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Abstract—In this paper, we present two completely uncoupled
algorithms for utility maximization. In the first part, we present
an algorithm that can be applied for general non-concave utilities.
We show that this algorithm induces a perturbed (by ε) Markov
chain, whose stochastically stable states are the set of actions
that maximize the sum utility. In the second part, we present an
approximate sub-gradient algorithm for concave utilities which
is considerably faster and requires lesser memory. We study the
performance of the sub-gradient algorithm for decreasing and
fixed step sizes. We show that, for decreasing step sizes, the
Cesaro averages of the utilities converges to a neighborhood of
the optimal sum utility. For constant step size, we show that
the time average utility converges to a neighborhood of the
optimal sum utility. Our main contribution is the expansion of
the achievable rate region, which has been not considered in the
prior literature on completely uncoupled algorithms for utility
maximization. This expansion aids in allocating a fair share of
resources to the nodes which is important in applications like
channel selection, user association and power control.

I. INTRODUCTION

Radio resource allocation is an important problem in in-
frastructure, ad-hoc and sensor networks [1]. In particular we
need to address the following resource allocation problems, viz
channel selection, user association and power control. Channel
selection and power control are essential for the efficient use of
radio resources, whereas user association deals with efficient
use of deployed Access Points. The solution should cater to
the following objectives: (i) Network throughput optimality be
ensured (ii) Users get a fair share of the network throughput
(iii) Ease of implementable. With the advances in 5G wireless
systems, it is predicted that there will be a phenomenal
increase in the number of access points [2]. Added to this, we
have coexisting radio technologies like LTE and Wifi [3]. In
such scenarios, centralized solution is unsuitable due to a large
overhead. Further, centralized control is also impractical in a
heterogeneous setup. Thus robust and easy to implementable
distributed solutions are desirable.

In this paper, we provide solutions to the above problems
with the stated objectives. We arrive at such a solution using
the approach in [4], which the authors call as completely
uncoupled learning. In completely uncoupled learning, nodes’
decisions are based only on their past actions and utili-
ties. In [5], Marden et al propose a completely uncoupled
algorithm that maximizes the sum-payoff (which translates
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to maximizing sum-throughput in wireless networks). An
important attribute to consider in radio resource allocation
is fairness among nodes, i.e. every node should get a fair
share of the network throughput. In this paper, we consider
the problem of utility maximization, where maximizing some
utility functions have a notions of fairness [6]. We propose
two completely uncoupled algorithms that maximize the sum-
utility of the nodes. In our first algorithm, we discretize the
rate region, thereby we pose the utility maximization as a
combinatorial optimization problem. This algorithm applies
to general utilities, not necessarily concave. In our second
algorithm, we propose an approximate sub-gradient algorithm
for maximizing concave utilities. The main contribution of our
work is to provide flexibility in operating at any point in the
interior of the rate region.

Our algorithms are general and can be applied to any
general network utility maximization not restricted to wireless
networks. We present our algorithm for a general network,
while bearing the above stated applications in mind.

A. Related Literature
Tassiulas and Ephremides proposed the Max-weight algo-

rithm in [7]. The Max-weight algorithm can stabilize any ar-
rival rate within the rate region [7]. Proportional fair scheduler
was shown to optimize logarithmic utility function in [8]. In
[9], Neely et al proposed an algorithm that could stabilize
any arrival rate within the rate region and optimize a concave
utility for arrival rates exceeding the rate region. The main
drawback of the Max-weight algorithm, used in [7]–[9], is its
complexity and centralized nature.

Maximal scheduling algorithms, having low complexity,
could support only a fraction of the rate region [10]. Greedy
algorithms such as longest queue first scheduling, are optimal
only for a class of network topologies [11], [12]. Distributed
algorithms based on Gibbs sampling were proposed for IEEE
802.11 WLANs in [13], for channel selection and user asso-
ciation. A proportional fair resource allocation algorithm for
channel selection and user association was proposed in [14].
Both [13] and [14] require neighbor information exchange (or
knowledge) and are applicable only to some tailored utilities.

In [15], Jiang and Walrand proposed distributed scheduling
algorithms for a conflict graph model without collisions. They
proved that their algorithms are optimal assuming time scale
separation. In [16], Liu et al showed that stochastic approxi-
mation [17] leads to time scale separation when the update pa-
rameters are bounded. In [18], Jiang et al proposed distributed
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scheduling algorithms and showed them to be optimal without
time scale separation or bounded parameters assumption. A
discrete time version called Q-CSMA was proposed by Jian
Ni et al in [19], where collision free schedules are generated
by considering a control phase, thereby allowing multiple links
to change their state. SINR model was assumed in [20], where
the authors show that any arrival rate in the interior of the rate
region could be supported.

Resource allocation problems have been studied as coopera-
tive and non-cooperative games. In repeated prisoners dilemma
with selfish players, attempts were made to induce cooperation
in [21]–[23]. In [23], Pavlov method was proposed, which is
win-stay lose-shift. In our model, we do not assume that the
nodes (players) are selfish. Rather, we assume that the nodes
(players) cooperate, however are restricted in information, i.e.
they do not know the actions or payoffs of other nodes (play-
ers). A similar assumption is used in [4], [5] for maximizing
the sum payoff in a completely distributed manner.

In [24], Monderer and Shapley showed the existence of
Nash equilibrium for potential games and convergence of
better reply dynamics to Nash equilibrium. Blume studied
the interactions of players residing on an infinite lattice in
[25], where players choose actions based on best response,
perturbed best response and log-linear learning rules. In [26],
Marden et al formulated cooperative control problems as a
repeated potential game. They designed objective functions
for players, such that the log-linear learning rule converges
to a pure Nash equilibrium in a probabilistic sense, where
Nash equilibrium action is played for a large fraction of time.
The idea of state based potential games was introduced in
[27] with the goal of designing local objectives to attain a
desired global objective through log-linear learning, where the
introduction of state helps in coordination. In [28], Li and
Marden considered designing local objectives for state based
potential games with continuous action sets with the objective
of minimizing a convex function of the joint action profile.

A completely uncoupled algorithm to reach efficient Nash
equilibrium was proposed by Pradelski et al in [4]. The
algorithm was based on the theory of perturbed Markov
chains [29],[30]. With similar ideas, Marden et al proposed
algorithms to achieve maximum sum payoff in [5]. These
algorithms were adapted to wireless networks in [31],[32]. In
[33], Borowski et al proposed distributed algorithm to achieve
efficient correlated equilibrium. In our prior work [34], we
proposed a distributed algorithm for utility maximization and
used perturbed Markov chain ideas to prove optimality. In [35],
we extended [34] to state based models.

B. Contributions

1) In this paper, we propose two distributed algorithms
for utility maximization. To the best of our knowledge,
we are the first to propose completely uncoupled utility
maximization algorithms that achieves the entire rate
region. These algorithms find application in distributed
channel selection, user association and power control in
a variety of wireless networks.

2) In the first algorithm, which we call General Network
Utility Maximization (G-NUM), we allow the utilities

to be general functions (not necessarily concave) of the
average payoff. We show that G-NUM is optimal and
the sum payoff maximizing algorithm in [4] is a special
case of it.

3) For concave utilities, we propose our second algorithm,
Concave Network Utility Maximization (C-NUM). In C-
NUM, we present an approximate subgradient algorithm
inspired by Gibbs sampling based Utility maximization
algorithm in [15]. With C-NUM, we show an important
connection between completely uncoupled algorithms
based on perturbed Markov chains and Gibbs sampling
based utility maximization algorithms such as [15].

4) We also derive upper bounds on the mixing time for the
algorithm in [4] and show that the mixing time (upper
bound) grows exponentially in the number of nodes.

C. Outline

The rest of the paper is organized as follows. In Section
II, we discuss the system model. In Section III, we propose
our first algorithm on general utility maximization and discuss
convergence results. We present the second algorithm for
concave utilities in Section IV with convergence results. We
discuss numerical results in Section V. In Section VI, we
provide a summary with comparisons. The proofs of our
results are discussed in detail in the Appendix VIII.

II. SYSTEM MODEL

We consider a system of N nodes. We assume a slotted
time model. In every time slot t, node i chooses to play an
action ai(t) ∈ Ai. We assume that, ∀i, Ai is finite. Let a(t) =
(a1(t), a2(t), · · · , aN (t)) ∈ A denote the action profile at time
t, where A =

∏
iAi. In slot t, node i gets a reward ri(t). We

assume that,

ri(t) = fi(a(t)),

where fi(·) is a non-negative function from A → R+. We
allow fi(·) to be general, thereby allowing our setup to be
applied in a variety of models.

