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Catalytic upgrading of biowaste to chemicals and fuels is a key

step towards circular economy. Computational investigations

of catalytic upgrading of biowaste have made valuable

contributions towards catalysts design. Recent applications of

1) Density Functional Theory (DFT) and molecular dynamics

(MD) simulations, and microkinetic modelling to derive insights

on active sites, reactions mechanisms, solvation and catalyst

deactivation, 2) DFT and MD simulations, multiscale models,

and statistical methods for identification of structure of catalyst

nanoparticles, 3) DFT calculations and statistical methods for

identification of catalytic descriptors and development of

scaling relations, are discussed. A recent trend is to exploit

advances in data science and data repositories for catalysis.

There is immense potential for combined multiscale

computational techniques and machine learning to enable in

silico design of catalysts for the upgradation of biowaste.
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Introduction
Lignocellulosic agricultural and forestry wastes, sewage/

solid wastes, high-volume by-products such as glycerol

are biowastes which are potential chemical feedstocks [1].

Although biomass and biowastes present great opportu-

nities in the chemicals and fuels space, their widespread

adoption has been a challenge, partly due to the lack of

efficient catalytic routes to produce high value derivatives

in high yield [2]. Since catalytic reaction engineering lies

at the heart of process/technology development, rational

design and development of heterogeneous catalysts is

believed to be a key factor for a sustainable future [3].
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The explanatory capabilities of first principles computa-

tional investigations have deepened our understanding of a

wide range of aspects relevant to surface catalytic phenom-

ena and have aided in improving capabilities of rational

catalysts design [4]. Recent advances in computational

methods and high-performance computing are bringing

the predictive potential of such computations to the fore-

front, making ‘in silico’ or computational design of hetero-

geneous catalysts an imminent reality [5]. With examples

primarily on upgrading of biowastes such as glycerol, lignin

and its derivatives, this article discusses developments in

the last three years in computational catalysis which can

pave the way towards computational design of catalysts.

The article is organized as follows. The key challenges for

design of catalysts for upgrading of biowaste, and chal-

lenges in the computational investigations of such phe-

nomena are briefly presented in Section ‘Challenges in

catalysis for biowaste upgrading and in computational

investigations of catalytic phenomena’. Representative

computational catalysis investigations that derived mech-

anistic insights crucial for catalyst design are discussed in

Section ‘Deriving mechanistic insights’. Computational

efforts and tools in identifying structure of catalyst nano-

particles are discussed in Section ‘Identification of

structure of catalyst nanoparticles structural evolution

at reaction conditions’. In Section ‘Computational screen-

ing of catalysts: catalytic descriptors and scaling

relationships’, computational tools that enable screening

of potential catalysts and prediction of catalytic perfor-

mance are discussed with examples. Recent trends in

application of machine learning and data repositories in

computational catalysis are presented in Section

‘Computational catalysis with machine learning and

materials/catalysis databases’. A summary of recent trends

and perspective on future directions is presented in

Section ‘Conclusions and perspective’.

Challenges in catalysis for biowaste
upgrading and in computational
investigations of catalytic phenomena
Biomass and biowastes molecules are characterized by high

abundance of oxygen containing functional groups. Many

of the catalytic processes for upgrading of biowaste deri-

vatives require selective elimination and/or transformation

of these functional groups, which are challenges [6].Bifunc-

tional catalysts containing at least two active sites which

may cooperate to facilitate the same elementary reaction

step or facilitate two separate elementary steps have been

identified as the most promising candidates for these
www.sciencedirect.com
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reactions [7]. Bimetallic catalysts and metal-metal oxide

couple catalysts are prominent examples in this category.

However, 1) making appropriate choice of the combination

of materials with their optimum composition, 2) ability to

design for desired surface functionality, and 3) ability to

tune surface functionality for desired reactivity and product

selectivity continue to be challenges.

The number of computational investigations of catalytic

upgrading ofbiowastehasbeenincreasingrapidlyandsome

of the emerging trends are summarized in recent review

articles [8–10]. Although such investigations have contrib-

uted significantly to our understanding of catalytic

phenomena, advances towards computational design of

catalysts have been slow. This is due to challenges in

computational investigations of such systems, specifically:

1) molecules are fairly complex, making it necessary to

evaluate large numbers of surface intermediates and ele-

mentary reaction steps, 2) reactions are typically carried out

in aqueous medium, necessitating investigation of solvent

effects on catalyst structure and properties, and on surface

kinetics and thermodynamics, 3) observables are signifi-

cantly influenced by reaction conditions, making it neces-

sary to calculate free energies which is computationally

intensive for condensed phase systems [9,11].

