstall, ${ }^{1}$ F. J. Hernandez, ${ }^{5}$ M. Heurs, ${ }^{9,10}$ S. Hild, ${ }^{45}$ T. Hinderer, ${ }^{65}$ D. Hoak, ${ }^{30}$ S. Hochheim, ${ }^{9}, 10$ D. Hofman, ${ }^{25}$ N. A. Holland, ${ }^{24}$ K. Holt, ${ }^{6}$ D. E. Holz, ${ }^{93}$ P. Hopkins, ${ }^{36}$ C. Horst, ${ }^{20}$ J. Hough,,45 E. A. Houston, ${ }^{45}$ E. J. Howell, ${ }^{64}$ A. Hreibi, ${ }^{66}$ E. A. Huerta, ${ }^{11}$ D. Huet, ${ }^{27}$ B. Hughey, ${ }^{37}$ M. Hulko, ${ }^{1}$ S. Husa, ${ }^{106}$ S. H. Huttner, ${ }^{45}$ T. Huynh-Dinh, ${ }^{6}$ A. Iess, ${ }^{32,}{ }^{33}$ N. Indik, ${ }^{9}$ C. Ingram, ${ }^{56}$ R. Inta, ${ }^{84}$ G. Intini, ${ }^{100,35}$ H. N. Isa, ${ }^{45}$ J.-M. Isac,,${ }^{71}$ M. Isi, ${ }^{1}$ B. R. Iyer, ${ }^{19}$ K. Izumi, ${ }^{46}$ T. Jacqmin, ${ }^{71}$ K. Jani, ${ }^{77}$ P. Jaranowski, ${ }^{127}$ D. S. Johnson, ${ }^{11}$ W. W. Johnson, ${ }^{2}$ D. I. Jones, ${ }^{128}$ R. Jones, ${ }^{45}$ R. J. G. Jonker, ${ }^{13}$ L. Ju, ${ }^{64}$ J. Junker, ${ }^{9}, 10$ C. V. Kalaghatgi, ${ }^{36}$ V. Kalogera, ${ }^{91}$ B. Kamai, ${ }^{1}$ S. Kandhasamy, ${ }^{6}$ G. Kang, ${ }^{39}$ J. B. Kanner, ${ }^{1}$ S. J. Kapadia, ${ }^{20}$
S. Karki, ${ }^{70}$ K. S. Karvinen, ${ }^{9,10}$ M. Kasprzack, ${ }^{2}$ M. Katolik, ${ }^{11}$ S. Katsanevas, ${ }^{30}$ E. Katsavounidis, ${ }^{14}$ W. Katzman, ${ }^{6}$ S. Kaufer, ${ }^{9,10}$ K. Kawabe, ${ }^{46}$ N. V. Keerthana, ${ }^{18}$ F. Kéfélian, ${ }^{66}$ D. Keitel, ${ }^{45}$ A. J. Kemball, ${ }^{11}$ R. Kennedy, ${ }^{111}$ J. S. Key, ${ }^{129}$ F. Y. Khalili, ${ }^{63}$ B. Khamesra, ${ }^{77}$ H. Khan, ${ }^{28}$ I. Khan, ${ }^{16,33}$ S. Khan, ${ }^{9}$ Z. Khan, ${ }^{110}$ E. A. Khazanov, ${ }^{130}$ N. Kijbunchoo, ${ }^{24}$ Chunglee Kim, ${ }^{131}$ J. C. Kim, ${ }^{132}$ K. Kim, ${ }^{96}$ W. Kim, ${ }^{56}$ W. S. Kim, ${ }^{133}$ Y.-M. Kim, ${ }^{134}$ E. J. King, ${ }^{56}$ P. J. King, ${ }^{46}$ M. Kinley-Hanlon, ${ }^{126}$ R. Kirchhoff, ${ }^{9,10}$ J. S. Kissel, ${ }^{46}$ L. Kleybolte, ${ }^{34}$ S. Klimenko, ${ }^{49}$ T. D. Knowles, ${ }^{40}$ P. Koch, ${ }^{9,10}$ S. M. Koehlenbeck, ${ }^{9,10}$ S. Koley, ${ }^{13}$ V. Kondrashov, ${ }^{1}$ A. Kontos, ${ }^{14}$ M. Korobko, ${ }^{34}$ W. Z. Korth, ${ }^{1}$ I. Kowalska, ${ }^{74}$ D. B. Kozak, ${ }^{1}$ C. Krämer, ${ }^{9}$ V. Kringel, ${ }^{9,10}$ B. Krishnan, ${ }^{9}$ A. Królak, ${ }^{135,}{ }^{136}$ G. Kuehn, ${ }^{9,} 10$ P. Kumar, ${ }^{137}$ R. Kumar, ${ }^{110}$ S. Kumar, ${ }^{19}$ L. Kuo, ${ }^{89}$ A. Kutynia, ${ }^{135}$ S. Kwang, ${ }^{20}$ B. D. Lackey, ${ }^{38}$ K. H. Lai, ${ }^{96}$ M. Landry, ${ }^{46}$ R. N. Lang, ${ }^{138}$ J. Lange, ${ }^{59}$ B. Lantz, ${ }^{50}$ R. K. Lanza, ${ }^{14}$ A. Lartaux-Vollard, ${ }^{27}$ P. D. Lasky, ${ }^{5}$ M. Laxen, ${ }^{6}$ A. Lazzarini, ${ }^{1}$ C. Lazzaro, ${ }^{53}$ P. Leaci, ${ }^{100,35}$ S. Leavey, ${ }^{9,10}$ C. H. Lee, ${ }^{94}$ H. K. Lee, ${ }^{139}$ H. M. Lee, ${ }^{131}$ H. W. Lee, ${ }^{132}$ K. Lee, ${ }^{45}$ J. Lehmann, ${ }^{9,10}$ A. Lenon, ${ }^{40}$ M. Leonardi, ${ }^{9,10,115}$ N. Leroy, ${ }^{27}$ N. Letendre, ${ }^{7}$ Y. Levin, ${ }^{5} \mathrm{~J} . \operatorname{Li},{ }^{83}$ T. G. F. Li,,96 X. Li, ${ }^{47}$ S. D. Linker, ${ }^{112}$ T. B. Littenberg, ${ }^{140}$ J. Liu, ${ }^{64}$ X. Liu, ${ }^{20}$ R. K. L. Lo, ${ }^{96}$ N. A. Lockerbie, ${ }^{26}$ L. T. London, ${ }^{36}$ A. Longo, ${ }^{141,142}$ M. Lorenzini, ${ }^{16,17}$ V. Loriette, ${ }^{143}$ M. Lormand, ${ }^{6}$ G. Losurdo, ${ }^{22}$ J. D. Lough, $,{ }^{9}, 10$ G. Lovelace, ${ }^{28}$ H. Lück,,${ }^{9,10}$ D. Lumaca, ${ }^{32,33}$ A. P. Lundgren, ${ }^{9}$ R. Lynch, ${ }^{14}$ Y. Ma, ${ }^{47}$ R. Macas, ${ }^{36}$ S. Macfoy, ${ }^{26}$ B. Machenschalk, ${ }^{9}$ M. MacInnis, ${ }^{14}$ D. M. Macleod, ${ }^{36}$ I. Magaña Hernandez, ${ }^{20}$ F. Magaña-Sandoval, ${ }^{43}$ L. Magaña Zertuche, ${ }^{86}$ R. M. Magee, ${ }^{88}$ E. Majorana, ${ }^{35}$ I. Maksimovic, ${ }^{143}$ N. Man, ${ }^{66}$ V. Mandic, ${ }^{44}$ V. Mangano, ${ }^{45}$ G. L. Mansell, ${ }^{24}$ M. Manske, ${ }^{20,}{ }^{24}$ M. Mantovani, ${ }^{30}$ F. Marchesoni, ${ }^{51,}{ }^{42}$ F. Marion, ${ }^{7}$ S. Márka, ${ }^{104}$ Z. Márka, ${ }^{104}$ C. Markakis, ${ }^{11}$ A. S. Markosyan, ${ }^{50}$ A. Markowitz, ${ }^{1}$ E. Maros, ${ }^{1}$ A. Marquina, ${ }^{103}$ F. Martelli, ${ }^{72,}{ }^{73}$ L. Martellini, ${ }^{66}$ I. W. Martin,,${ }^{45}$ R. M. Martin, ${ }^{114}$ D. V. Martynov, ${ }^{14}$ K. Mason, ${ }^{14}$ E. Massera, ${ }^{111}$ A. Masserot, ${ }^{7}$ T. J. Massinger, ${ }^{1}$ M. Masso-Reid, ${ }^{45}$ S. Mastrogiovanni, ${ }^{100,35}$ A. Matas, ${ }^{44}$ F. Matichard, ${ }^{1,14}$ L. Matone, ${ }^{104}$ N. Mavalvala, ${ }^{14}$ N. Mazumder, ${ }^{69}$ J. J. McCann, ${ }^{64}$ R. McCarthy, ${ }^{46}$ D. E. McClelland, ${ }^{24}$ S. McCormick, ${ }^{6}$ L. McCuller, ${ }^{14}$ S. C. McGuire, ${ }^{144}$ J. McIver, ${ }^{1}$ D. J. McManus, ${ }^{24}$ T. McRae, ${ }^{24}$ S. T. McWilliams, ${ }^{40}$ D. Meacher, ${ }^{88}$ G. D. Meadors, ${ }^{5}$ M. Mehmet, ${ }^{9,10}$ J. Meidam, ${ }^{13}$ E. Mejuto-Villa, ${ }^{8}$ A. Melatos, ${ }^{99}$ G. Mendell, ${ }^{46}$ D. Mendoza-Gandara,,${ }^{9} 10$ R. A. Mercer, ${ }^{20}$ L. Mereni, ${ }^{25}$ E. L. Merilh, ${ }^{46}$ M. Merzougui, ${ }^{66}$ S. Meshkov, ${ }^{1}$ C. Messenger, ${ }^{45}$ C. Messick, ${ }^{88}$ R. Metzdorff, ${ }^{71}$ P. M. Meyers, ${ }^{44}$ H. Miao, ${ }^{60}$ C. Michel, ${ }^{25}$ H. Middleton, ${ }^{99}$ E. E. Mikhailov, ${ }^{145}$ L. Milano, ${ }^{79,4}$ A. L. Miller, ${ }^{49}$ A. Miller, ${ }^{100,35}$ B. B. Miller, ${ }^{91}$ J. Miller, ${ }^{14}$ M. Millhouse, ${ }^{105}$ J. Mills, ${ }^{36}$ M. C. Milovich-Goff, ${ }^{112}$ O. Minazzoli, ${ }^{66,146}$ Y. Minenkov, ${ }^{33}$ J. Ming, ${ }^{9,10}$ C. Mishra, ${ }^{147}$ S. Mitra, ${ }^{18}$ V. P. Mitrofanov, ${ }^{63}$ G. Mitselmakher, ${ }^{49}$ R. Mittleman,,14 D. Moffa, ${ }^{85}$ K. Mogushi, ${ }^{86}$ M. Mohan, ${ }^{30}$ S. R. P. Mohapatra, ${ }^{14}$ M. Montani, ${ }^{72,73}$ C. J. Moore, ${ }^{12}$ D. Moraru, ${ }^{46}$ G. Moreno, ${ }^{46}$ S. Morisaki, ${ }^{82}$ B. Mours, ${ }^{7}$ C. M. Mow-Lowry, ${ }^{60}$ G. Mueller, ${ }^{49}$ A. W. Muir, ${ }^{36}$ Arunava Mukherjee, ${ }^{9,10}$ D. Mukherjee, ${ }^{20}$ S. Mukherjee, ${ }^{108}$ N. Mukund, ${ }^{18}$ A. Mullavey, ${ }^{6}$ J. Munch, ${ }^{56}$ E. A. Muñiz, ${ }^{43}$ M. Muratore, ${ }^{37}$ P. G. Murray, ${ }^{45}$ A. Nagar, ${ }^{87,148,149}$ K. Napier, ${ }^{77}$ I. Nardecchia, ${ }^{32,}{ }^{33}$ L. Naticchioni, ${ }^{100,}{ }^{35}$ R. K. Nayak, ${ }^{150}$ J. Neilson, ${ }^{112}$ G. Nelemans, ${ }^{65,13}$ T. J. N. Nelson, ${ }^{6}$ M. Nery, ${ }^{9,10}$ A. Neunzert, ${ }^{124}$ L. Nevin, ${ }^{1}$ J. M. Newport, ${ }^{126}$ K. Y. Ng, ${ }^{14}$ S. Ng, ${ }^{56}$ P. Nguyen, ${ }^{70}$ T. T. Nguyen, ${ }^{24}$ D. Nichols, ${ }^{65}$ A. B. Nielsen, ${ }^{9}$ S. Nissanke, ${ }^{65,}{ }^{13}$ A. Nitz, ${ }^{9}$ F. Nocera, ${ }^{30}$ D. Nolting, ${ }^{6}$ C. North, ${ }^{36}$ L. K. Nuttall, ${ }^{36}$ M. Obergaulinger, ${ }^{23}$ J. Oberling, ${ }^{46}$ B. D. O'Brien, ${ }^{49}$