Let p(a) denote the fraction of time action profile a ∈ A is
chosen, where

∑
a p(a) = 1. The average payoff received by

node i is given by,

r̄i(p) =
∑
a

p(a)ri(a). (1)

Let r̄ = (r̄1, r̄2, · · · , r̄N ) denote the vector of average payoffs
obtained by the nodes. We say that a payoff vector r̄ is
achievable if there exists a p > 0 satisfying (1). We denote by
R, the set of achievable payoffs. Then,

R =

{
r̄ = (r̄i(p)) |

∑
a

p(a) = 1, p(a) > 0

}
.

Let Ui denote the utility of node i, where Ui is a function
of r̄i. Without loss of generality, we assume that Ui(r̄i) is
bounded between 0 and 1. The objective here is to maximize
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the sum utility
∑
i Ui(r̄i) where r̄ ∈ R. We formulate the

utility maximization problem as,

max
∑
i

Ui(r̄i)

s.t. r̄i ≤
∑
a

p(a)ri(a)∑
a

p(a) = 1, p(a) ≥ 0.

(2)

In this work, we seek a distributed algorithm that solves (2).
By distributed, we mean that our algorithm is completely
uncoupled, where every node has knowledge only about its
previous actions and payoffs. A node chooses its action purely
based on its previous actions and payoffs. We assume that the
network satisfies the following interdependence definition.

Assumption 1. Interdependence: For any subset of the nodes
S and any action profile a = (aS , a−S), there exists a
node j /∈ S and an action profile (a′S , a−S), such that
fj(aS , a−S) 6= fj(a

′
S , a−S).

Remark 1. The adaptive CSMA models in [15], [19] assume
a conflict graph based network model. Extensions of [15],
[19] to more practical SINR based interference model was
considered in [36], [37]. In the above works, the service
rate of a link depends on the actions of other links only
through the notion of feasible actions (transmission modes) i.e.
ri(a) = fi(ai) s.t. ai is feasible. In contrast, we allow payoffs
to be a function of the joint action profile, i.e. ri(a) = fi(a),
where a = (a1, · · · , aN ) is the joint action profile. Such an
assumption is preferred in applications such as user associa-
tion and channel selection (See models in [38] [39]). In our
work, we assume that the network satisfies interdependence
which enables us to work with a more general model.

III. GENERAL NETWORK UTILITY MAXIMIZATION
ALGORITHM

In this section, we present a completely uncoupled utility
maximization algorithm for general utilities (possibly non
concave) and discuss its convergence results. Algorithm 1,
which we call General Network Utility Maximization (G-
NUM) algorithm is described below.

The history (and possible state) of any node i at the end of
slot t−1 is the sequence of actions (ai(1), · · · , ai(t−1)) and
the payoffs received (ri(1), · · · , ri(t−1)). We require that the
nodes maintain an internal “satisfaction” variable, denoted by
qi(t − 1) (at time t − 1), which is a function of the action
and the payoff received in the previous K slots (where K is a
fixed positive integer). We let qi(·) take values from the binary
set {0, 1}, where qi(·) = 1 represents a state of “content” with
the choice of actions and the payoff received (in the previous
K slots), while qi(·) = 0 represents a state of “discontent” for
the node. For every slot, the nodes have to choose an action
ai(·) and update their satisfaction variable qi(·).

Node i chooses action, ai(t), at the beginning of slot t
depending on its satisfaction variable qi(t − 1). If node i is
content at the beginning of slot t, i.e., qi(t − 1) = 1, then it
repeats an earlier action, here ai(t−K), with high probability

Algorithm 1 : General Network Utility Maximization
Algorithm (G-NUM)

Initialize:
Fix c > N , ε > 0 and K ≥ 1.
For all i, set qi(0) = 0.

Action update at time t:
if (qi(t− 1) = 1) then

ai(t) =

{
ai(t−K) w.p. 1− εc

ai ∈ Ai w.p. εc

|Ai|−1 if ai 6= ai(t−K)
else

ai(t) = ai w.p. 1
|Ai| where ai ∈ Ai

end if
Update for qi(·) at time t:
if (qi(t− 1) = 1) and (ai(t) = ai(t−K))

and

(
t∑

j=t−K+1

ri(j) =
t−1∑

j=t−K
ri(j)

)
then

qi(t) = 1 w.p. 1
else

qi(t) =


1 w.p. ε

1−Ui

(
1
K

t∑
j=t−K+1

ri(j)

)

0 w.p. 1− ε
1−Ui

(
1
K

t∑
j=t−K+1

ri(j)

)

end if

1 − εc (where, c is a parameter and c > N ). With a small
probability εc, any other action is chosen uniformly at random.
When node i is discontent, i.e., qi(t−1) = 0, the node selects
an action randomly and uniformly from Ai.

The satisfaction variable qi(t) is updated by the end of slot
t. If the node i was content in slot t − 1 (i.e., qi(t − 1) =
1), then, it continues to remain content if it had repeated an
earlier action (i.e., if ai(t) = ai(t−K), which happens with
high probability) and received the same payoff in the last K

slots, i.e.,
t∑

j=t−K+1

ri(j) =
t−1∑

j=t−K
ri(j) (which would happen

when the action profile in the network remains unchanged).
Otherwise, a node becomes content with a very low probability
depending on the utility, where the utility is a function of the
average of the payoffs received in the last K slots.

The satisfaction variable aids in synchronizing changes in
actions across the network. When all the nodes are content,
i.e., qi(t) = 1 for all i, all the nodes continue to repeat
the last K actions (in synchrony) and continue to receive a
constant average payoff based on the sequence of actions.
Now if a node decides to change its action, it becomes
discontent with a large probability and chooses its action
randomly in the subsequent slots. By interdependence this
causes other nodes in the network to become discontent and
sets a ripple effect causing all nodes in the network to become
discontent. Finally, the nodes become content again, where
a sequence of action profiles is preferred depending on the
average payoff corresponding to the K-sequence and nodes’
utilities. In the remainder of this section, we will prove that
the above algorithm chooses an action sequence that optimizes
the formulation in (2) as ε→ 0 and as K →∞.
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qi(t − 1)

ai(t) =

{
ai(t−K) w.p. 1− εc

ai 6= ai(t−K) w.p. εc

|Ai|−1 qi(t − 1)

ai(t) = aiw.p. 1
|Ai|

(a) Action Update at time t: A content node chooses the action that
was chosen K slots before with a large probability as indicated
in the left box. Whereas, a discontent node chooses an action
uniformly at random as shown in the right box.

ai(t) = ai(t−K)?

ri(t) = ri(t−K)?
Else

w.p. ε
1−Ui

 1
K

t∑
j=t−K+1

ri(j)



w.p. 1− ε
1−Ui

 1
K

t∑
j=t−K+1

ri(j)



(b) Satisfaction Update at time t: A content node becomes content
with probability 1, if it repeats the action that was chosen K slots
before and receives the same payoff it received K slots before, as
shown in the left box. In any other case, a node becomes content
with probability shown in the right box. Content and discontent
states are shown as a green happy and red sad smiley respectively.

Fig. 1: Gnum update: The Figure 1a shows the update of
actions and Figure 1b shows the update of satisfaction variable
at time t.

Remark 2. In G-NUM, we restrict the rate region to those
points achievable by a sequence of K actions. Thereby, the
problem of maximizing the utility is posed as a combinato-
rial optimization problem. A simple solution to this modified
problem is to use a frame with a sequence K of actions
and apply the algorithm in [5] over these frames. Such an
approach has been used in [33] to achieve efficient correlated
equilibrium. However, this requires an additional requirement
of frame synchronization. In G-NUM, we do not use frames
consisting of a sequence of actions, instead we let the action at
time t to depend on the previous K actions, thereby avoiding
the requirement of frame synchronization.

A sequence of transmit power levels is used to stabilize a
set of arrival rates in [20], wherein a node becomes content if
the node achieves its arrival rate. In contrast, in G-NUM, we
would like the nodes to maximize the utilities. This leads to a
significant difference to the analysis of G-NUM as compared
to the algorithm in [20].

Remark 3. With K = 1, G-NUM replicates the algorithm in
[5]. In this sense, G-NUM generalizes the ideas presented in
works such as [4] and [5].

A. Performance Analysis of G-NUM

In this section, we discuss the optimality of G-NUM. We
characterize the performance of G-NUM as t→∞ and ε→ 0.
To analyze the performance of G-NUM, we use tools from
perturbed Markov chains [29], [30]. We first show that G-
NUM induces a perturbed Markov chain (perturbed by ε). In
Theorem 1, we show that the stochastically stable states (See
Definition 2) of the Markov chain induced by G-NUM are
the set of actions that maximize the sum utility of the nodes.
Define Xε(t) as,

Xε(t) =

N∏
i=1

(ai(t−K + 1), .., ai(t), qi(t)).