Computational directions, methods and
obtained insights for design of catalysts
Computational heterogeneous catalysis traditionally relied

on mechanistic insights derived using Density Functional

Theory (DFT) calculations on ideal catalyst surfaces and

computational screening/design of catalysts relied on

descriptor-based scaling relations and kinetic modelling

[4]. Keeping pace with ‘operando’ investigations in cataly-

sis [12], the computational model catalyst systems are

becoming realistic, and by applying multiscale computa-

tional methods, we are making rapid strides towards

‘operando computational catalysis’ [13,14]. Computational

design of catalysts requires mechanistic insights on the

reaction chemistry, structure and evolution of the catalysts

under reaction conditions and methods for the rapidscreen-

ing of potential catalysts. All these aspects are discussed in

this section with suitable examples (Figure 1).

Deriving mechanistic insights

Identification of active sites and reaction mechanisms on

catalysts

For information regarding fundamentals of the techni-

ques and methods described in this section, readers are

directed to the review article covering these topics [15].

All the aspects covered in this section are summarized in

Figure 2.

Potential energy surface (PES)

DFT calculations of elementary reaction steps on repre-

sentative model catalyst systems enable the construction of
www.sciencedirect.com 
PES for the reaction network. Analysis of the PES with the

corresponding system geometriesprovides insights into the

active sites on the catalyst and reaction mechanisms.

Analysis of the DFT derived PESs for the hydrodeoxy-

genationof glycerol on Ir and ReOx-Ir coupled catalystgave

insights on the bifunctional catalysis by Ir and the Brønsted

acidic Re-OH sites, enabling selectivity to 1,3-propanediol

(1,3-PDO) [16�]. The analysis in conjunction with experi-

mental observations also qualitatively explained the vol-

cano type behaviour on the Ir:Re composition (optimum

composition Ir:Re = 1) of the catalyst for optimum yield of

1,3-PDO. At high and low Ir:Re ratio, the catalyst exhibited

activity and product selectivity similar to metallic Ir and

ReOx catalysts, respectively; however, both are inactive

and produce 1,2-propanediol.

Understanding the factors determining the depolymeri-

zation of lignin by hydrogenolysis is crucial for developing

processes for its valorization [17]. Analysis of DFT PESs

showed that Ru-doped Ni catalyst is more effective for

the hydrogenolysis of lignin as it exhibited a lower acti-

vation barrier for the b-O-4 link cleavage (C–O bond

cleavage) in a lignin surrogate than Ni catalyst [18�]. The

oxophilic nature Ru metal was found to be responsible for

the lowering of activation barrier. This implied that

doping small amounts of oxophilic metals with Ni would

enhance its activity while high loading of such metals may

lead to its deactivation due to strongly bound oxygenate

intermediates. A similar positive effect of alloying oxo-

philic metals such as Re [19] and Fe [20,21] with Ni in

enhancing efficiency of C–O bond cleavage in lignin

derived aromatics has been reported.

Free energy surface (FES)

When temperature and entropic effects have significant

contributions to surface phenomena, the FES is required to

provide experimentally relevant insights and predictions.

This is especially the case where adsorption and surface

coverage determine the surface catalytic phenomena.

In accordance with the analysis of DFT calculated FESs

for the hydrodeoxygenation of furfural (biomass pyrolysis

derivative) on Ni and boron-doped Ni catalysts (Ni-B) at

the relevant surface coverage of hydrogen, it was shown

that boron doping has a significant promotional effect on

catalytic performance [22�]. Boron doping lowered the

activation barrier for the rate determining step and

enhanced the adsorption strength of surface intermedi-

ates, without altering reaction pathways. This investiga-

tion predicted Ni-B as a potential alternative to the

expensive Ru catalyst typically used for this reaction.

Microkinetic modelling (MKM)

Quantification of the effect of sensitivity of elementary

reaction steps to microscopic surface structures and their
Current Opinion in Chemical Engineering 2019, 26:20–27
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Figure 1
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Aspects that will contribute towards computational design of catalysts.
effects on macroscopic and measurable parameters such

as rate constants and catalytic turnovers is best accom-

plished using first principles microkinetic modelling.

Identification of rate determining steps and analysis of

surface coverage of key species give indications on how

catalysts can be altered to enable enhanced catalytic

turnovers or desired product selectivity.