G. D. O'Dea, ${ }^{112}$ G. H. Ogin, ${ }^{151}$ J. J. Oh, ${ }^{133}$ S. H. Oh, ${ }^{133}$ F. Ohme, ${ }^{9}$ H. Ohta, ${ }^{82}$ M. A. Okada, ${ }^{15}$ M. Oliver, ${ }^{106}$ P. Oppermann, ${ }^{9,10}$ Richard J. Oram, ${ }^{6}$ B. O'Reilly, ${ }^{6}$ R. Ormiston, ${ }^{44}$ L. F. Ortega, ${ }^{49}$ R. O'Shaughnessy, ${ }^{59}$ S. Ossokine, ${ }^{38}$ D. J. Ottaway, ${ }^{56}$ H. Overmier, ${ }^{6}$ B. J. Owen, ${ }^{84}$ A. E. Pace, ${ }^{88}$ G. Pagano, ${ }^{21,}{ }^{22}$ J. Page, ${ }^{140}$ M. A. Page, ${ }^{64}$ A. Pai,,120 S. A. Pai, ${ }^{62}$ J. R. Palamos, ${ }^{70}$ O. Palashov, ${ }^{130}$ C. Palomba, ${ }^{35}$ A. Pal-Singh, ${ }^{34}$ Howard Pan, ${ }^{89}$ Huang-Wei Pan, ${ }^{89}$ B. Pang, ${ }^{47}$ P. T. H. Pang, ${ }^{96}$ C. Pankow, ${ }^{91}$ F. Pannarale, ${ }^{36}$ B. C. Pant, ${ }^{62}$ F. Paoletti, ${ }^{22}$ A. Paoli,,30 M. A. Papa,,${ }^{9,20,10}$ A. Parida, ${ }^{18}$ W. Parker, ${ }^{6}$ D. Pascucci, ${ }^{45}$ A. Pasqualetti, ${ }^{30}$ R. Passaquieti, ${ }^{21,22}$ D. Passuello, ${ }^{22}$ M. Patil, ${ }^{136}$ B. Patricelli, ${ }^{152,22}$ B. L. Pearlstone, ${ }^{45}$ C. Pedersen, ${ }^{36}$ M. Pedraza, ${ }^{1}$ R. Pedurand, ${ }^{25,}{ }^{153}$ L. Pekowsky, ${ }^{43}$ A. Pele, ${ }^{6}$ S. Penn, ${ }^{154}$ C. J. Perez, ${ }^{46}$ A. Perreca, ${ }^{113,} 98$ L. M. Perri, ${ }^{91}$ H. P. Pfeiffer, ${ }^{116,38}$ M. Phelps, ${ }^{45}$ K. S. Phukon, ${ }^{18}$ O. J. Piccinni, ${ }^{100,35}$ M. Pichot, ${ }^{66}$ F. Piergiovanni, ${ }^{72,73}$ V. Pierro, ${ }^{8}$ G. Pillant, ${ }^{30}$ L. Pinard, ${ }^{25}$ I. M. Pinto, ${ }^{8}$ M. Pirello, ${ }^{46}$ M. Pitkin, ${ }^{45}$ R. Poggiani, ${ }^{21,}{ }^{22}$ P. Popolizio, ${ }^{30}$ E. K. Porter, ${ }^{29}$ L. Possenti, ${ }^{155,}{ }^{73}$ A. Post, ${ }^{9}$ J. Powell, ${ }^{156}$ J. Prasad, ${ }^{18}$ J. W. W. Pratt, ${ }^{37}$ G. Pratten, ${ }^{106}$ V. Predoi, ${ }^{36}$ T. Prestegard, ${ }^{20}$ M. Principe, ${ }^{8}$ S. Privitera, ${ }^{38}$ G. A. Prodi, ${ }^{113,}{ }^{98}$ L. G. Prokhorov, ${ }^{63}$ O. Puncken, ${ }^{9,10}$ M. Punturo, ${ }^{42}$ P. Puppo, ${ }^{35}$ M. Pürrer, ${ }^{38}$ H. Qi, ${ }^{20}$ V. Quetschke, ${ }^{108}$ E. A. Quintero, ${ }^{1}$ R. Quitzow-James, ${ }^{70}$ D. S. Rabeling, ${ }^{24}$ H. Radkins, ${ }^{46}$ P. Raffai, ${ }^{54}$ S. Raja, ${ }^{62}$ C. Rajan, ${ }^{62}$ B. Rajbhandari, ${ }^{84}$ M. Rakhmanov, ${ }^{108}$ K. E. Ramirez, ${ }^{108}$ A. Ramos-Buades, ${ }^{106}$ Javed Rana, ${ }^{18}$ P. Rapagnani, ${ }^{100,35}$ V. Raymond, ${ }^{36}$ M. Razzano, ${ }^{21,}{ }^{22}$ J. Read, ${ }^{28}$ T. Regimbau, ${ }^{66,7}$ L. Rei, ${ }^{61}$ S. Reid, ${ }^{26}$ D. H. Reitze, ${ }^{1,49}$ W. Ren, ${ }^{11}$ F. Ricci, ${ }^{100,35}$ P. M. Ricker, ${ }^{11}$ K. Riles, ${ }^{124}$ M. Rizzo, ${ }^{59}$ N. A. Robertson,,${ }^{1,45}$ R. Robie, ${ }^{45}$ F. Robinet, ${ }^{27}$ T. Robson, ${ }^{105}$ A. Rocchi, ${ }^{33}$ L. Rolland, ${ }^{7}$ J. G. Rollins, ${ }^{1}$ V. J. Roma, ${ }^{70}$ R. Romano, ${ }^{3,4}$ C. L. Romel, ${ }^{46}$ J. H. Romie, ${ }^{6}$ D. Rosińska, ${ }^{157,55}$ M. P. Ross, ${ }^{158}$ S. Rowan, ${ }^{45}$ A. Rüdiger,,${ }^{9}{ }^{10}$ P. Ruggi, ${ }^{30}$ G. Rutins, ${ }^{159}$ K. Ryan, ${ }^{46}$ S. Sachdev, ${ }^{1}$ T. Sadecki, ${ }^{46}$ M. Sakellariadou, ${ }^{160}$ L. Salconi, ${ }^{30}$ M. Saleem, ${ }^{120}$ F. Salemi, ${ }^{9}$ A. Samajdar, ${ }^{150,13}$ L. Sammut, ${ }^{5}$ L. M. Sampson, ${ }^{91}$ E. J. Sanchez, ${ }^{1}$ L. E. Sanchez, ${ }^{1}$ N. Sanchis-Gual, ${ }^{23}$ V. Sandberg, ${ }^{46}$ J. R. Sanders, ${ }^{43}$ N. Sarin, ${ }^{5}$ B. Sassolas, ${ }^{25}$ P. R. Saulson, ${ }^{43}$ O. Sauter, ${ }^{124}$ R. L. Savage, ${ }^{46}$ A. Sawadsky, ${ }^{34}$ P. Schale, ${ }^{70}$ M. Scheel, ${ }^{47}$ J. Scheuer, ${ }^{91}$ P. Schmidt, ${ }^{65}$ R. Schnabel, ${ }^{34}$ R. M. S. Schofield, ${ }^{70}$ A. Schönbeck, ${ }^{34}$ E. Schreiber, ${ }^{9,10}$ D. Schuette, ${ }^{9,10}$ B. W. Schulte, ${ }^{9,10}$ B. F. Schutz, ${ }^{36,9}$ S. G. Schwalbe, ${ }^{37}$ J. Scott, ${ }^{45}$ S. M. Scott, ${ }^{24}$ E. Seidel, ${ }^{11}$ D. Sellers, ${ }^{6}$ A. S. Sengupta, ${ }^{161}$ D. Sentenac, ${ }^{30}$ V. Sequino, ${ }^{32,33,16}$ A. Sergeev, ${ }^{130}$ Y. Setyawati, ${ }^{9}$ D. A. Shaddock, ${ }^{24}$ T. J. Shaffer, ${ }^{46}$ A. A. Shah, ${ }^{140}$ M. S. Shahriar, ${ }^{91}$ M. B. Shaner, ${ }^{112}$ L. Shao, ${ }^{38}$ B. Shapiro, ${ }^{50}$ P. Shawhan, ${ }^{76}$ H. Shen, ${ }^{11}$
D. H. Shoemaker, ${ }^{14}$ D. M. Shoemaker, ${ }^{77}$ K. Siellez,,${ }^{77}$ X. Siemens, ${ }^{20}$ M. Sieniawska, ${ }^{55}$ D. Sigg, ${ }^{46}$ A. D. Silva, ${ }^{15}$ L. P. Singer, ${ }^{80}$ A. Singh, ${ }^{9,10}$ A. Singhal, ${ }^{16,35}$ A. M. Sintes, ${ }^{106}$ B. J. J. Slagmolen, ${ }^{24}$ T. J. Slaven-Blair, ${ }^{64}$ B. Smith, ${ }^{6}$ J. R. Smith, ${ }^{28}$ R. J. E. Smith, ${ }^{5}$ S. Somala, ${ }^{162}$ E. J. Son, ${ }^{133}$ B. Sorazu, ${ }^{45}$ F. Sorrentino, ${ }^{61}$ T. Souradeep, ${ }^{18}$ A. P. Spencer, ${ }^{45}$ A. K. Srivastava, ${ }^{110}$ K. Staats, ${ }^{37}$ M. Steinke, ${ }^{9,10}$ J. Steinlechner, ${ }^{34,}{ }^{45}$ S. Steinlechner, ${ }^{34}$ D. Steinmeyer, ${ }^{9,10}$ B. Steltner, ${ }^{9,10}$ S. P. Stevenson, ${ }^{156}$ D. Stocks,,${ }^{50}$ R. Stone, ${ }^{108}$ D. J. Stops, ${ }^{60}$ K. A. Strain, ${ }^{45}$ G. Stratta, ${ }^{72,73}$ S. E. Strigin, ${ }^{63}$ A. Strunk, ${ }^{46}$ R. Sturani, ${ }^{163}$ A. L. Stuver, ${ }^{164}$ T. Z. Summerscales, ${ }^{165}$ L. Sun, ${ }^{99}$ S. Sunil, ${ }^{110}$ J. Suresh, ${ }^{18}$ P. J. Sutton, ${ }^{36}$ B. L. Swinkels, ${ }^{13}$ M. J. Szczepańczyk, ${ }^{37}$ M. Tacca, ${ }^{13}$ S. C. Tait, ${ }^{45}$ C. Talbot, ${ }^{5}$ D. Talukder, ${ }^{70}$ D. B. Tanner, ${ }^{49}$ M. Tápai, ${ }^{121}$ A. Taracchini, ${ }^{38}$ J. D. Tasson, ${ }^{95}$ J. A. Taylor, ${ }^{140}$ R. Taylor, ${ }^{1}$ S. V. Tewari, ${ }^{154}$ T. Theeg,,${ }^{9,10}$ F. Thies, ${ }^{9,10}$ E. G. Thomas, ${ }^{60}$ M. Thomas, ${ }^{6}$ P. Thomas, ${ }^{46}$ K. A. Thorne, ${ }^{6}$ E. Thrane, ${ }^{5}$ S. Tiwari, ${ }^{16,98}$ V. Tiwari, ${ }^{36}$ K. V. Tokmakov, ${ }^{26}$ K. Toland, ${ }^{45}$ M. Tonelli, ${ }^{21,}{ }^{22}$ Z. Tornasi, ${ }^{45}$
A. Torres-Forné, ${ }^{23}$ C. I. Torrie, ${ }^{1}$ D. Töyrä, ${ }^{60}$ F. Travasso, ${ }^{30},{ }^{42}$ G. Traylor, ${ }^{6}$ J. Trinastic, ${ }^{49}$ M. C. Tringali, ${ }^{113,} 98$
L. Trozzo, ${ }^{166,22}$ K. W. Tsang, ${ }^{13}$ M. Tse, ${ }^{14} \mathrm{R}$. Tso, ${ }^{47}$ D. Tsuna, ${ }^{82}$ L. Tsukada, ${ }^{82}$ D. Tuyenbayev, ${ }^{108}$ K. Ueno, ${ }^{20}$ D. Ugolini, ${ }^{167}$ A. L. Urban, ${ }^{1}$ S. A. Usman, ${ }^{36}$ H. Vahlbruch,,${ }^{9,10}$ G. Vajente, ${ }^{1}$ G. Valdes, ${ }^{2}$ N. van Bakel, ${ }^{13}$ M. van Beuzekom, ${ }^{13}$ J. F. J. van den Brand, ${ }^{75,13}$ C. Van Den Broeck, ${ }^{13,}{ }^{168}$ D. C. Vander-Hyde, ${ }^{43}$ L. van der Schaaf, ${ }^{13}$ J. V. van Heijningen, ${ }^{13}$ A. A. van Veggel, ${ }^{45}$ M. Vardaro, ${ }^{52,53}$ V. Varma, ${ }^{47}$ S. Vass, ${ }^{1}$ M. Vasúth, ${ }^{48}$ A. Vecchio, ${ }^{60}$ G. Vedovato, ${ }^{53}$ J. Veitch, ${ }^{45}$ P. J. Veitch, ${ }^{56}$ K. Venkateswara, ${ }^{158}$ G. Venugopalan, ${ }^{1}$ D. Verkindt, ${ }^{7}$ F. Vetrano, ${ }^{72,73}$ A. Viceré, ${ }^{72,73}$ A. D. Viets, ${ }^{20}$ S. Vinciguerra, ${ }^{60}$ D. J. Vine, ${ }^{159}$ J.-Y. Vinet, ${ }^{66}$
 R. Walet, ${ }^{13}$ M. Walker, ${ }^{28}$ L. Wallace, ${ }^{1}$ S. Walsh, ${ }^{20,9}$ G. Wang, ${ }^{16,22}$ H. Wang, ${ }^{60}$ J. Z. Wang, ${ }^{124}$ W. H. Wang, ${ }^{108}$ Y. F. Wang, ${ }^{96}$ R. L. Ward, ${ }^{24}$ J. Warner, ${ }^{46}$ M. Was, ${ }^{7}$ J. Watchi, ${ }^{101}$ B. Weaver, ${ }^{46}$ L.-W. Wei, ${ }^{9,10}$ M. Weinert, ${ }^{9,10}$ A. J. Weinstein, ${ }^{1}$ R. Weiss, ${ }^{14}$ F. Wellmann, ${ }^{9,10}$ L. Wen, ${ }^{64}$ E. K. Wessel, ${ }^{11}$ P. Weßels, ${ }^{9,10}$ J. Westerweck, ${ }^{9}$ K. Wette, ${ }^{24}$ J. T. Whelan, ${ }^{59}$ B. F. Whiting, ${ }^{49}$ C. Whittle, ${ }^{14}$ D. Wilken, ${ }^{9,10}$ D. Williams, ${ }^{45}$ R. D. Williams, ${ }^{1}$ A. R. Williamson, ${ }^{59,65}$ J. L. Willis, ${ }^{1,125}$ B. Willke, ${ }^{9,10}$ M. H. Wimmer, ${ }^{9,10}$ W. Winkler, ${ }^{9,10}$ C. C. Wipf, ${ }^{1}$ H. Wittel, ${ }^{9}{ }^{9} 10$ G. Woan, ${ }^{45}$ J. Woehler, ${ }^{9,10}$ J. K. Wofford, ${ }^{59}$ W. K. Wong, ${ }^{96}$ J. Worden, ${ }^{46}$ J. L. Wright, ${ }^{45}$ D. S. Wu, ${ }^{9,10}$ D. M. Wysocki, ${ }^{59}$ S. Xiao, ${ }^{1}$ W. Yam, ${ }^{14}$ H. Yamamoto, ${ }^{1}$ C. C. Yancey, ${ }^{76}$ L. Yang, ${ }^{169}$ M. J. Yap, ${ }^{24}$ M. Yazback, ${ }^{49}$ Hang Yu, ${ }^{14}$ Haocun Yu, ${ }^{14}$ M. Yvert, ${ }^{7}$ A. Zadrożny, ${ }^{135}$ M. Zanolin, ${ }^{37}$ T. Zelenova, ${ }^{30}$ J.-P. Zendri, ${ }^{53}$ M. Zevin, ${ }^{91}$ J. Zhang, ${ }^{64}$ L. Zhang, ${ }^{1}$ M. Zhang, ${ }^{145}$ T. Zhang, ${ }^{45}$ Y.-H. Zhang, ${ }^{9,10}$ C. Zhao, ${ }^{64}$ M. Zhou, ${ }^{91}$ Z. Zhou, ${ }^{91}$ S. J. Zhu, ${ }^{9,10}$ X. J. Zhu, ${ }^{5}$ A. B. Zimmerman, ${ }^{92,170}$ M. E. Zucker, ${ }^{1,14}$ and J. Zweizig ${ }^{1}$
(The LIGO Scientific Collaboration and the Virgo Collaboration)