Xε(t) corresponds to the actions of all the nodes in the
previous K slots and the “satisfaction” variable of the nodes
in the current slot t. In the following Lemma, we show that
Xε(t) is a regular perturbed Markov chain (perturbed by the
algorithm parameter ε) with a positive stationary distribution.

Definition 1. Regular perturbed Markov Chain: A Markov
process Xε(t), with state space Ω and transition probability
P ε, is a regular perturbed Markov process (perturbed by ε) if
the following conditions are satisfied (see [30]).

1) ∀ε > 0, Xε(t) is an ergodic Markov Process
2) ∀x, y ∈ Ω, lim

ε→0
P ε(x, y) = P 0(x, y)

3) ∀x, y ∈ Ω, if P ε(x, y) > 0 for some ε > 0, then,

0 < lim
ε→0

P ε(x, y)

εr(x,y)
<∞,

and r(x, y) ≥ 0 is called the resistance of the transition
x→ y.

Lemma 1. Xε(t) is a regular perturbed Markov chain (per-
turbed by ε) over the state space Ω = (AK , {0, 1}N ) with a
positive stationary distribution πε.

Proof. See Lemma 1 in [34].

The stationary distribution of the Markov chain Xε(t)
characterizes the long term average payoffs of the nodes. We
seek to characterize the stationary distribution of the Markov
chain Xε(t) for small ε > 0. The following definition helps
identify states (the action sequences and average payoffs) that
occur a significant fraction of time, especially, for small ε.

Definition 2. [30] Stochastically stable states:
A state x ∈ Ω of a perturbed Markov chain Xε(t) is said to
be stochastically stable, if limε→0 πε(x) > 0.

The following theorem characterizes the stochastically sta-
ble states of the Markov chain Xε(t).

Theorem 1. Under Assumption 1, the stochastically stable
states of the Markov chain Xε(t) are the set of states that
optimize the following formulation:

max

N∑
i=1

Ui(r̄i)

where, r̄i =
∑
a∈A

p(a)fi(a)

s.t. a = (a1, a2...aN ) ∈ A

p(a) ∈
{

0,
1

K
,

2

K
, · · · , 1

}
,
∑
a

p(a) ≤ 1


(3)

Proof. (Theorem 1) See Appendix VIII-A

Remark 4. A key assumption for G-NUM to work is inter-
dependence. We study a completely uncoupled setup where
the only feedback to a node on the action profile is its
payoff. Interdependence ensures that changes in actions by
any node(s) can be perceived by other nodes in the network
as a change in payoff. G-NUM exploits this feature where,
a discontent node (a node that perceived a change in the
action profile via a payoff change) changes its action, causing
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discontent to other users in the network. The importance of
this assumption is discussed in detail in [5].

In Theorem 1, we prove that GNUM optimizes the formula-
tion in (2) where, p(a) is restricted to the set

{
0, 1

K , · · · ,
K
K

}
.

For large K and bounded utility functions, we note that the
performance of our proposed algorithm would be approxi-
mately optimal (even for small enough ε > 0).

Remark 5. A well known algorithm for combinatorial op-
timization is a sampling based algorithm called simulated
annealing introduced by Kirkpatrick et al in [40]. Simulated
annealing is inspired from statistical physics, where samples
from the feasible set are obtained from a distribution. The
distribution has a parameter T , called the temperature and as
T →∞ the distribution converges to the optimal set.

Markov Chain Monte Carlo (MCMC) based sampling meth-
ods have been used to achieve such a distribution in a
distributed way [13], [14]. In MCMC based sampling, a
reversible Markov chain is constructed to achieve the distribu-
tion in [40] in a distributed way. For constructing such MCMC
algorithms in a distributed way, the network is required to
have a Markov random field structure. In [5] and in G-NUM,
samples are obtained from a non-reversible Markov chain
Xε, whose stationary distribution for a fixed ε is difficult to
characterize. However as ε → 0, the stationary distribution
converges to the optimal points as seen in Theorem 1. In this
approach, we do not require the network to have a Markov
random field structure.

IV. DISTRIBUTED SUBGRADIENT ALGORITHM FOR
CONCAVE UTILITY MAXIMIZATION

In Remark 5, we stated an important relation between G-
NUM and MCMC based algorithms. MCMC based utility
maximization algorithms were presented in [15], [16], [18],
[19], where the parameters of the MCMC algorithm are
adapted to achieve utility maximization for concave utilities.
Inspired by these works, we propose a completely uncoupled
sub-gradient algorithm for concave utility maximization.

Throughout this section, we assume that, for all i, Ui(·) is
increasing and strictly concave with U ′i(0) < V . We present
our algorithm below, which we call Concave Network Utility
Maximization algorithm (C-NUM). As before, every node i
is given an internal satisfaction variable qi(t) taking values 0
and 1. The satisfaction variable qi(·) serves a similar purpose
here, where, qi(·) = 1 corresponds to node i being “content”
with the current action chosen and qi(·) = 0 represents
“discontent” state. The key difference here as compared to
G-NUM is that each node is given a weight λi(t) taking
values in [0, λmax]. We divide time into frames of T slots each.
The first frame contains slots 1 to T , second frame contains
slots T + 1 to 2T and so on. The weight λi(t) is updated at
the end of every frame and is constant during the frame, i.e.
λi(t) = λi(l), t ∈ [(l − 1)T + 1, lT ]. At the end of every
frame, node i calculates its weight λi(l). However, a node
updates its action ai(t) and satisfaction variable qi(t) in every
time slot.

The update of ai(t), qi(t) at time t requires only the
knowledge of the immediate history, i.e. ai(t − 1), qi(t − 1)

and λi(t). (This in contrast to G-NUM, where the update at
any time required the knowledge of previous K actions). At
the beginning of a slot t, nodes choose their action depending
on the satisfaction variable qi(t− 1). If node i was content in
time slot t− 1 i.e. qi(t− 1) = 1, then it repeats the action it
chose in the previous slot i.e. ai(t−1) with a large probability
1− εc. Any other action is chosen uniformly at random with a
probability εc. In case node i was discontent, i.e. qi(t−1) = 0,
it chooses an action uniformly at random from Ai. Depending
on the action profile a(t) chosen, node i receives a payoff
ri(t) = fi(a(t)). Node i updates its satisfaction variable qi(t)
based on the payoff it received during slot t and its weight
λi(t). In slot t, node i remains content with probability 1,
if it were content in the previous slot, repeats its previous
action and the payoff remains unchanged, i.e. qi(t − 1) = 1,
ai(t) = ai(t − 1) and ri(t) = ri(t − 1). Else, a node
becomes content with a small probability ε1−

λi(t)ri(t)

λmax and
remains discontent with probability 1− ε1−

λi(t)ri(t)

λmax . Let si(l)
be the average payoff received by node i in frame l, i.e.

si(l) =
1

T

lT∑
t=(l−1)T+1

ri(t).

Finally, at the end of frame l, λi(l+ 1) is updated by a sub
gradient algorithm as,

r̄i(l) = arg max
αi∈[0,1]

Ui(αi)− αiλi(l),

λi(l + 1) = [λi(l) + b(l) (r̄i(l)− si(l))]+ . (4)

Here, λ(l + 1) will serve as the weight for the nodes during
frame l + 1, i.e. from slot (lT + 1) to (l + 1)T

qi(t − 1)

ai(t) =

{
ai(t− 1) w.p. 1− εc

ai 6= ai(t− 1) w.p. εc

|Ai|−1 qi(t − 1)

ai(t) = aiw.p. 1
|Ai|

(a) Action Update at time t: A content node chooses the action
that was chosen in the previous slot with a large probability as
indicated in the left box. Whereas, a discontent node chooses an
action uniformly at random as shown in the right box.

ai(t) = ai(t− 1)?

ri(t) = ri(t− 1)?
Else

w.p. ε1−λi(t)ri(t)

w.p. 1− ε1−λi(t)ri(t)

(b) Satisfaction Update at time t: A content node becomes content
with probability 1, if it repeats the action that was chosen in the
previous slot and receives the same payoff that it received in the
previous slot, as shown in the left box. In any other case, a node
becomes content with probability shown in the right box. Content
and discontent states are shown as a green happy and red sad smiley
respectively.

Fig. 2: Cnum update: The Figure 2a shows the update of
actions and Figure 2b shows the update of satisfaction variable
at time t.