DFT-basedMKM evaluation of the dehydrationofglycerol

to propylene on MoO3 catalyst revealed the key role played

by the surface lattice oxygen vacancy sites in the C–O bond

cleavage steps, which are the key steps in the process [23].

Pre-reduction of the catalyst with H2 or high H2 pressure

during reaction generated these vacancies by elimination of

water in the Mars van Krevelen mechanism. The ineffi-

ciency of MoO3 for H2 dissociation, evident from the high-

est activation barrier among all the elementary steps, is a

limitation in the performance of this catalyst.

MKM can be computationally very expensive for inves-

tigation of larger complex molecules where many
Current Opinion in Chemical Engineering 2019, 26:20–27 
elementary steps must be investigated. An alternative

to investigating all elementary steps is to use adsorption

and transition state scaling relations. Such a strategy of

using scaling relations together with explicit calculations

of elementary steps was demonstrated in the DFT MKM

investigation of aqueous phase reforming of glycerol on Pt

catalyst [24��].

Reactive molecular dynamics simulations

Reactive molecular dynamics simulation is an excellent

tool to investigate surface phenomena in liquid phase as

this technique inherently samples the complexities in the

configurational space and can be used to reconstruct the

free energy landscape for the reactions.

ReaxFF [25]-based MD simulations of lignin fragmenta-

tion on Pd catalyst in methanol-water solvent mixture

revealed the dynamics of adsorption of lignin from the

solution, the surface reaction initiated by the dissociative

attachment via the hydroxyl and desorption of the
www.sciencedirect.com
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Figure 2
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Schematic representation of computational techniques to derive mechanistic insights on heterogeneously catalyzed surface phenomena.
fragments [26�]. The C–O bond cleavage on the Pd(100)

surface was marginally faster than on the Pd(111) surface.

The MD trajectories also showed that 82–95% of catalyst

surface was covered by the solvent molecules, reiterating

the need to investigate competitive interaction of the

solvent and substrates on the catalyst.

Solvation effects on catalytic activity and product selectivity

The presence of solvent can have wide ranging effects on

the activity of the catalysts and product selectivity. For

detailed inputs on solvent effects in catalysis and compu-

tational techniques to study such effects, readers are

directed to a recent review article [11].

Understanding the effect of solvents in influencing the

adsorption of lignin surrogates on different catalysts is

important for making choices of catalysts for its depo-

lymerization. Combined classical MD and DFT analysis

of the adsorption energies of lignin dimer in ethanol

solvent on Cu and Ni catalysts suggested that the lignin

would adsorb on the Ni catalyst and not on the Cu,

making Ni a preferred catalyst for hydrogenolysis [27].

DFT-based MKM using the implicit solvation scheme for

metal surfaces (iSMS) [28], investigating the hydrodeox-

ygenation of methyl propionate on Pd(111) surface in

water and 1,4-dioxane solvents showed that the dominant

decarboxylation pathway in water had an activity that was

an order of magnitude lower than the dominant decarbo-

nylation pathway in 1,4-dioxane [29]. This shows the

potential to change catalyst activity and product selectiv-

ity by changing the solvent. The lower reactivity in water
www.sciencedirect.com 
was due to increased stability of a surface intermediate

which saturated the catalyst surface.

MKM-based investigation of aqueous reforming of glyc-

erol on Pt catalyst showed multiple roles of water in the

reaction network which included 1) dissociative adsorp-

tion to form hydroxyls which promoted CO oxidation, 2)

kinetic and thermodynamic inhibition of C–H bond acti-

vation steps, 3) kinetic and thermodynamic promotion of

O–H bond activation steps, and 4) thermodynamic inhi-

bition of decarbonylation step [24��]. The MKM derived

product selectivity matched experimental observations

only when water was explicitly incorporated in the reac-

tion scheme.

Chemical deactivation mechanisms of catalysts and means

to resist them

Impurities in feed streams can deactivate catalysts, while in

some other cases, reversible structural changes in the

catalysts may result in loss in activity, necessitating its

regeneration. The latter is often the case of reducible metal

oxide catalysts undergoing reduction. Understanding cata-

lyst deactivation is crucial to design catalysts to resist it.

Amino acids impurities in biomass fermentation derived

feedstock are responsible for deactivation of Ni and Pd

catalyst used for liquid phase hydro processing of the

derivatives [30]. A combination of MD simulations and

DFT calculations revealedthestrong interaction ofS atoms

in amino acids with Ni catalyst in the aqueous phase,

explaining the irreversible deactivation of the catalyst

[31�]. Although bimetallic Ni-Au catalyst is likely to over-

come this limitation due to its weaker interaction with the
Current Opinion in Chemical Engineering 2019, 26:20–27
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amino acids, making it a promising candidate with resis-

tance to deactivation [31�], Pd-Au catalyst had nearly

similar interaction with the amino acids as Pd catalyst,

making both of them susceptible to deactivation [32].