N. N. Weinberg ${ }^{171}$
${ }^{1}$ LIGO, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{2}$ Louisiana State University, Baton Rouge, LA 70803, USA
${ }^{3}$ Università di Salerno, Fisciano, I-84084 Salerno, Italy
${ }^{4}$ INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
${ }^{5}$ OzGrav, School of Physics \S Astronomy, Monash University, Clayton 3800, Victoria, Australia
${ }^{6}$ LIGO Livingston Observatory, Livingston, LA 70754, USA
${ }^{7}$ Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes,
Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
${ }^{8}$ University of Sannio at Benevento, I-82100 Benevento,
Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
${ }^{9}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
${ }^{10}$ Leibniz Universität Hannover, D-30167 Hannover, Germany
${ }^{11}$ NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
${ }^{12}$ University of Cambridge, Cambridge CB2 1TN, United Kingdom
${ }^{13}$ Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
${ }^{14}$ LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{15}$ Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
${ }^{16}$ Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
${ }^{17}$ INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
${ }^{18}$ Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
${ }^{19}$ International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
${ }^{20}$ University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
${ }^{21}$ Università di Pisa, I-56127 Pisa, Italy
${ }^{22}$ INFN, Sezione di Pisa, I-56127 Pisa, Italy
${ }^{23}$ Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
${ }^{24}$ OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
${ }^{25}$ Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
${ }^{26}$ SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
${ }^{27}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France
${ }^{28}$ California State University Fullerton, Fullerton, CA 92831, USA
${ }^{29}$ APC, AstroParticule et Cosmologie, Université Paris Diderot,
CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,
Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
${ }^{30}$ European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
${ }^{31}$ Chennai Mathematical Institute, Chennai 603103, India
${ }^{32}$ Università di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{33}$ INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{34}$ Universität Hamburg, D-22761 Hamburg, Germany
${ }^{35}$ INFN, Sezione di Roma, I-00185 Roma, Italy
${ }^{36}$ Cardiff University, Cardiff CF24 3AA, United Kingdom
${ }^{37}$ Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
${ }^{38}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
${ }^{39}$ Korea Institute of Science and Technology Information, Daejeon 34141, Korea
${ }^{40}$ West Virginia University, Morgantown, WV 26506, USA
${ }^{41}$ Università di Perugia, I-06123 Perugia, Italy
${ }^{42}$ INFN, Sezione di Perugia, I-06123 Perugia, Italy
${ }^{43}$ Syracuse University, Syracuse, NY 13244, USA
${ }^{44}$ University of Minnesota, Minneapolis, MN 55455, USA
${ }^{45}$ SUPA, University of Glasgow, Glasgow G12 $8 Q Q$, United Kingdom
${ }^{46}$ LIGO Hanford Observatory, Richland, WA 99352, USA
${ }^{47}$ Caltech CaRT, Pasadena, CA 91125, USA
${ }^{48}$ Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
${ }^{49}$ University of Florida, Gainesville, FL 32611, USA
${ }^{50}$ Stanford University, Stanford, CA 94305, USA
${ }^{51}$ Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
${ }^{52}$ Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
${ }^{53}$ INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{54}$ MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
${ }^{55}$ Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
${ }^{56}$ OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia

[^0][^1]We analyze the impact of a proposed tidal instability coupling p-modes and g-modes within neutron stars on GW170817. This non-resonant instability transfers energy from the orbit of the

Abstract

binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes Factor ($\ln B_{!p g}^{p g}$) comparing our $p-g$ model to a standard one. We find that the observed signal is consistent with waveform models that neglect $p-g$ effects, with $\ln B_{!p g}^{p g}=0.03_{-0.58}^{+0.70}$ (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include $p-g$ effects and recovering them with the $p-g$ model, we show that there is $\mathrm{a} \simeq 50 \%$ probability of obtaining similar $\ln B_{!p g}^{p g}$ even when $p-g$ effects are absent. We find that the $p-g$ amplitude for $1.4 M_{\odot}$ neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one tenth this maximum and $p-g$ saturation frequency $\sim 70 \mathrm{~Hz}$. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest $\lesssim 10^{3}$ modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the $p-g$ parameters. They also imply that the instability dissipates $\lesssim 10^{51}$ ergs over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

I. INTRODUCTION

Detailed analysis of the gravitational-wave (GW) signal received from the first binary neutron star (NS) coalescence event (GW170817 [1]) constrains the tidal deformability of NSs and thus the equation of state (EOS) above nuclear saturation density [2-4]. Studies of NS tidal deformation typically focus on the linear, quasistatic tidal bulge induced in each NS by its companion. Such deformations modify the system's binding energy and GW luminosity and thereby alter its orbital dynamics. The degree of deformation is often expressed in terms of the tidal deformability $\Lambda_{i} \propto\left(R_{i} / m_{i}\right)^{5}$ of each component [5], or a particular mass-weighted average thereof $(\tilde{\Lambda})$ [2]. The strong dependence on compactness R / m means that a stiffer EOS, which has larger R for the same m, imprints a larger tidal signals than a softer EOS. Current analyses of GW data from the LIGO [6] and Virgo [7] detectors favor a soft EOS [3, 8]. Specifically, [2] finds $\tilde{\Lambda} \lesssim 730$ at the 90% credible level for all waveform models considered, allowing for the components to spin rapidly. The pressure at twice nuclear saturation density is also constrained to $P=3.5_{-1.7}^{+2.7} \times 10^{34} \mathrm{dyn} / \mathrm{cm}^{2}$ (median and 90% credible region) [3] assuming small component spins. In addition to GW phasing, the EOS-dependence of $\tilde{\Lambda}$ should correlate with post-merger signals [9], possible tidal disruptions, and kilonova observations [10]. Observed light-curves for the kilonova suggest a lower bound of $\tilde{\Lambda} \gtrsim 200[11,12]$.