Assumption 2. Assume that U ′i(0) < V

This assumption ensures that the weights λi are bounded,
which is given by the lemma below. A similar assumption is
seen in [18] (Lemma 19).
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Algorithm 2 : Concave Network Utility Maximization
Algorithm (C-NUM)

Initialize:
Fix c > N , ε > 0 and
For all i, set qi(0) = 0, λi(1) = λ0.

Action update at time t:
if (qi(t− 1) = 1) then

ai(t) =

{
ai(t− 1) w.p. 1− εc

ai ∈ Ai w.p. εc

|Ai|−1 if ai 6= ai(t− 1)
else

ai(t) = ai w.p. 1
|Ai| where ai ∈ Ai

end if
Update for qi(·) at time t:
if (qi(t− 1) = 1) and (ai(t) = ai(t− 1))
and ri(t) = ri(t− 1) then

qi(t) = 1 w.p. 1
else

qi(t) =

{
1 w.p. ε1−

λi(t)ri(t)

λmax

0 w.p. 1− ε1−
λi(t)ri(t)

λmax

end if
Update for λi(·) at the end of frame j:
r̄i(j) = arg maxαi∈[0,1] Ui(αi)− λi(j)αi
λi(j + 1) = [λi(j) + b(j) (r̄i(j)− si(j))]+

Lemma 2. If λi(0) < V + 1 ∀i, then under Assumption 2 we
have,

λi(l) ≤ V + 1 ∀l

Proof. We discuss the proof in Appendix VIII-B.

A. Performance Analysis of C-NUM

In this subsection, we shall discuss the performance of C-
NUM. We first motivate the basis of C-NUM by formulating
the dual problem and showing that (4) is the approximate
sub-gradient update of the dual problem. In Lemma 3, we
derive upper bounds for the mixing time of the Markov chain
induced by C-NUM for a constant λ. This aids in choosing an
appropriate frame size. In Theorem 2, we show that C-NUM
is optimal.

Consider the optimization problem,

max
∑
i

Ui(r̄i)

s.t. r̄i ≤
∑
a

p(a)ri(a)∑
a

p(a) = 1, p(a) ≥ 0.

(5)

The partial Lagrangian of (5) is given by,

L(r̄, p, λ) =
∑
i

Ui(r̄i)−
∑
i

λi(r̄i −
∑
a

p(a)ri(a)),

=
∑
i

(Ui(r̄i)− λir̄i) +
∑
a

p(a)
∑
i

λiri(a).

The dual of the problem (5) is

d(λ) = max
r̄,p

L(r̄, p, λ)

s.t.
∑
a

p(a) = 1, p(a) ≥ 0
(6)

The maximization in (6) could be split into:
1) Maximization over r̄,

r̄ = max
αi∈[0,1]

∑
i

Ui(αi)− λiαi. (7)

2) Maximization over p,

p = arg max
µ

∑
a

µ(a)
∑
i

λiri(a)

s.t.
∑
a

µ(a) = 1, µ(a) ≥ 0.
(8)

Here, (8) is interpreted as the Max-weight problem and λi is
interpreted as virtual queue at node i. By strong duality, the
problem in (5) is equal to the following

min
λ
d(λ)

s.t. λi ≥ 0.
(9)

The sub-gradient of the above dual problem is given by,∑
a

p(a)ri(a)− r̄i,

where, p, r̄ are the primal optimal solutions.

Remark 6. The central idea is to use the algorithm in [5]
(which is the same as G-NUM with K = 1) to solve the above
maximization over p. Recall that G-NUM induces a Markov
chain Xε(t) and Theorem 1 characterizes the stationary dis-
tribution of Xε(t) as ε→ 0. However, we need to take care of
the following,

1) the time taken for Xε(t) to converge to its stationary
distribution

2) the effect of using a finite ε in the sub-gradient algorithm

In C-NUM, we use sub-gradient method to solve the dual
problem in (9), where the dual parameters are updated at the
end of each frame. For instance, at the end of frame l, the
approximate subgradient at node i is given by,

si(l)− r̄i(l), (10)

where si(l) is the service rate obtained in frame l and r̄i(l)
solves (7). In each frame, where λ is kept constant, the
algorithm induces an ergodic Markov chain, denoted by Xε.
This Markov chain maximizes (8) in the limit ε→ 0. By using
(10) in place of the exact gradient, we need to choose a frame
size large enough to ensure that the Markov chain Xε is close
to stationarity and ε small enough that (10) is close to the
exact gradient.

Remark 7. In [18], Gibbs sampling is used to solve (8),
where the Markov random field nature of the setup allows
a distributed implementation. In our setup, usage of such
reversible Markov Chain Monte Carlo techniques to solve (8)
does not lead to a distributed implementation. Another key
difference here as compared to [18], is the absence of
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variational characterization (See Lemma 21 in [18]). Such
characterization is possible in [18], due to the structure of
the stationary distribution of the Gibbs sampling algorithm. In
C-NUM, we do not have such nice structure in the stationary
distribution. In fact, we only characterize the stationary dis-
tribution as ε→ 0. This leads to an approximate subgradient
algorithm even if the Markov chain is assumed to converge
instantaneously.

In the following discussion, we derive an upper bound for
the Mixing time of Xε for a fixed λ. As we shall see, this
bound provides a trade off between ε and frame size T .

Let πε be the stationary distribution of a Markov chain Xε

and πt be the distribution at time t with x as the initial state,
i.e. π0(x) = 1. Define Mixing time of X as,

τ(ζ) = min{t : dv(πt, πε) < ζ} ∀x,

where, dv(πt, πε) = 1
2

∑
y |πt(y)−πε(y)| is the total variation

distance between πt and πε. Now, we have the following
lemma on the mixing time of Xε for any λ.

Lemma 3. 1) For C-NUM with any fixed λ, the mixing
time of the Markov chain Xε(t) has the following upper
bound,

τ(ζ) <
log( 1

ζ )

ε(c+1)N
,

2) For G-NUM, the mixing time is upped bounded as,

τ(ζ) ≤

⌈
log( 1

ζ )

Kε(c+1)NK

⌉
K

Proof. See Appendix VIII-D

Remark 8. A small ε would provide a better approximation
of (8), however this would lead to a large mixing time and in
turn a large frame size.

Remark 9. Lemma 3 suggests that, for G-NUM, the mixing
time grows exponentially with K. This validates the usage of
C-NUM against G-NUM for concave utilities, since in G-NUM
we increase K for a larger rate region.

Now we shall state our main result,

Theorem 2. Assume Ui’s are increasing, strictly concave
functions satisfying Assumptions 1 and 2. Then, for fixed
frame size T = N(V+1)

ηε(c+1)N , we have the following,

1) For step sizes satisfying,∑
j

b(j) =∞, and
∑
j

b2(j) <∞.

We have,

lim inf
L→∞

∑
i

Ui(ˆ̄ri(L)) ≥
∑
i

Ui(r̄
∗
i )− lim inf

L→∞
δ̄(L)− η,

and

lim sup
t→∞

∑
i

Ui(r̄i(t)) ≥
∑
i

Ui(r̄
∗)− lim inf

L→∞
δ̄(L)− η,

where δ̄(L) and ˆ̄r(L) are the cesaro averages given by,

b̄(L) =

L−1∑
l=0

b(l), δ̄(L) =
1

b̄(L)

L−1∑
l=0

b(l)δ(λ(l))

ˆ̄r(L) =
1

b̄(L)

L−1∑
t=0

b(l)r̄(l).

2) For a fixed step size, b(t) = b ∀t,

lim inf
L→∞

∑
i

Ui

(
1

L

L−1∑
l=0

r̄i(l)

)
≥
∑
i

Ui(r̄
∗)

− lim inf
L→∞

1

L

L−1∑
l=0

δ(λ(l))− η − Nb

2
,

and

lim sup
t→∞

∑
i

Ui(r̄i(t)) ≥
∑
i

Ui(r̄
∗)

− lim inf
L→∞

1

L

L−1∑
l=0

δ(λ(l))− η − Nb

2
,

where r̄∗ is the solution to the following optimization problem,

max
∑
i

Ui(r̄i)

s.t. r̄i ≤
∑
a

p(a)ri(a)∑
a

p(a) = 1, p(a) ≥ 0.

(11)

Proof. See appendix VIII-E.