CuO catalyst gave high yield in the oxidation of glycerol

to dicarboxylic acids such as tartronic acid and oxalic acid

with H2O2 promoter [33��]. Reaction without H2O2 led to

rapid deactivation of the CuO catalyst due to its reduction

to metallic Cu. DFT calculations showed that the hydro-

xyls resulting from the dissociation of H2O2 not only

opened an alternate reaction pathway for glycerol oxida-

tion, without consuming the lattice oxygen by the Mars

van Krevelen mechanism, but also refilled lattice oxygen

vacancies. Both these prevented the reduction of CuO

and thereby prevented deactivation.

Identification of structure of catalyst nanoparticles

structural evolution at reaction conditions

Identification of stable structures of catalyst nanoparticles

at the operating conditions, understanding the metal-

support interactions and their influence on the electronic

and geometric properties of the catalyst, understanding/

predicting structural evolution of nanoparticles under the

influence of surface species are all crucial in making

realistic catalyst models to enable accurate computational

predictions. Representative recent investigations in these

directions, although not originally performed for biowaste

feedstocks, are presented in this section, as the method-

ologies adopted, and insights drawn are applicable for

such systems as well. For more details on computational

techniques used and other examples, readers are directed

to review articles covering this topic [13,14,34]. Schematic

illustrations of isolated catalyst nanoparticles and sup-

ported nanoparticles are given in Figure 3.
Figure 3
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Combined classical MD-based and DFT-based investi-

gation showed that the morphology and structural fea-

tures of Pt nanoparticles of different sizes on different

supports such as graphene and titanium carbide were

significantly influenced by the nature of the metal-

support interaction (MSI), with the trend of the coordi-

nation numbers of the metal atoms of the nanoparticles

decreasing with increasing MSI [35�]. An alternative to

using MD simulations is to use DFT-based genetic

algorithms and this approach was used to identify the

global minimum structures of Pt and Rh nanoclusters on a

ZrO2 support [36]. The lower MSI of Rh compared to Pt

was shown to make Rh nanoclusters compact while the Pt

nanoclusters had flattened morphology analogous to

higher wetting of the support.

The morphology and surface structure of nanoparticles

may change under the influence of the species environ-

ment. Using a combination of Wulff construction, Lang-

muir adsorption isotherm and DFT calculations, the

restructuring of gold nanoparticles in an oxygen environ-

ment due to the strong interaction of oxygen with the

nanoparticle surface, reducing the surface tension of

specific crystal facets has been demonstrated [37��].

With bimetallic/multicomponent catalysts, there is the

added challenge to understand the specific interactions of

the components, leading to formation of alloys or special

surface ordering of the atoms. A computational frame-

work has been developed where the energy of the com-

posite materials is parameterized solely on the chemical

nature of the nearest neighbour atom and the coordina-

tion number of the atom [38�]. This framework allows

identification of relative surface ordering of atoms in alloy

nanoparticles of up to 1.6 nm in size, with reasonable

computational cost and accuracy.
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interface & environment

l-support interaction
& interface
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Computational screening of catalysts: catalytic

descriptors and scaling relationships

The predictive potential of computational investigations

has relied on the identification and establishment of 1)

adsorption scaling relations which are linear correlations of

adsorption energies of one species with a related species

and 2) transition state scaling relations which are linear

correlations of the energies of the transition states for

elementary reactions with a related adsorption energy of

a surface intermediate, across different materials [5,39].

Identifying an appropriate descriptor for catalytic figures

of merit such as reactivity of a catalyst is the first step in

establishing scaling relations for them. DFT investiga-

tions of hydrodeoxygenation of guaiacol (lignin deriva-

tive) on bimetallic Ni-Fe and Pt-Fe catalysts [21] and

hydrodeoxygenation of m-cresol on Ni and Ni-Fe cata-

lysts [20] showed that the C–O bond length in these

adsorbed species is a descriptor for the efficacy of the

catalysts for the C–O bond cleavage. These investigations

showed that the enhancement in the C–O bond cleavage

activity in the Ni-Fe and Pt-Fe catalysts was due to the

oxophilic nature of Fe, which activated the C–O bond.