Although some dynamical tidal effects are incorporated in these analyses (see, e.g., $[2,13]$), the impact of several types of dynamical tidal effects are neglected because they are assumed to be small or have large theoretical uncertainties. These effects arise because tidal fields, in addition to raising a quasi-static bulge, excite stellar normal modes. Three such excitation mechanisms are (i) resonant linear excitation, (ii) resonant nonlinear excitation, and (iii) non-resonant nonlinear excitation (see,

[^2]e.g., [14]). The first occurs when the GW frequency (the oscillation frequency of the tidal field) sweeps through a mode's natural frequency (see, e.g., [15-22]). However, since the GW frequency increases rapidly during the late inspiral, the time spent near resonance is too short to excite modes to large amplitudes. As a result, for modes with natural frequencies within the sensitive bands of ground-based GW detectors, the change in orbital phasing is expected to be small ($\Delta \Psi \lesssim 10^{-2} \mathrm{rad}$) unless the stars are rapidly rotating [17-19]. The impact of resonant nonlinear mode excitation (i.e., the parametric subharmonic instability) is likewise limited by the swiftness of the inspiral [23].

The proposed $p-g$ tidal instability is a non-resonant, nonlinear instability in which the tidal bulge excites a low-frequency buoyancy-supported g-mode and a highfrequency pressure-supported p-mode [23-26]. It occurs in the inner core of the NS, where the stratification is weak and the shear due to the tidal bulge is especially susceptible to instability. Unlike resonantly excited modes, an unstable $p-g$ pair continuously drains energy from the orbit once excited, even after the orbital frequency changes significantly. There are many potentially unstable $p-g$ pairs, each becoming unstable at a different frequency and growing at a different rate. Although there is considerable uncertainty about the number of unstable pairs, their exact growth rates, and how they saturate, estimates suggest that the impact could be measurable with current detectors [27].

In this letter, we investigate the possible impact of the $p-g$ instability on GW170817 using the phenomenological model developed in [27]. The model describes the energy dissipated by the instability within each NS, indexed by i, in terms of three parameters: (i) an overall amplitude A_{i}, which is related to the number of modes participating in the instability, their growth rates, and their saturation energies, (ii) a frequency f_{i} corresponding to when the instability saturates, and (iii) a spectral index n_{i} describing how the saturation energy evolves with frequency. In Section II, we describe our models in detail. In Section III, we compare the statistical evidence for models that include the $p-g$ instability relative to those that do not. In Section IV, we investigate the
constraints on the $p-g$ parameters from GW170817, and in Section V we conclude.

II. PHENOMENOLOGICAL MODEL

Following [27], we extend a post-Newtonian (PN) waveform by including a parametrized model of the $p-g$ instability. For the initial PN model, we use the TaylorF2 frequency-domain approximant (see, e.g., [28]) terminated at the inner-most stable circular orbit, which includes the effects of linear tides $(\tilde{\Lambda})$ and spins aligned with the orbital angular momentum (the impact of misaligned spins on $p-g$ effects is not known). Waveform
systematics between different existing approximants may be important for small $p-g$ effects. However, by comparing the waveform mismatches between several other models (TaylorF2, SEOBNRT, PhenomDNRT, and PhenomPNRT, see [2]), we find these systematic become important for $p-g$ effects roughly an order of magnitude smaller than the upper limits set by our analysis (see Section IV). We expect TaylorF2 to be reasonably accurate and defer a complete analysis of waveform systematics to future work.

Assuming the $p-g$ effects are a perturbation to TaylorF2, we find that they modify the phase in the frequency-domain by

$$
\begin{equation*}
\Delta \Psi(f)=-\frac{2 C_{1}}{3 B^{2}\left(3-n_{1}\right)\left(4-n_{1}\right)}\left[\Theta_{1}\left(\frac{f}{f_{\mathrm{ref}}}\right)^{n_{1}-3}+\left(1-\Theta_{1}\right)\left(\frac{f_{1}}{f_{\mathrm{ref}}}\right)^{n_{1}-3}\left(\left(4-n_{1}\right)-\left(3-n_{1}\right)\left(\frac{f}{f_{1}}\right)\right)\right]+(1 \leftrightarrow 2) \tag{1}
\end{equation*}
$$

where f_{i} is the saturation frequency, $f_{\text {ref }} \equiv 100 \mathrm{~Hz}$ is a reference frequency with no intrinsic significance, $C_{i}=$ $\left[2 m_{i} /\left(m_{1}+m_{2}\right)\right]^{2 / 3} A_{i}, \quad B=(32 / 5)\left(G \mathcal{M} \pi f_{\text {ref }} / c^{3}\right)^{5 / 3}$, $\mathcal{M}=\left(m_{1} m_{2}\right)^{3 / 5} /\left(m_{1}+m_{2}\right)^{1 / 5}$, and $\Theta_{i}=\Theta\left(f-f_{i}\right)$ where Θ is the Heaviside function. This approximant is slightly different than that of [27] because they incorrectly applied the saddle-point approximation to obtain the frequency-domain waveform from time-domain phasing [29]. This correction renders the $p-g$ instability slightly more difficult to measure than predicted in [27], although the observed behavior is qualitatively similar. Specifically, we find that in order to achieve the same $|\Delta \Psi|, A_{i}$ needs to be larger than [27] found by a factor of $\sim\left(4-n_{i}\right)$, although the precise factor also depends on the other $p-g$ parameters.

The $\Delta \Psi$ expression contains three types of terms: a constant term, a linear term $\propto\left(1-\Theta_{i}\right) f$, and a powerlaw term $\propto \Theta_{i} f^{n_{i}-3}$. The constant term corresponds to an overall phase offset and is degenerate with the orbital phase at coalescence. The linear term corresponds to a change in the time of coalescence; because the $p-g$ instability transfers energy from the orbit to stellar normal modes, the binary inspirals faster than it would if the effect was absent. The power-law term accounts for the competition between the rate of $p-g$ energy dissipation and the rate of inspiral, both of which increase as f increases. As argued in [27], we expect $n_{i}<3$, which implies that the phase shift accumulates primarily at frequencies just above the "turn-on" (saturation) frequency $f \gtrsim f_{i}$.

When $n_{i}<3, p-g$ effects are most important at lower frequencies whereas linear tides $(\tilde{\Lambda})$ and spins $\left(\chi_{i}=\right.$ $c S_{i} / G m_{i}^{2}$, where S_{i} is the spin-angular momentum of each component) have their largest impact at higher frequencies (see, e.g., [30]). The priors placed on the latter quantities can, however, affect our inference of $p-g$ pa-
rameters.
In order to account for a possible dependence on the component masses $\left(m_{i}\right)$, we parametrize our model using a Taylor expansion in the $p-g$ parameters around $m_{i}=$ $1.4 M_{\odot}$ and sample from the posterior using the first two coefficients. Our model computes A_{i} as

$$
\begin{equation*}
A_{i}\left(m_{i}\right)=A_{0}+\left(\left.\frac{d A}{d m}\right|_{1.4 M_{\odot}}\right)\left(m_{i}-1.4 M_{\odot}\right) \tag{2}
\end{equation*}
$$

and uses A_{0} and $d A / d m$ instead of A_{1} and A_{2}. The model uses similar representations for f_{i} and n_{i} in terms of the parameters $f_{0}, d f / d m, n_{0}$, and $d n / d m$. We assume a uniform prior on $\log _{10} A_{0}$ within $10^{-10} \leq A_{0} \leq 10^{-5.5}$, a uniform prior in f_{0} within $10 \mathrm{~Hz} \leq f_{0} \leq 100 \mathrm{~Hz}$, and a uniform prior in n_{0} within $-1 \leq n_{0} \leq 3$. The priors on the first-order terms $(d A / d m, d f / d m, d n / d m)$ are the same as those in [27]; when $m_{1} \sim m_{2}$, they imply $A_{1} \sim$ A_{2}, etc.

We investigate GW170817 using data from several different frequency bands and with different spin priors, but unless otherwise noted we focus on results for data above 30 Hz with $\left|\chi_{i}\right| \leq 0.89$. Throughout this letter, results from GW170817 were obtained using the same data conditioning as [2], including the removal of a shortduration noise artifact from the Livingston data ([31] and discussion in [1]) along with other independently measured noise sources (see, e.g., [32-35]), calibration [36, 37], marginalization over calibration uncertainties, and whitening procedures $[38,39]$.