V. NUMERICAL EXAMPLES

A. Illustration

In this subsection, we illustrate some aspects of C-NUM.
We consider an example with two nodes. Each node has two
actions to choose from, namely a1 and a2. The payoff table is
shown in Figure 3. When nodes choose different actions, the
node choosing action a2 gets a higher payoff. However the
payoffs are asymmetric, i.e. when node 2 chooses a2, it gets
a payoff of 0.8 and when node 1 chooses a2, it gets a payoff
of 1 (provided the other node chooses a1). In this example,
we aim to maximize the sum of log utility,

∑
i log(1 + r̄i).

a1 a2

a1 (0.0001, 0.0001) (0.001, 0.8)
a2 (1, 0.001) (0.01, 0.01)

Fig. 3: Payoff table (s1 , s2 )

1) Effect of frame length T and number of iterations L:
In this subsection, we study C-NUM for different frame
lengths and iterations of the sub-gradient algorithm. We choose
ε = 0.01. We run C-NUM for 200 and 106 frames. Figures 4
and 5 show the utility of nodes 1 and 2 respectively, where
C-NUM is run for 200 frames, with frame lengths 104, 106

and 107 slots. For reference, we plot Max weight and Gibbs
sampling based algorithms (requires complete information). In
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Figure 6, we plot the utility of nodes 1 and 2, where C-NUM
is run for 106 frames, with frame lengths of 100 and 10000.
From the Figures 4, 5 and 6, we observe the following,

1) For this example, the approximate gradient algorithm
converges.

2) For a smaller number of frames (200) (See Figure 4
and 5), C-NUM converges with frame lengths of 106

and 107. Also the utilities are close to that got by the
Gibbs sampling algorithm.

3) For a larger number of frames, i.e. (106), even for
smaller frame length of 100 slots, the algorithm con-
verges. This is explained by stochastic approximation
[17]. If the sub-gradient algorithm converges, then con-
vergence is guaranteed irrespective of the frame length.
However, the rate of convergence depends on frame
length.

0 50 100 150 200

0

0.2

0.4

0.6

Number of frames

U
til

ity
of

no
de

1,
lo
g
(1

+
r̄ 1

)

T = 104 T = 106

T = 107 Exact Gradient

Gibbs T = 106

Fig. 4: Utility of node 1 with C-NUM in a simple example
with two nodes. C-NUM is run for different frame lengths of
100, 104, 106 and 107. Exact gradient and Gibbs sampling
based algorithms are plotted for reference.

2) Effect of ε: In this subsection, we study the effect of
ε on the performance of C-NUM. We run C-NUM for ε =
0.1, 0.01, 0.001 and 0.0001. We fix the frame size as 106 slots
and run the algorithm for 200 frames. In Figure 7, we plot the
sum utility for different values of ε. We observe that, as ε is
decreased from 0.1 to 0.01, there is a significant increase in
sum utility. However, from ε = 0.01 to 0.001, there is only
a marginal increase in the utility. As ε is further reduced to
0.0001, the algorithm doesn’t converge for the chosen frame
size and iteration duration.

B. Example Scenarios

In this subsection, we will illustrate G-NUM and C-NUM
for two applications namely User Association and Channel
Selection in WiFi networks.

1) User Association: Here, nodes (players) correspond to
the users and actions correspond to the set of Access Points
(APs). The payoff of user i corresponds to the throughput

0 50 100 150 200

0

0.1

0.2

0.3

0.4

Number of frames

U
til

ity
of

no
de

2,
lo
g
(1

+
r̄ 2

)

T = 104 T = 106

T = 107 Exact Gradient

Gibbs T = 106

Fig. 5: Utility of node 2 with C-NUM, for the simple game
with two nodes in Figure 3. C-NUM is run for different frame
lengths of 100, 104, 106 and 107. Exact gradient and Gibbs
sampling based algorithms are plotted for reference.
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·106

0.2
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0.4

0.5

Number of frames

U
til

ity
,l
og

(1
+
r̄)
U1, T = 102 U2, T = 104

U2, T = 102 U1, T = 104

Fig. 6: Utilities of nodes 1 and 2 for the two node game in
Figure 3. C-NUM is run for 106 frames, with frame lengths
of 100 and 10000.

ri(t). We consider a fixed IEEE 802.11ac WiFi network with
2 Access Points (APs) and 7 users. The performance for
the network configuration was evaluated using the network
simulator ns-3 with the following configuration parameters.
The APs are placed 50 meters apart from each other. The
UEs are dropped uniformly around the APs over a square of
50 meters. Each user could associate to either of the two APs.
We let the APs operate in orthogonal 20 MHz Channels with a
maximum achievable throughput of 6.5 Mbps. We consider up-
link traffic with saturated queues. We maximize the sum utility
function

∑
i log(δ + r̄i), where r̄i is the average throughput

of user i. Log utility achieves a proportional fair solution [8].
Since log utility is unbounded, we use log(δ + r̄) (δ > 0).
We plot the normalized sum utility of the users for G-NUM
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Fig. 7: Sum Utility of the average rate with C-NUM for the
two node game in 3. We run C-NUM for different values of
ε varying from 0.1 to 0.0001

and C-NUM in Figure 8 with ε = 0.2. We also plot the Max-
Weight based utility maximization algorithm [9] for reference.
We observe that the sum-utility of C-NUM and G-NUM is
around 0.42. The performance is close to the Max-weight
based algorithm [9] which achieves a utility around 0.45.

0 1 2 3 4

·1010

0.3
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0.4

0.45
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,∑ i
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r̄ i

)

GNUM (K=2)
CNUM

Exact Gradient

Fig. 8: Sum Utility of the nodes for G-NUM and C-NUM for a
IEEE 802.11ac WiFi network for 7 users and 2 Access points,
with ε = 0.2. The performance of Exact gradient algorithm
[9] is shown for reference.

C. Channel Selection

In the channel selection problem, nodes (players) corre-
spond to ad hoc WiFi links (transmitter-receiver pair) and
actions correspond to the set of channels that each link could
operate. The payoff for link i is the throughput ri(t) it receives.
For the channel selection example, we consider 5 WiFi links
(transmitter-receiver pairs) dropped uniformly in an area of

100 square meters. We assume that each link could operate in
one of the three 20 Mhz channels. We fix the network utility
as
∑
i log(δ+ r̄i). We plot the normalized network utility for

G-NUM and C-NUM in Figure 9, with ε = 0.1. We also plot
the Max-weight based algorithm [9] for reference. We observe
that C-NUM achieves a utility of 0.71 and G-NUM achieves
a utility of 0.69. The performance is very close to the Max-
Weight based algorithm, which achieves a utility of 0.73. In
comparison to the previous user association example in Figure
8, C-NUM and G-NUM performs better here. This is because
ε was fixed at 0.2 in the user association example, whereas
here it is 0.1.

1) Key Observations::
i) We see that G-NUM and C-NUM perform close to the

Max-Weight based algorithm [9]. However, there is a
small difference in the performance which is due to ε.
Recall that both G-NUM and C-NUM are optimal as
ε→ 0.

ii) Additionally, we observe that C-NUM outperforms G-
NUM for the same ε. To explain this, consider Ω∗, the
set of stochastically stable states i.e. the set of states
having a positive stationary mass as ε → 0. We also
know that, Ω∗ corresponds to the states having minimum
stochastic potential (See Definition 3). In G-NUM Ω∗ is
the sequence of optimal action sequences and in C-NUM
Ω∗ is the actions with maximum weight. The stationary
mass of Ω∗ is bounded as follows,

πε(Ω
∗) ≥ Θ

(
|Ω∗|εγmin

|Ω∗|εγmin + |Ω \ Ω∗|εγ2

)
πε(Ω

∗) ≤ Θ

(
|Ω∗|εγmin

|Ω∗|εγmin + |Ω \ Ω∗|εγmax

)
where, πε is the stationary distribution for fixed ε; γmin

and γmax are the minimum and maximum stochastic
potential respectively, γ2 = minx:γ(x)6=γmin

γ(x) is the
second smallest stochastic potential. In G-NUM, |Ω\Ω∗|
scales with K. This implies, for a fixed ε, πε(Ω∗) is
closer to 1 in C-NUM as compared to G-NUM. This
explains why C-NUM performs better than G-NUM.

VI. SUMMARY AND COMPARISONS

In this section, we will summarize G-NUM and C-NUM.
G-NUM has the advantage that it maximizes general utilities
(not necessarily concave). However, we have seen in Lemma 3
that the mixing time of G-NUM grows exponentially in K (for
C-NUM, K = 1). Also, we have seen through simulations that
for a fixed ε, C-NUM performs better than G-NUM.