While there exists a linear correlation of the binding energy

of water with that of methanol on different catalysts, the

binding energy of water does not scale well with that of

dissociated species such as surface O on metal oxides,

nitrides, carbides and so on [27]. This means that a catalyst

with strong interaction with water may not interact with

surface O and vice versa. A key implication of the finding is

that there is potential to tune the interaction of water and

the dissociated oxygenate species on the surface indepen-

dently, as desired for specific reaction chemistries.

The structure sensitivity of the adsorption scaling rela-

tions on metal surfaces was addressed by incorporating a

factor for the coordination number into the linear rela-

tions, making it possible to apply scaling relations to

nanostructured metallic catalysts which have a wide

variety of surface sites [40]. Adsorption scaling relations

have now been extended further to incorporate the sta-

bility of the metal sites [41�]. Linear correlations of the

typical adsorption descriptors such as OH, CH3, CO and

so on with the stability of the adsorption site was demon-

strated even for multicomponent alloys, accounting for

the structure of the sites as well as the composition [42��].
Developments in this direction will enable screening of

multicomponent catalysts, linking their stability and

structural features to catalytic performance.

Computational catalysis with machine
learning and materials/catalysis databases
With advances in data sciences, machine learning (ML)

based techniques are increasingly finding applicability in

computational catalysis. The applications include identi-

fying catalytic descriptors [43], speeding up transition
www.sciencedirect.com 
state searches [44], predicting the performance of catalyst

nanoparticles [45�], high throughput screening of bime-

tallic catalysts using the descriptor approach [46��], devel-

opment of forcefields for large scale MD simulations of

solids [47], to finding DFT functionals without having to

solve the Kohn-Sham equations [48��].

Storage of the enormous volumes of data generated using

conventional computational catalysis techniques in pub-

licly accessible databases will enable exploiting the capa-

bilities of data mining techniques and ML algorithms to

design novel catalyst [49]. Examples of openly accessible

structured data repositories and web applications include

‘The Materials Project’ [50], ‘Computational Materials

Repository’ [51], ‘Novel Materials Discovery NoMaD’

[52], and Catalysis-hub.org [53]. Although most current

applications of ML are primarily in catalysis for small

molecules, their application to study biowaste upgrada-

tion has immense potential. For more details on the

concepts, the different techniques and examples, readers

are directed to recent review articles [54–56]. Combina-

tions of multiscale computational techniques and ML

methods are likely to be factors in the industrial adoption

of computational catalysis [57].

Conclusions and perspective
While DFT calculations continue to be the workhorse for

computational investigations of catalytic upgrading of

biowaste, the model catalytic systems and model com-

pounds are getting more representative of experimental

conditions. Many investigations are incorporating the

effects of temperature, pressure, solvent and species

environment using multiscale approaches. Development

of new methods and approaches for investigation of

complex phenomena are gaining prominence compared

to routine applications of existing tools. With increase in

supercomputing power, DFT-based microkinetic model-

ling for relatively large systems and ab initio molecular

dynamics simulations are increasingly being employed to

investigate catalytic phenomena. Improvements to cata-

lytic scaling relations with structure sensitivity and site

specificity will enable development of structure-activity

and structure selectivity maps for catalytic nanoparticles.

With advances in data science and public data reposito-

ries, a combination of machine learning and first princi-

ples calculations will become the norm in computational

heterogeneous catalysis. All these developments are

likely to usher in an era of automated in silico design of

catalysts and process technologies around theme ‘waste to

value’.
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Krewer U, Reuter K, Grunwaldt J-D: Future challenges in
heterogeneous catalysis: understanding catalysts under
dynamic reaction conditions. ChemCatChem 2017, 9:17-29.

13. Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J,
Pidko EA, Nachtigall P: Towards operando computational
modeling in heterogeneous catalysis. Chem Soc Rev 2018,
47:8307-8348.

14. De Vrieze JE, Gunasooriya GTKK, Thybaut JW, Saeys M:
Operando computational catalysis: shape, structure, and
coverage under reaction conditions. Curr Opin Chem Eng 2019,
23:85-91.

15. Shan N, Zhou M, Hanchett MK, Chen J, Liu B: Practical principles
of Density Functional Theory for catalytic reaction simulations
on metal surfaces – from theory to applications. Mol Simul
2017, 43:861-885.