III. MODEL SELECTION

Using GW data from GW170817, we perform Bayesian model selection. We compare a model that includes lin-
ear tides, spin components alinged with the orbital angular momentum, and PN phasing effects up to 3.5 PN phase terms $\left(\mathcal{H}_{!p g}\right)$ to an extension of this model that also includes $p-g$ effects $\left(\mathcal{H}_{p g}\right)$. Since we have nested models $\left(\mathcal{H}_{!p g} \text { is obtained from } \mathcal{H}_{p g} \text { as } A_{i} \rightarrow 0\right)^{1}$, we use
the Savage-Dickey Density Ratio (see, e.g., [40-42]) to estimate the Bayes Factor $\left(B_{!p g}^{p g}=p\left(D \mid \mathcal{H}_{p g}\right) / p\left(D \mid \mathcal{H}_{!p g}\right)\right.$, where D refers to the observed data). Specifically, we sample from the model's posterior distribution [43] and calculate

$$
\begin{align*}
\lim _{A_{i} \rightarrow 0}\left[\frac{p\left(A_{i} \mid D, \mathcal{H}_{p g}\right)}{p\left(A_{i} \mid \mathcal{H}_{p g}\right)}\right] & =\lim _{A_{i} \rightarrow 0}\left[\frac{1}{p\left(D \mid \mathcal{H}_{p g}\right)} \int d \theta d f_{i} d n_{i} p\left(D \mid \theta, A_{i}, f_{i}, n_{i} ; \mathcal{H}_{p g}\right) p\left(\theta \mid \mathcal{H}_{p g}\right) p\left(f_{i}, n_{i} \mid A_{i}, \mathcal{H}_{p g}\right)\right] \\
& =\frac{1}{p\left(D \mid \mathcal{H}_{p g}\right)} \int d \theta p\left(D \mid \theta ; \mathcal{H}_{!p g}\right) p\left(\theta \mid \mathcal{H}_{!p g}\right)\left[\frac{p\left(\theta \mid \mathcal{H}_{p g}\right)}{p\left(\theta \mid \mathcal{H}_{!p g}\right)}\right] \int d f_{i} d n_{i} p\left(f_{i}, n_{i} \mid A_{i}, \mathcal{H}_{p g}\right) \\
& =\frac{p\left(D \mid \mathcal{H}_{!p g}\right)}{p\left(D \mid \mathcal{H}_{p g}\right)}\left\langle\frac{p\left(\theta \mid \mathcal{H}_{p g}\right)}{p\left(\theta \mid \mathcal{H}_{!p g}\right)}\right\rangle_{p\left(\theta \mid D, \mathcal{H}_{!p g}\right)}, \tag{3}
\end{align*}
$$

where θ refers to all parameters besides the $p-g$ phenomenological parameters, we note that $\int d f d n p\left(f_{i}, n_{i} \mid A_{i}, \mathcal{H}_{p g}\right)=1 \forall A_{i}$, and $\langle x\rangle_{p}$ denotes the average of x with respect to the measure defined by p. Assuming that $p\left(\theta \mid \mathcal{H}_{p g}\right)=p\left(\theta \mid \mathcal{H}_{!p g}\right)$, we determine $\ln B_{!p g}^{p g}$ from the ratio, as $A_{i} \rightarrow 0$, of the marginal distribution of A_{i} a priori to the distribution a posteriori

$$
\begin{equation*}
\ln B_{!p g}^{p g}=\lim _{A_{i} \rightarrow 0}\left[\ln p\left(A_{i} \mid \mathcal{H}_{p g}\right)-\ln p\left(A_{i} \mid D, \mathcal{H}_{p g}\right)\right] \tag{4}
\end{equation*}
$$

This allows us to directly measure $\ln B_{!p g}^{p g}$ by extracting $p\left(A \mid D, \mathcal{H}_{p g}\right)$ from Monte-Carlo analyses with a known prior $p\left(A \mid \mathcal{H}_{!p g}\right)$. We confirmed that this estimate agrees with estimates from both nested sampling [44] and thermodynamic integration [45].

Figure 1 shows $\ln B_{!p g}^{p g}$ as a function of $f_{\text {low }}$, the minimum GW frequency considered. At a given $f_{\text {low }}$, we show the distribution of $\ln B_{!p g}^{p g}$ due to the sampling uncertainty from the finite length of our MCMC chains. The solid and dashed curves correspond to the high-spin $\left(\left|\chi_{i}\right| \leq 0.89\right)$ and low-spin $\left(\left|\chi_{i}\right| \leq 0.05\right)$ priors discussed in $[1-3]$.

For certain combinations of $f_{\text {low }}$ and $\left|\chi_{i}\right|$, we find $\ln B_{!p g}^{p g}>0$, suggesting $\mathcal{H}_{p g}$ is more likely than $\mathcal{H}_{!p g}$. In order to assess how likely such values are, we calculate $\ln B_{!p g}^{p g}$ for a large number of simulated, high-spin signals with $A_{i}=0$ and distinct realizations of detector noise from times near GW170817. We find that simulated signals without $p-g$ effects can readily produce $\ln B_{!p g}^{p g}$ at least as large as the ones we measured from GW170817. For example, for the 30 Hz high-spin data we obtain $\ln B_{!p g}^{p g}=$ $0.03_{-0.58}^{+0.70}$ (maximum a posteriori and 90% credible region) (bottom panel of Fig. 1), whereas approximately half

[^3]

FIG. 1. Distributions of $\ln B_{p g g}^{p g}$ due to sampling uncertainty when analyzing GW170817 data with different values of $f_{\text {low }}$. The solid red curves assume high-spin priors $\left(\left|\chi_{i}\right| \leq 0.89\right)$ and the dashed blue curves assume low-spin priors $\left(\left|\chi_{i}\right| \leq 0.05\right)$.
of our simulated signals yield $\ln B_{!p g}^{p g}$ at least this large, i.e., a False Alarm Probability (FAP) $\approx 50 \%$. We focus on the 30 Hz , high-spin data because it corresponds to the largest bandwidth investigated and the largest signal-to-noise ratio. The high-spin prior is the most inclusive prior considered, and therefore allows the most model freedom when fitting $p-g$ effects.

In our model of the instability, the phase shift $\Delta \Psi$ accumulates primarily at frequencies just above the sat-
uration frequency $f \gtrsim f_{i}$. Therefore, if it is present, its impact should become more apparent as we decrease the minimum GW frequency considered from $f_{\text {low }} \gg f_{i}$ to $f_{\text {low }} \lesssim f_{i}$. We do see some indication of this behavior in Fig. 1. However, we note that if our phenomenological model breaks down at $f<f_{i}$ due to poor modeling of the pre-saturation behavior (e.g., if our step-function turn-on at f_{i} is not a good approximation to the instability's induced phase shift), we might expect $\ln B_{!p g}^{p g}$ to decrease as we lower $f_{\text {low }}$ below f_{i}. If the fidelity of our model is sufficiently poor, we could be insensitive to $p-g$ effects even at frequencies above $f_{\text {low }}$.

IV. PARAMETER INFERENCE

We now investigate the constraints obtained from GW170817. Figure 2 shows the joint posterior distributions for both $\mathcal{H}_{p g}$ and $\mathcal{H}_{!p g}$. We find that $\mathcal{H}_{p g}$ and $\mathcal{H}_{!p g}$ yield similar posterior distributions for all non-$p-g$ parameters, including both extrinsic and intrinsic parameters. The constraints on the chirp mass (\mathcal{M}), effective spin $\chi_{\text {eff }}=\left(m_{1} \chi_{1}+m_{2} \chi_{2}\right) /\left(m_{1}+m_{2}\right)$, and $\tilde{\Lambda}$ are slightly weaker in $\mathcal{H}_{p g}$ than $\mathcal{H}_{!p g}$. This is because $\mathcal{H}_{p g}$ provides extra freedom to the signal's duration in the time-domain.

Regarding the $p-g$ parameters, we find a noticeable peak near $A_{0} \sim 10^{-7}$ with a flat tail to small A_{0}. We find $A_{0} \leq 3.3 \times 10^{-7}$ assuming a uniform-in- $\log _{10} A_{0}$ prior and $A_{0} \leq 6.8 \times 10^{-7}$ assuming a uniform-in- A_{0} prior, both at 90% confidence. ${ }^{2}$ We also find a peak at $f_{0} \sim 70 \mathrm{~Hz}$. The peaks persist when we analyze the data from each interferometer separately, with reasonably consistent locations and shapes (Fig. 2). However, we find that the simulated signals with $A_{i}=0$ can produce similar peaks, suggesting they may be due to noise alone. Similar to [27], we find that n_{i} is not strongly constrained and the gradient terms in the Taylor expansions are not measurable.

Theoretical arguments suggest an upper bound of $A_{0} \lesssim 10^{-6}$ [27]. Therefore, our A_{0} constraint only rules out the most extreme values of the $p-g$ parameters.

V. DISCUSSION

While GW170817 is consistent with models that neglect $p-g$ effects, it is also consistent with a broad range of $p-g$ parameters. The constraints from GW170817 imply that there are $\lesssim 200$ excited modes at $f=100 \mathrm{~Hz}$, assuming all modes grow as rapidly as possible and saturate at their breaking amplitudes $(\lambda=\beta=1$ in Eq. (7)

[^4]of [27]) and that the frequency at which modes become unstable is well approximated by f_{0}. For comparison, theoretical arguments suggest an upper bound of $\sim 10^{3}$ modes saturating by wave breaking [27]. More modes may be excited if they grow more slowly or saturate below their wave breaking energy.

We can also use the measured constraints to place upper limits on the amount of energy dissipated by the $p-g$ instability. As Fig. 3 shows, $p-g$ effects dissipate $\lesssim 2.7 \times 10^{51}$ ergs throughout the entire inspiral at 90% confidence. In comparison, GWs carry away $\gtrsim 10^{53}$ ergs. This implies time-domain phase shifts $|\Delta \phi| \lesssim 7.6 \mathrm{rad}$ (0.6 orbits) at 100 Hz and $|\Delta \phi| \lesssim 32 \mathrm{rad}$ (2.6 orbits) at 1000 Hz after accounting for the joint uncertainty in component masses, spins, linear tides, and $p-g$ effects.