Table I provides a comparison of G-NUM and C-NUM with
other distributed algorithms. In Remark 1, we stated that the
difference between the algorithms in [18] and our model is
the assumption on the network. The work in [18] assumes
a conflict graph model, whereas we assume interdependence.
An important question here is if conflict graph imply interde-
pendence. The answer is negative. To see this, we consider a
linear network with three links where i) links 1 and 2 conflict
and ii) links 2 and 3 conflict. In this case, when link 1 is
transmitting and link 2 is idle, no action change by link 3
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Fig. 9: Sum Utility of the nodes for G-NUM and C-NUM
for a WiFi ad hoc network for 5 links and 3 Channels, with
ε = 0.1. The performance of Exact gradient algorithm [9] is
shown for reference.

could change the service rates of links 1 and 2. This implies
that interdependence is not satisfied here. However, this is not
a drawback, given that significant change in the interference
can be used as a signal to indicate that some link has changed
its action.

VII. CONCLUSIONS

In this work, we have presented two completely uncoupled
algorithms for utility maximization. This allows a fair alloca-
tion of resources, which prior works [4], [5] in this setup have
ignored.

In the first algorithm, namely G-NUM, we discretize the rate
region, thereby allowing it to be applied for general (possibly
non-concave) utilities. We show that the set of achievable
points in the rate region could be increased by increasing the
parameter K. However, the memory at each node increases as
K is increased. The state space of the Markov chain increases
with K; and in Lemma 3, we show that the Mixing time upper
bound grows exponentially with K.

In the second part, we present another algorithm, C-NUM,
which is a sub-gradient algorithm for concave utilities. In
comparison to G-NUM, C-NUM only keeps track of the
immediate history and the time average service rate. We show
convergence in Cesaro averages for decreasing step sizes and
time average convergence for fixed step size. Through C-
NUM, we show an interesting relationship between completely
uncoupled algorithms and Gibbs sampling based utility maxi-
mization algorithms. In future, we would like to compare these
algorithms for specific network models of interest.

VIII. APPENDIX

A. Proof of Theorem 1:

To prove theorem 1, we need to characterize the stationary
distribution of Xε(t) for small ε. For such a characterization,

we shall use the results from [29],[30] on perturbed Markov
chains. Let Pε(x, y) denote the transition probability of the
Markov chain Xε from state x to state y . Consider the directed
graph G with the states of the Markov chain as vertices and
an edge from state x to state y if Pε(x, y) > 0. A spanning
tree Tx rooted at a vertex x is called a x-tree, i.e. there exist a
path from any vertex to x and, Tx ⊆ G does not contain any
cycles. Let the set of all trees rooted at state x be Tx.

We need the following additional definitions from the theory
of regular perturbed Markov processes from [30].

1) ∀x, y ∈ Ω, if P ε(x, y) > 0 for some ε > 0, then,

0 < lim
ε→0

P ε(x, y)

εr(x,y)
<∞,

r(x, y) ≥ 0 is defined as the resistance of the transition
x→ y (See Definition 1).

2) Consider a sequence of transitions (or a path) P = x1 →
x2 → ...→ xk. The resistance of the path is defined as
the sum of the resistances of the one-step transitions in
the path, i.e., r(x1, x2) + ...+ r(xk−1, xk).

3) The resistance from state x to any other state y, ρ(x, y)
is the minimum resistance over all paths from x to y.

4) The resistance of the tree rooted at x, ρ(x) is the sum
of the resistances of the edges in the tree.

Let T (a) be the set of all trees rooted at state x with
action profile sequence a = (a1, · · · , aK). Let rmin(a) be the
minimum resistance of all the trees in T (a).

A state in the Markov chain Xε is of the form, x = (a, q)
where a = (a1, a2, · · · , aK) ∈ AK is the sequence of K
action profiles and q ∈ {0, 1}N is the satisfaction variable of
the nodes. For any state x = (a, q), we shall use the following
definition from [30],

Definition 3. Stochastic potential of a state x, denoted by
γ(x), is the minimum resistance over all the trees rooted at x.

Lemma 4. The tree with minimum resistance in T (a) is
rooted at state (a,~1), i.e. when all the nodes are content.
The minimum resistance rmin(a) is given by c(N − 1) +∑
i 1−Ui

(
ri(a(1))+···+ri(a(K))

K

)
. Further, for any other state

x = (a′, q), where q 6= ~1, rmin(a) < ρ(x), ∀a ∈ A.

Proof. A tree T ∈ T (a) is rooted at a state x = (a, q), where
q could take values in {0, 1}N . Define the following

a) a1 = (a,~1), where all the nodes are content
b) a0 = (a,~0), where all the nodes are discontent
c) aq = (a, q), where q is a vector with some zeros and

some ones (where some nodes are content and some are
discontent).

We have the following results:
1) ρ(a1, x) ≥ c, ∀x 6= a1. For a transition from a1 to

a different state to take place, at least one node should
change its action. A content node changes its action with
probability εc

|Ai|−1 which has resistance c.
2) ρ(a1, b0) = c. Once a node becomes discontent (which

happens with resistance c), the other nodes become
discontent with zero resistance due to interdependence.
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Algorithm Network Model Utility Mixing time

G-NUM Interdependence General
⌈

log( 1
ζ

)

Kε(c+1)NK

⌉
K

C-NUM Interdependence Concave
log( 1

ζ
)

ε(c+1)N

Optimal CSMA [18] Conflict Graph Concave log( 1
ζ

) exp(Θ(βNV ))

Parallel Glauber Dynamics
[41]

Conflict Graph with
max degree ∆

Stabilizes any arrival
with rate < 1

∆−1

O(logN)

Pareto Optimality Through
Distributed Learning [5]

Interdependence Sum-Rate
Maximization

log( 1
ζ

)

ε(c+1)N

TABLE I: Comparison of G-NUM, C-NUM with other distributed algorithms

3) ρ(b0, a1) = N −
∑
i Ui

(
fi(a(1)+···+fi(a(K))

K

)
; a, b ∈ A.

The resistance for node i to become content is
1− Ui

(
fi(a(1))+...+fN (a(K))

K

)
. Since every user must

become content from (b,~0), we have the result.
4) c ≤ ρ(a1, b1) < 2c. Here at least one node

should change its action which happens with resis-
tance c. The upper bound follows from the following,
ρ(a1, b1) ≤ ρ(a1, c0) + ρ(c0, b1) < 2c

5) ρ(aq, a0) = 0. In state aq , some nodes are discontent
and due to interdependence, with zero resistance all the
nodes become discontent.

Now, from Lemma 4.3 from [5], we have,

γ(a,~1) = c(|A|K − 1) +N −
∑
i

Ui

(
ri(a(1)) + · · ·+ ri(a(K))

K

)
(12)

Also we have, γ(a,~0) = |A|Kc, ∀a ∈ AK . (13)

(13) follows from 5) and since every outgoing edge from a1

has resistance c (there are |A|K of them).
The stochastic potential of a state aq is greater than or equal
to the stochastic potential of a0, i.e.

γ(aq) ≥ |A|Kc, ∀a ∈ AK . (14)

To see (14), let Taq denote the tree rooted at state x = (a, q)
with resistance γ(aq). Due to interdependence, we know that
there exists a zero resistance path from aq to a0. Add the
zero resistance path to Taq and remove all the outgoing edges
from a0. This gives us a tree rooted at a0 with no additional
resistance. This implies γ(aq) ≥ γ(a0). Lemma 4 follows
from (12), (13), (14) and noting that c > N .

The following theorem from [30] completes the proof.

Theorem 3. [30]. The stochastically stable states of a regular
perturbed Markov chain Xε(t) are the states having minimum
stochastic potential.

The above theorem insists that the stochastically stable
states of the Markov chain Xε(t) are the states where all nodes
are content and that minimizes γ(x), i.e.,

∑
i

1− Ui
(
ri(a(1)) + · · ·+ ri(a(K))

K

)
.

This implies that the stochastically stable states are those that
maximize ∑

i

Ui

(
ri(a(1)) + · · ·+ ri(a(K))

K

)
.

This completes the proof of Theorem 1.

B. Proof of Lemma 2

Proof is by induction over l. The statement is true for l = 0
(by assumption). Now, we assume that λi(l) ∈ [0, V + 1].
Consider the two cases:

1) λi(l) ≤ V. In this case, from the update rule, we have

λi(l + 1) = [λi(l) + b(l) (r̄i(l)− ri(l))]+

≤ λi(l) + r̄i(l) ≤ V + 1

2) λi(l) ∈ (V V + 1]. In this case,

d

dy
(Ui(y)− λiy) ≤ U ′i(0)− λi < 0 ,∀y

The steps follow since Ui is concave and λi < V + 1.
This implies Ui(y) − λiy is a decreasing function in
[0, 1]. i.e r̄i = 0. =⇒ λi(l + 1) ≤ V + 1.