16.
�

Varghese JJ, Cao L, Robertson C, Yang Y, Gladden LF, Lapkin AA,
Mushrif SH: Synergistic contribution of the acidic metal oxide–
metal couple and solvent environment in the selective
hydrogenolysis of glycerol: a combined experimental and
computational study using ReOx–Ir as the catalyst. ACS Catal
2019, 9:485-503

DFT calculations and experimental data analysis showed that the opti-
mum composition of Ir and ReOx enabled selective elimination of sec-
ondary hydroxyl during glycerol hydrogenolysis by exploiting the multi-
functional active sites across the Ir/ReOx interface. The inhibitory effect of
water and promotional effect of sulfuric acid during hydrogenolysis was
revealed using a combination of molecular dynamics and DFT simulations
and NMR relaxometry analysis.
Current Opinion in Chemical Engineering 2019, 26:20–27 
17. Cheng C, Shen D, Gu S, Luo KH: State-of-the-art catalytic
hydrogenolysis of lignin for the production of aromatic
chemicals. Catal Sci Technol 2018, 8:6275-6296.

18.
�
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49. Bo C, Maseras F, López N: The role of computational results
databases in accelerating the discovery of catalysts. Nat Catal
2018, 1:809-810.

50. Materilas Project. 2019 . (Accessed 22 May 2019) https://
materialsproject.org/.

51. Computational Materials Repository. 2019 . (Accessed 22 May
2019 https://cmr.fysik.dtu.dk/.

52. Nomad Repository. 2019 . (Accessed 22 May 2019 https://
nomad-repository.eu/.

53. WintherHoffmann MJ, Boes JR, Mamun O, Bajdich M, Bligaard T:
Catalysis-hub.Org: an open electronic structure database for
surface reactions. Sci Data 2019, 6:75.

54. Goldsmith BR, Esterhuizen J, Liu J-X, Bartel CJ, Sutton C:
Machine learning for heterogeneous catalyst design and
discovery. AIChE J 2018, 64:2311-2323.

55. Haghighatlari M, Hachmann J: Advances of machine learning in
molecular modeling and simulation. Curr Opin Chem Eng 2019,
23:51-57.

56. Schlexer Lamoureux P, Winther KT, Garrido Torres JA, Streibel V,
Zhao M, Bajdich M, Abild-Pedersen F, Bligaard T: Machine
learning for computational heterogeneous catalysis.
ChemCatChem 2019, 11:3581-3601 http://dx.doi.org/10.1002/c,
ctc.201900595.

57. Jones G: Industrial computational catalysis and its relation to
the digital revolution. Nat Catal 2018, 1:311-313.
Current Opinion in Chemical Engineering 2019, 26:20–27

http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0155
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0155
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0155
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0155
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0160
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0160
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0160
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0160
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0165
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0165
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0165
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0165
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0165
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0170
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0170
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0170
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0175
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0175
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0175
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0175
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0180
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0180
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0180
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0180
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0185
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0185
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0185
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0185
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0190
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0190
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0190
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0195
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0195
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0195
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0195
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0200
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0200
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0200
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0205
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0205
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0205
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0210
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0210
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0210
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0210
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0215
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0215
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0215
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0215
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0220
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0220
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0225
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0225
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0225
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0230
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0230
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0230
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0235
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0235
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0235
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0240
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0240
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0240
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0245
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0245
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0245
https://materialsproject.org/
https://materialsproject.org/
https://cmr.fysik.dtu.dk/
https://nomad-repository.eu/
https://nomad-repository.eu/
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0265
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0265
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0265
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0270
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0270
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0270
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0275
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0275
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0275
http://dx.doi.org/10.1002/c,ctc.201900595
http://dx.doi.org/10.1002/c,ctc.201900595
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0285
http://refhub.elsevier.com/S2211-3398(19)30030-9/sbref0285

	Computational design of catalysts for bio-waste upgrading
	Introduction
	Challenges in catalysis for biowaste upgrading and in computational investigations of catalytic phenomena
	Computational directions, methods and obtained insights for design of catalysts
	Deriving mechanistic insights
	Identification of active sites and reaction mechanisms on catalysts
	Potential energy surface (PES)
	Free energy surface (FES)
	Microkinetic modelling (MKM)
	Reactive molecular dynamics simulations

	Solvation effects on catalytic activity and product selectivity
	Chemical deactivation mechanisms of catalysts and means to resist them

	Identification of structure of catalyst nanoparticles structural evolution at reaction conditions
	Computational screening of catalysts: catalytic descriptors and scaling relationships

	Computational catalysis with machine learning and materials/catalysis databases
	Conclusions and perspective
	Conflict of interest statement
	References and recommended reading
	Acknowledgement