A g-mode with natural frequency f_{g} is predicted to become unstable at a frequency $f_{\text {crit }} \simeq$ $45 \mathrm{~Hz}\left(f_{g} / 10^{-4} \lambda f_{\text {dyn }}\right)^{1 / 2}$, where $f_{\text {dyn }}$ is the dynamical frequency of the NS and λ is a slowly varying function typically between $0.1-1$ [25, 27]. Since the modes grow quickly, the frequency at which the instability saturates is likely close to the frequency at which the modes become unstable ($f_{0} \simeq f_{\text {crit }}$). If we assume that the observed peak near $f_{0} \sim 70 \mathrm{~Hz}$ is not due to noise alone, then the maximum a posteriori estimate for f_{0} along with approximate values for the masses $\left(1.4 M_{\odot}\right)$ and radii (11 km) of the components [3] imply $f_{g} \simeq 0.5 \mathrm{~Hz}$.

With several more signals comparable to GW170817, it should be possible to improve the amplitude constraint to $A_{0} \lesssim 10^{-7}$. Obtaining even tighter constraints will likely require many more detections, especially since most events will have smaller SNR. Future measurements will also benefit from a better understanding of how the instability saturates. To date, there have only been detailed theoretical studies of the instability's threshold and growth rate [23-26], not its saturation. As a result, we cannot be certain of the fidelity of our phenomenological model.

While this letter was in review, related work was posted [46] with the conclusion that the $\mathcal{H}_{!p g}$ model is strongly favored over the $\mathcal{H}_{p g}$ model by a factor of at least 10^{4}. In Ref. [47], some of the authors of this work investigate the origin of the discrepancy by analyzing publicly available posterior samples from Ref. [46]. Contrary to the claims in Ref. [46], they find that samples from Ref. [46] yield $B_{!p g}^{p g} \sim 1$ and therefore conclude that this posterior data, like what is presented here, does not disfavor the $\mathcal{H}_{p g}$ model. Ref. [47] suggests that the error stems from using too few temperatures when implementing thermodynamic integration.

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of

FIG. 2. Posterior distribributions for $\mathcal{H}_{!p g}$ (red) and $\mathcal{H}_{p g}$ with Hanford, Livingston, and Virgo data (thick black, grey shading), Hanford data only (dark blue), and Livingston data only (light blue) using GW data above $30 \mathrm{~Hz},\left|\chi_{i}\right| \leq 0.89$, and a uniform-in$\log _{10} A_{0}$ prior. Left: a subset of parameters shared by $\mathcal{H}_{!p g}$ and $\mathcal{H}_{p g}$. Right: a subset of parameters belonging only to $\mathcal{H}_{p g}$. We only show one-dimensional posteriors for the single instrument data, although the multi-dimensional posteriors are similarly consistent with the full $\mathcal{H}_{p g}$ data. Contours in the two-dimensional distributions represent $10 \%, 50 \%$, and 90% confidence regions for the $\mathcal{H}_{p g}$ and $\mathcal{H}_{!p g}$ models, respectively.

FIG. 3. Upper limits on the cumulative enegy dissipated by the $p-g$ instability as a function of frequency. We note the relatively strong constraints at lower frequencies, where $p-g$ effects are more pronounced.
the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science \& Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Coun-
cil, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technol-
ogy, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. N. Weinberg was supported in part by NASA grant NNX14AB40G.
[1] B. P. Abbott and etal (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).
[2] The LIGO Scientific Collaboration, the Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, and et al., ArXiv e-prints (2018), arXiv:1805.11579 [gr-qc].
[3] The LIGO Scientific Collaboration, the Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, and et al., ArXiv e-prints (2018), arXiv:1805.11581 [gr-qc].
[4] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger, and C. M. Biwer, ArXiv e-prints (2018), arXiv:1804.08583 [astro-ph.HE].
[5] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008).
[6] The LIGO Scientific Collaboration, Classical and Quantum Gravity 32, 074001 (2015).
[7] F. A. et al, Classical and Quantum Gravity 32, 024001 (2015).
[8] B. P. Abbott and et al., The Astrophysical Journal Letters 848, L13 (2017).
[9] The LIGO Scientific Collaboration and The Virgo Collaboration, The Astrophysical Journal Letters 851, L16 (2017).
[10] The LIGO Scientific Collaboration and The Virgo Collaboration, The Astrophysical Journal Letters 850, L39 (2017).
[11] D. Radice, A. Perego, F. Zappa, and S. Bernuzzi, The Astrophysical Journal Letters 852, L29 (2018).
[12] M. W. Coughlin, T. Dietrich, Z. Doctor, D. Kasen, S. Coughlin, A. Jerkstrand, G. Leloudas, O. McBrien, B. D. Metzger, R. O'Shaughnessy, and S. J. Smartt, ArXiv e-prints (2018), arXiv:1805.09371 [astro-ph.HE].
[13] T. Hinderer, A. Taracchini, F. Foucart, A. Buonanno, J. Steinhoff, M. Duez, L. E. Kidder, H. P. Pfeiffer, M. A. Scheel, B. Szilagyi, K. Hotokezaka, K. Kyutoku, M. Shibata, and C. W. Carpenter, Phys. Rev. Lett. 116, 181101 (2016).
[14] N. Andersson and W. C. G. Ho, Phys. Rev. D 97, 023016 (2018).
[15] D. Lai, Monthly Notices of the Royal Astronomical Society 270, 611 (1994).
[16] A. Reisenegger and P. Goldreich, Astrophys. J. 426, 688 (1994).
[17] W. C. G. Ho and D. Lai, Monthly Notices of the Royal

Astronomical Society 308, 153 (1999).
[18] D. Lai and Y. Wu, Phys. Rev. D 74, 024007 (2006), arXiv:astro-ph/0604163.
[19] É. É. Flanagan and É. Racine, Phys. Rev. D 75, 044001 (2007), arXiv:gr-qc/0601029.
[20] H. Yu and N. N. Weinberg, Monthly Notices of the Royal Astronomical Society 464, 2622 (2017).
[21] H. Yu and N. N. Weinberg, Monthly Notices of the Royal Astronomical Society 470, 350 (2017).
[22] W. Xu and D. Lai, Phys. Rev. D 96, 083005 (2017), arXiv:1708.01839 [astro-ph.HE].
[23] N. N. Weinberg, P. Arras, and J. Burkart, The Astrophysical Journal 769, 121 (2013).
[24] T. Venumadhav, A. Zimmerman, and C. M. Hirata, The Astrophysical Journal 781, 23 (2014).
[25] N. N. Weinberg, The Astrophysical Journal 819, 109 (2016).
[26] Y. Zhou and F. Zhang, The Astrophysical Journal 849, 114 (2017).
[27] R. Essick, S. Vitale, and N. N. Weinberg, Phys. Rev. D 94, 103012 (2016).
[28] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009).
[29] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994).
[30] M. Agathos, W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, J. Veitch, and S. Vitale, Phys. Rev. D 89, 082001 (2014).
[31] C. Pankow, K. Chatziioannou, E. A. Chase, T. B. Littenberg, M. Evans, J. McIver, N. J. Cornish, C.-J. Haster, J. Kanner, V. Raymond, S. Vitale, and A. Zimmerman, ArXiv e-prints (2018), arXiv:1808.03619 [gr-qc].
[32] J. C. Driggers et al., (2018), arXiv:1806.00532 [gr-qc].
[33] J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, Review of Scientific Instruments 83, 024501 (2012), https://doi.org/10.1063/1.3675891.
[34] G. D. Meadors, K. Kawabe, and K. Riles, Classical and Quantum Gravity 31, 105014 (2014).
[35] V. Tiwari, M. Drago, V. Frolov, S. Klimenko, G. Mitselmakher, V. Necula, G. Prodi, V. Re, F. Salemi, G. Vedovato, and I. Yakushin, Classical and Quantum Gravity 32, 165014 (2015).
[36] C. Cahillane, J. Betzwieser, D. A. Brown, E. Goetz, E. D. Hall, K. Izumi, S. Kandhasamy, S. Karki, J. S. Kissel, G. Mendell, R. L. Savage, D. Tuyenbayev, A. Urban, A. Viets, M. Wade, and A. J. Weinstein, Phys. Rev. D

96, 102001 (2017).
[37] A. D. Viets, M. Wade, A. L. Urban, S. Kandhasamy, J. Betzwieser, D. A. Brown, J. Burguet-Castell, C. Cahillane, E. Goetz, K. Izumi, S. Karki, J. S. Kissel, G. Mendell, R. L. Savage, X. Siemens, D. Tuyenbayev, and A. J. Weinstein, Classical and Quantum Gravity 35, 095015 (2018).
[38] N. J. Cornish and T. B. Littenberg, Classical and Quantum Gravity 32, 135012 (2015).
[39] T. B. Littenberg and N. J. Cornish, Phys. Rev. D 91, 084034 (2015).
[40] J. M. Dickey and B. P. Lientz, Ann. Math. Statist. 41, 214 (1970).
[41] I. Verdinelli and L. Wasserman, Journal of the American Statistical Association 90, 614 (1995).
[42] E.-J. Wagenmakers, T. Lodewyckx, H. Kuriyal, and
R. Grasman, Cognitive Psychology 60, 158 (2010).
[43] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, S. Vitale, B. Aylott, K. Blackburn, N. Christensen, M. Coughlin, W. Del Pozzo, F. Feroz, J. Gair, C.J. Haster, V. Kalogera, T. Littenberg, I. Mandel, R. O'Shaughnessy, M. Pitkin, C. Rodriguez, C. Röver, T. Sidery, R. Smith, M. Van Der Sluys, A. Vecchio, W. Vousden, and L. Wade, Phys. Rev. D 91, 042003 (2015).
[44] J. Skilling, Bayesian Anal. 1, 833 (2006).
[45] N. Lartillot and H. Philippe, Systematic Biology 55, 195 (2006).
[46] S. Reyes and D. A. Brown, ArXiv e-prints (2018), arXiv:1808.07013 [astro-ph.HE].
[47] R. Essick and N. N. Weinberg, ArXiv e-prints (2018), arXiv:1809.00264 [astro-ph.HE].