C. Mixing time bounds using Dobrushin’s inequality

The Markov chain induced by the algorithm, Xε(t) is a non
reversible ergodic Markov chain. To analyze the performance
of C-NUM, we study the mixing time of the Markov chain
Xε(t) for a fixed λ. We will use Dobrushin’s inequality [42]
to derive an upper bound on the mixing time. In this section,
we will discuss Dobrushin’s inequality and mixing time based
on it. We define ergodic coefficient [42] as,

Definition 4. Ergodic Coefficient The ergodic coefficient of a
transition probability matrix P , δ(P ) is defined as,

δ(P ) =
1

2
sup
i,j

∑
k

|pik − pjk| = sup
i,j

dV (pi, pj)

where, dV (·, ·) is the total variational distance.

We shall now state the Dobrushin inequality ,

Theorem 4. Dobrushin’s Inequality: Let P1 and P2 be
stochastic matrices. Then,

δ(P1P2) ≤ δ(P1)δ(P2)
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Proof. See Theorem 7.1, Chapter 6 in [42]

We will now use the above inequality to obtain Mixing time
bounds.

Theorem 5.

dV (µTPn, νTPn) ≤ dV (µ, ν) (δ(P ))
n

Proof. See Theorem 7.2, Chapter 6 in [42]

As a corollary, we have,

dV (πt, π) = dV (πT0 P
t, πTP t) ≤ dV (π0, π) (δ(P ))

t (15)

where, π0 and πt are the distribution of the Markov chain
at times 0 and t respectively. The above result indicates that
characterizing δ(P ) shall provide bounds on the convergence.

D. Proof of Lemma 3:

In this subsection, we shall obtain bounds on the ergodic
coefficient δ(P ) and hence mixing time of the Markov chain
Xε for a fixed λ. The total variation distance is given by,

dV (pi, pj) = 1−
∑
k

pik ∧ pjk

Using the above in the definition of ergodic coefficient,

δ(P ) = 1− inf
i,j

∑
k

pik ∧ pjk ≤ 1−
∑
k

pmin,k (16)

where, pmin,k = mini pik is the minimum transition probabil-
ity to state k.

Consider the Markov chain Xε in C-NUM with fixed λ. Let
k be the a state where all the nodes are content. The minimum
transition probability to k would correspond to all the N nodes
becoming discontent with probability εcN

|A| and becoming con-

tent with probability ε(N−
∑
i
λiri
λmax

) > εN (assuming ε < 0.5).
Thus with a minimum transition probability of εcN+N

|A| . Also,
note that there are |A| such transitions. Applying the above in
(16), we have,

δ(Pε) ≤ 1− εcN+N

Using (15) from the previous subsection, we have,

dV (πt, πε) ≤
(

1− ε(c+1)N
)t

(17)

From the above, we have,

τ(ζ) ≤ log(1/ζ)

ε(c+1)N

1) Mixing time bound for G-NUM: In G-NUM, a state
contains K action profiles and only one action profile could
possibly change in a transition. So, we bound δ(PK) instead
of δ(P ). From the discussion above, we know that,

δ(PK) = 1− inf
i,j

∑
k

pKik ∧ pKjk ≤ 1−
∑
k

pKmin,k

where, pKik is the K step transition probability from i to k and
pKmin,k = mini p

K
ik.

Also, dV (πt, πε) ≤ dV (π0, πε)δ(P
K)b

t
K c

From any state, the minimum K step transition probability to a
state with all the nodes content is εcNK+NK

|A|K . This corresponds
to a transition where, in each step all the nodes becomes
discontent with probability εc/|A| and becomes content with
probability εN and there are K such transitions. Thus for G-
NUM, we have,

dV (πt, πε) ≤ (1− ε(c+1)NK)b
t
K cK

and the mixing time is bounded by,

τ(ζ) ≤
⌈

log(1/ζ)

Kε(c+1)NK

⌉
K

E. Proof of theorem 2:

The proof follows the standard approximate subgradient
algorithm in [43], if we assume that the Markov chain Xε

converges to its stationary distribution while updating the
weights in (4). We follow the analysis in [18] except that the
update in (4) with si(t) replaced by the payoff averaged over
the stationary distribution of Xε is an approximate subgradient.

Let δ(λ) denote the error in the subgradient, i.e.

δ(λ) = max
a

∑
i

ri(a)λi −
∑
a

p(a, λ)
∑
i

ri(a)λi

=⇒
∑
i

si(λ)λi = max
a

∑
i

ri(a)λi − δ(λ), (18)

where, p(a, λ) is the stationary distribution of the Markov
chain (Xε) and si(λ) =

∑
a p(a, λ)ri(a) is the service rate

obtained with fixed λ. Since,

r̄i(l) = arg max
α∈[0,1]

Ui(α)− αλi(l),

we have, Ui(r̄i(l))− r̄i(l)λi(l) ≥ Ui(r̄∗i )− r̄∗i λi(l) (19)
where, r∗ is the optimal solution of (5).

Also,
∑
i

r̄∗i λi(l) ≤ max
a

∑
i

ri(a)λi(l).

Substituting the above in (19) and summing over i, we get,∑
i

r̄i(l)λi(l) ≤
∑
i

Ui(r̄i(l))− Ui(r̄∗i ) + max
a

∑
i

ri(a)λi(l).

(20)

From (18) and (20), we have,

2b(l)
∑
i

λi(l) (r̄i − si(λ(l))) ≤ 2b(l)
∑
i

Ui(r̄i(l))

−2b(l)Ui(r̄
∗
i ) + 2b(l)δ(λ).

(21)

Then, for node i, we have,

λ2
i (l + 1) =

(
[λi(l) + b(l) (r̄i(l)− si(l))]+

)2

λ2
i (l + 1) ≤λ2

i (l) + 2b(l)λi(l) (r̄i(l)− si(l)))
+ b2(l)(r̄i(l)− si(l))2

≤λ2
i (l) + 2b(l)λi(l) (r̄i(l)− si(l)) + b2(l). (22)
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Summing (22) over all the nodes, we get,∑
i

λ2
i (l + 1)) ≤

∑
i

λ2
i (l) +Nb2(l) + 2b(l)e(l)

+ 2b(l)
∑
i

λi(l) (r̄i(l)− si(λ(l))) ,
(23)

where, e(l) =
∑
i λi(l) (si(λ(l))− si(l)) is the error due to

the fact that the Markov chain Xε has not converged to its
stationary distribution. Substituting (21) in (23), we get,∑
i

λ2
i (l + 1)) ≤

∑
i

λ2
i (l) +Nb2(l) + 2b(l)e(l) + 2b(l)δ(λ)

+ 2b(l)
∑
i

(Ui(r̄i(l))− Ui(r̄∗i )) . (24)

Next we shall consider two cases step sizes of b(l).
1) Decreasing step size: Choose b(l) such that,∑
t

b(l) =∞, and
∑
t

b2(l) <∞

We define the following Cesaro averages,

b̄(L) =

L−1∑
l=0

b(l), Ū(L) =
1

b̄(L)

L−1∑
l=0

b(l)
∑
i

Ui(r̄i(l)),

δ̄(L) =
1

b̄(L)

L−1∑
l=0

b(l)δ(λ(l)), ˆ̄r(L) =
1

b̄(L)

L−1∑
l=0

b(l)r̄(l).

Summing (24) from l = 0 to l = L− 1 and normalizing,

1

b̄(L)

L−1∑
l=0

∑
i

λ2
i (l + 1) ≤ 1

b̄(L)

L−1∑
l=0

∑
i

λ2
i (l)

+
2

b̄(L)

L−1∑
l=0

∑
i

(b(l)Ui(r̄i(l))− b(l)Ui(r̄∗i ))

+
2

b̄(L)

L∑
l=0

(
b(l)δ(λ(l)) +Nb2(l) + b(l)e(l)

)
=⇒ 1

2b̄(L)

∑
i

λ2
i (L)− λ2

i (0) ≤ Ū(L)−
∑
i

Ui(r̄
∗
i )

+ δ̄(λ(l)) +
N

b̄(L)

L−1∑
l=0

b2(l) +
1

b̄(L)

L∑
l=0

b(l)e(l) (25)

Consider,
1

b̄(L)

L∑
l=0

b(l)e(l) =
1

b̄(L)
S(L) + E(e(l)|Fl),

where, S(L) =
∑L−1
l=0 b(l)(e(l) − E(e(l)|Fl)) is an FL

martingale. Here Fl denotes the filtration until frame l.