[^0]: ${ }^{57}$ Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
 ${ }^{58}$ INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
 ${ }^{59}$ Rochester Institute of Technology, Rochester, NY 14623, USA
 ${ }^{60}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
 ${ }^{61}$ INFN, Sezione di Genova, I-16146 Genova, Italy
 ${ }^{62}$ RRCAT, Indore, Madhya Pradesh 452013, India
 ${ }^{63}$ Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
 ${ }^{64}$ OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
 ${ }^{65}$ Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
 ${ }^{66}$ Artemis, Université Côte d'Azur, Observatoire Côte d'Azur,
 CNRS, CS 34229, F-06304 Nice Cedex 4, France
 ${ }^{67}$ Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
 ${ }^{68}$ Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France
 ${ }^{69}$ Washington State University, Pullman, WA 99164, USA
 ${ }^{70}$ University of Oregon, Eugene, OR 97403, USA
 ${ }^{71}$ Laboratoire Kastler Brossel, Sorbonne Université, CNRS,
 ENS-Université PSL, Collège de France, F-75005 Paris, France
 ${ }_{72}^{72}$ Università degli Studi di Urbino 'Carlo Bo,' I-61029 Urbino, Italy
 ${ }^{73}$ INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
 ${ }^{74}$ Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
 ${ }^{75}$ VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
 ${ }^{76}$ University of Maryland, College Park, MD 20742, USA
 ${ }^{77}$ School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
 ${ }^{78}$ Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
 ${ }^{79}$ Università di Napoli 'Federico II,' Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
 ${ }^{80}$ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
 ${ }^{81}$ Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy
 ${ }^{82}$ RESCEU, University of Tokyo, Tokyo, 113-0033, Japan.
 ${ }^{83}$ Tsinghua University, Beijing 100084, China
 ${ }^{84}$ Texas Tech University, Lubbock, TX 79409, USA
 ${ }^{85}$ Kenyon College, Gambier, OH 43022, USA
 ${ }^{86}$ The University of Mississippi, University, MS 38677, USA
 ${ }^{87}$ Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", I-00184 Roma, Italyrico Fermi, I-00184 Roma, Italy
 ${ }^{88}$ The Pennsylvania State University, University Park, PA 16802, USA
 ${ }^{89}$ National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
 ${ }^{90}$ Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
 ${ }^{91}$ Center for Interdisciplinary Exploration \mathcal{E} Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
 ${ }^{92}$ Canadian Institute for Theoretical Astrophysics,
 60 St. George Street, Toronto, Ontario, M5S 3H8, Canada
 ${ }^{93}$ University of Chicago, Chicago, IL 60637, USA
 ${ }^{94}$ Pusan National University, Busan 46241, Korea
 ${ }^{95}$ Carleton College, Northfield, MN 55057, USA
 ${ }^{96}$ The Chinese University of Hong Kong, Shatin, NT, Hong Kong
 ${ }^{97}$ INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
 ${ }^{98}$ INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
 ${ }^{99}$ OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
 ${ }^{100}$ Università di Roma 'La Sapienza,' I-00185 Roma, Italy
 ${ }^{101}$ Université Libre de Bruxelles, Brussels 1050, Belgium
 ${ }^{102}$ Sonoma State University, Rohnert Park, CA 94928, USA
 ${ }^{103}$ Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
 ${ }^{104}$ Columbia University, New York, NY 10027, USA
 ${ }^{105}$ Montana State University, Bozeman, MT 59717, USA
 ${ }^{106}$ Universitat de les Illes Balears, IAC3-IEEC, E-07122 Palma de Mallorca, Spain ${ }^{107}$ University of Rhode Island
 ${ }^{108}$ The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
 ${ }^{109}$ Bellevue College, Bellevue, WA 98007, USA
 ${ }^{110}$ Institute for Plasma Research, Bhat, Gandhinagar 382428, India
 ${ }^{111}$ The University of Sheffield, Sheffield S10 2TN, United Kingdom
 ${ }^{112}$ California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
 ${ }^{113}$ Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
 ${ }^{114}$ Montclair State University, Montclair, NJ 07043, USA

[^1]: ${ }^{115}$ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
 ${ }^{116}$ Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
 ${ }^{117}$ Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
 ${ }^{118}$ School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
 ${ }^{119}$ University and Institute of Advanced Research,
 Koba Institutional Area, Gandhinagar Gujarat 382007, India
 ${ }^{120}$ Indian Institute of Technology Bombay
 ${ }^{121}$ University of Szeged, Dóm tér 9, Szeged 6720, Hungary
 ${ }^{122}$ Tata Institute of Fundamental Research, Mumbai 400005, India
 ${ }^{123}$ INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
 ${ }^{124}$ University of Michigan, Ann Arbor, MI 48109, USA
 ${ }^{125}$ Abilene Christian University, Abilene, TX 79699, USA
 ${ }^{126}$ American University, Washington, D.C. 20016, USA
 ${ }^{127}$ University of Biatystok, 15-424 Biatystok, Poland
 ${ }^{128}$ University of Southampton, Southampton SO17 1BJ, United Kingdom
 ${ }^{129}$ University of Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA
 ${ }^{130}$ Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
 ${ }^{131}$ Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
 ${ }^{132}$ Inje University Gimhae, South Gyeongsang 50834, Korea
 ${ }^{133}$ National Institute for Mathematical Sciences, Daejeon 34047, Korea
 ${ }^{134}$ Ulsan National Institute of Science and Technology
 ${ }^{135}$ NCBJ, 05-400 Świerk-Otwock, Poland
 ${ }^{136}$ Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
 ${ }^{137}$ Cornell Universtiy
 ${ }^{138}$ Hillsdale College, Hillsdale, MI 49242, USA
 ${ }^{139}$ Hanyang University, Seoul 04763, Korea
 ${ }^{140}$ NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
 ${ }^{141}$ Dipartimento di Fisica, Università degli Studi Roma Tre, I-00154 Roma, Italy
 ${ }^{142}$ INFN, Sezione di Roma Tre, I-00154 Roma, Italy
 ${ }^{143}$ ESPCI, CNRS, F-75005 Paris, France
 ${ }^{144}$ Southern University and ABM College, Baton Rouge, LA 70813, USA
 ${ }^{145}$ College of William and Mary, Williamsburg, VA 23187, USA
 ${ }^{146}$ Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
 ${ }^{147}$ Indian Institute of Technology Madras, Chennai 600036, India
 ${ }^{148}$ INFN Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
 ${ }^{149}$ Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
 ${ }^{150}$ IISER-Kolkata, Mohanpur, West Bengal 741252, India
 ${ }^{151}$ Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
 ${ }^{152}$ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
 ${ }^{153}$ Université de Lyon, F-69361 Lyon, France
 ${ }^{154}$ Hobart and William Smith Colleges, Geneva, NY 14456, USA
 ${ }^{155}$ Università degli Studi di Firenze, I-50121 Firenze, Italy
 ${ }^{156}$ OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
 ${ }^{157}$ Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland ${ }^{158}$ University of Washington, Seattle, WA 98195, USA
 ${ }^{159}$ SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
 ${ }^{160}$ King's College London, University of London, London WC2R 2LS, United Kingdom
 ${ }^{161}$ Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
 ${ }^{162}$ Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India
 ${ }^{163}$ International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil
 ${ }^{164}$ Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA
 ${ }^{165}$ Andrews University, Berrien Springs, MI 49104, USA
 ${ }^{166}$ Università di Siena, I-53100 Siena, Italy
 ${ }^{167}$ Trinity University, San Antonio, TX 78212, USA
 ${ }^{168}$ Van Swinderen Institute for Particle Physics and Gravity,
 University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
 ${ }^{169}$ Colorado State University, Fort Collins, CO 80523, USA
 ${ }^{170}$ University of Texas at Austin, Austin, TX 78712, USA
 ${ }^{171}$ Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

[^2]: * Deceased, February 2018.
 \dagger Deceased, November 2017.

[^3]: ${ }^{1}$ Since we use a uniform-in- $\log _{10} A_{0}$ prior, $\mathcal{H}_{p g}$ does not formally include $A_{i}=0$. Nonetheless, our lower limit on A_{i} is sufficiently small that $\mathcal{H}_{!p g}$ is effectively nested in $\mathcal{H}_{p g}$.

[^4]: ${ }^{2}$ The upper limit with a uniform-in- A_{0} prior is larger only because we weight larger values of A_{0} more a priori than with a uniform-in- $\log _{10} A_{0}$ prior.