E(S(L)− S(L− 1))2 = E(b(L)(e(L)− E(e(L)|FL)))2

=⇒
∑
L

E(S(L)− S(L− 1))2 ≤ N(V + 1)
∑
L

b2(L) <∞

By martingale convergence theorem [44], limL→∞ S(L)
converges a.s. This implies,

lim
L→∞

1

b̄(L)

L∑
l=0

b(l)(e(l)− E(e(l)|Fl)) = 0 (26)

E(e(l)|Fl)
(a)

≤ (V + 1)
∑
i

E(si(l)|Fl)− si(λ(l))

=
V + 1

T

lT∑
t=(l−1)T

∑
i,a

(ri(a)π(a, t)− ri(a)π(a, λ(l)))

(b)

≤ N(V + 1)

T

lT∑
t=(l−1)T

dv(π(a, t), π(λ(l)))
(c)

≤ 1

T

N(V + 1)

εcN+N
,

where, (a) and (b) follows, since for all i, λi(t) < V + 1 and
ri ≤ 1 ; (c) follows from the mixing time bound in (17).

By our choice of frame size T = N(V+1)
ηεcN+N , we have,

E(e(l)|Fl) < η (27)

Taking limit L→∞, in (25) and using (26), (27) we get,

lim inf
L→∞

Ū(L) ≥
∑
i

Ui(r̄
∗
i )− lim inf

L→∞
δ̄(L)− η

Also by Jensen’s inequality, we have,∑
i

Ui(ˆ̄ri(L)) ≥ Ū(L), ∀L.

=⇒ lim inf
L→∞

∑
i

Ui(ˆ̄ri(L)) ≥
∑
i

Ui(r̄
∗
i )− lim inf

L→∞
δ̄(L)− η.

The above algorithm is an approximate sub-gradient method
discussed in [43]. By lemma 2.1 in [43], we have,

lim sup
l→∞

∑
i

Ui(r̄i(l)) ≥
∑
i

Ui(r̄
∗
i ) + lim inf

L→∞
δ̄(L) + η.

2) Fixed step size (b(l) = b): When b(l) is a constant,∑
i

λ2
i (l + 1) ≤

∑
i

λ2
i (l) + 2b

∑
i

(Ui(r̄i(l))− Ui(r̄∗i ))

+ 2bδ(λ(l)) +Nb2 + 2be(l) (Using (24)).

Averaging from l = 0 to L− 1, we get,

1

L

L−1∑
l=0

∑
i

λ2
i (l + 1) ≤ 1

L

L−1∑
l=0

∑
i

λ2
i (l) +

2b

L

L−1∑
l=0

δ(λ(l)) +Nb2

+
2b

L

L−1∑
l=0

e(l) +
2b

L

L−1∑
l=0

∑
i

Ui(r̄i(l))− 2b
∑
i

Ui(r̄
∗).

=⇒ 1

2bL

∑
i

(λ2
i (L)− λ2

i (0)) ≤ 1

L

L−1∑
l=0

∑
i

Ui(r̄i(l))

−
∑
i

Ui(r̄
∗) +

1

L

L−1∑
l=0

δ(λ(l)) +
Nb

2
+

1

L

L−1∑
l=0

e(l). (28)

Consider,
1

L

L−1∑
l=0

e(l) =
1

L

L−1∑
l=0

(e(l)− E(e(l)|Ft)) + E(e(l)|Ft),

Recall S(L) =
∑L−1
l=0

(e(l)−E(e(l)|Ft))
l , with b(l) = 1

l . We
know that S(L) converges a.s. By Kroneker’s lemma [44], we
have, almost surely,

lim
L→∞

1

L

L−1∑
l=0

(e(l)− E(e(l)|Ft)) = 0



14

Also by our choice of step size, we have, E(e(l)|Ft)) < η
Now, using the above and taking limit L→∞ in (28),

lim inf
L→∞

1

L

L−1∑
l=0

∑
i

Ui(r̄i(l)) ≥
∑
i

Ui(r̄
∗)

− lim inf
L→∞

1

L

L−1∑
l=0

δ(λ(l))− η − Nb

2
.

By Jensen’s inequality, we get,

lim inf
L→∞

∑
i

Ui

(
1

L

L−1∑
l=0

r̄i(l)

)
≥
∑
i

Ui(r̄
∗)

− lim inf
L→∞

1

L

L−1∑
l=0

δ(λ(l))− η − Nb

2
.

By lemma 2.1 in [43], we have,

lim sup
l→∞

∑
i

Ui(r̄i(l)) ≥
∑
i

Ui(r̄
∗)

− lim inf
L→∞

1

L

L−1∑
l=0

δ(λ(l))− η − Nb

2
.
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[29] M. Freidlin, J. Szücs, and A. Wentzell, Random Perturbations of

Dynamical Systems. Springer, 2012.
[30] H. P. Young, “The Evolution of Conventions,” Econometrica, 1993.
[31] M. Singh and P. Chaporkar, “An efficient and decentralised user asso-

ciation scheme for multiple technology networks,” in WiOpt, 2013, pp.
460–467.

[32] Y. Xu, Q. Wu, J. Wang, L. Shen, and A. Anpalagan, “Opportunistic
spectrum access using partially overlapping channels: Graphical game
and uncoupled learning,” IEEE Trans. Commun., vol. 61, no. 9, pp.
3906–3918, 2013.

[33] H. Borowski, J. Marden, and J. Shamma, “Learning efficient correlated
equilibria,” in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conf. on, pp. 6836–6841.

[34] S. Ramakrishnan and V. Ramaiyan, “A completely uncoupled learning
algorithm for general utility maximization,” in 2016 Int. Conf. on Signal
Processing and Commun. (SPCOM), pp. 1–5.

[35] S. Ramakrishnan, V. Ramaiyan, and K. P. Naveen, “A distributed user
association algorithm for state dependent wireless networks,” in 2017
IEEE Wireless Commun. and Networking Conf. (WCNC), pp. 1–6.

[36] D. Qian, D. Zheng, J. Zhang, N. B. Shroff, and C. Joo, “Distributed
CSMA Algorithms for Link Scheduling in Multihop MIMO Networks
Under SINR Model,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 746–
759, 2013.

[37] J. G. Choi, C. Joo, J. Zhang, and N. B. Shroff, “Distributed link
scheduling under sinr model in multihop wireless networks,” IEEE/ACM
Trans. Netw., vol. 22, no. 4, pp. 1204–1217, 2014.

[38] I.-H. Hou and P. Gupta, “Proportionally fair distributed resource alloca-
tion in multiband wireless systems,” IEEE/ACM Trans. Netw., vol. 22,
no. 6, pp. 1819–1830, 2013.

[39] S. C. Borst, M. G. Markakis, and I. Saniee, “Nonconcave utility
maximization in locally coupled systems, with applications to wireless
and wireline networks,” IEEE/ACM Trans. Netw., vol. 22, no. 2, pp.
674–687, 2014.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” SCIENCE, vol. 220, no. 4598, pp. 671–680, 1983.

[41] L. Jiang, M. Leconte, J. Ni, R. Srikant, and J. Walrand, “Fast mixing of
parallel glauber dynamics and low-delay csma scheduling,” IEEE Trans.
Inf. Theory, vol. 58, no. 10, pp. 6541–6555, 2012.

[42] P. Brmaud, Markov chains : Gibbs fields, Monte Carlo simulation and
queues. Springer, 1999.

[43] K. C. Kiwiel, “Convergence of Approximate and Incremental Subgradi-
ent Methods for Convex Optimization,” SIAM Journal on Optimization,
vol. 14, no. 3, pp. 807–840, 2004.

[44] D. Williams, Probability with Martingales, ser. Cambridge mathematical
textbooks. Cambridge University Press, 1991.


	I Introduction
	I-A Related Literature
	I-B Contributions
	I-C Outline

	II System Model
	III General Network Utility Maximization algorithm
	III-A Performance Analysis of G-NUM

	IV Distributed subgradient Algorithm for Concave Utility Maximization
	IV-A Performance Analysis of C-NUM

	V Numerical Examples
	V-A Illustration
	V-A1  Effect of frame length T and number of iterations L
	V-A2  Effect of 

	V-B Example Scenarios
	V-B1 User Association

	V-C Channel Selection
	V-C1 Key Observations:


	VI Summary and Comparisons
	VII Conclusions
	VIII Appendix
	VIII-A Proof of Theorem ??:
	VIII-B Proof of Lemma ??
	VIII-C Mixing time bounds using Dobrushin's inequality
	VIII-D Proof of Lemma ??:
	VIII-D1 Mixing time bound for G-NUM

	VIII-E Proof of theorem ??:
	VIII-E1 Decreasing step size
	VIII-E2 Fixed step size (b(l)=b)


	References

