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For a matrix A whose off-diagonal entries are nonpositive, 
its nonnegative invertibility (namely, that A is an invertible 
M -matrix) is equivalent to A being a P -matrix, which is nec-
essary and sufficient for the unique solvability of the linear 
complementarity problem defined by A. This, in turn, is equiv-
alent to the statement that A is strictly semimonotone. In this 
paper, an analogue of this result is proved for singular sym-
metric Z-matrices. This is achieved by replacing the inverse 
of A by the group generalized inverse and by introducing the 
matrix classes of strictly range semimonotonicity and range 
column sufficiency. A recently proposed idea of P#-matrices 
plays a pivotal role. Some interconnections between these ma-
trix classes are also obtained.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Rn×n denotes the space of all real square matrices of order n and Rn denotes the real 

Euclidean space of real vectors with n coordinates. For x ∈ Rn, we write x ≥ 0 to denote 
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that all the coordinates of x are nonnegative. This is written as x ∈ Rn
+, where Rn

+ is 

the nonnegative orthant of Rn. x > 0 signifies the fact that all the coordinates of x are 

positive. A real matrix B is said to be nonnegative if all its entries are nonnegative. This 

is denoted by B ≥ 0. One of the central objects of interest in this work is the concept of 

a linear complementarity problem, which we discuss next. For x, y ∈ Rn, we use 〈x, y〉

to denote the inner product xT y and x ◦ y to denote the Hadamard entrywise product 

of x and y. Let A ∈ Rn×n and q ∈ Rn. The linear complementarity problem LCP (A, q)

is to determine if there exists x ∈ Rn such that x ≥ 0, y = Ax + q ≥ 0 and 〈y, x〉 = 0. 

If such a vector x exists, then LCP (A, q) is said to have a solution. SOL(A, q) denotes 

the set of all solutions of LCP (A, q). Various classes of matrices have been introduced 

to study the existence and uniqueness of solutions of LCP (A, q). Let us recall some of 

the relevant ones. A real square matrix A is called a P -matrix if all its principal minors 

are positive. It is well known that A is a P -matrix if and only if the implication

x ◦ Ax ≤ 0 =⇒ x = 0

holds [3]. A famous result in the theory of linear complementarity problems states that 

LCP (A, q) has a unique solution for all q ∈ Rn if and only if A is a P -matrix [3]. Let 

us consider the second class of matrices. A real square matrix A is said to be a strictly 

semimonotone matrix if

x ≥ 0 and x ◦ Ax ≤ 0 =⇒ x = 0.

It is well known that A is a strictly semimonotone matrix if and only if LCP (A, q)

has a unique solution for all q ∈ Rn
+ (Theorem 3.9.11) [3]. Any P -matrix is a strictly 

semimonotone matrix, while the converse could be shown to be false. However, these two 

classes coincide for a matrix class which we consider next. A is called a Z-matrix, if all 

its off-diagonal entries are nonpositive. Note that if A is a Z-matrix, then A = sI − B, 

for some s ∈ R with s > 0 and B ≥ 0. A Z-matrix A is called an M -matrix if in the 

representation as above, one also has s ≥ ρ(B), where ρ(B) denotes the spectral radius 

of B. For a Z-matrix A to be a P -matrix, more than fifty characterizations are proved 

in the literature. We refer to the excellent book [2], for these. In what follows, we list 

out the conditions that are pertinent to the discussion here.

Theorem 1.1. [2,12] Let A ∈ Rn×n be a Z-matrix. Then the following statements are 

equivalent:

(a) A is a P -matrix.

(b) A−1 exists and A−1 ≥ 0.

(c) A is an invertible M -matrix.

(d) A is a strictly semimonotone matrix.
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The following reiteration of Theorem 1.1 will be helpful. A strictly semimonotone 

Z-matrix is also a P -matrix and so the restriction on q to be nonnegative, for uniqueness 

of solutions of LCP (A, q) stated earlier, is removed. A more important perspective is 

that an invertible M -matrix has the property that LCP (A, q) has a unique solution for 

all q. Our primary quest will be to consider an analogue of this assertion for a class of 

singular M -matrices.

In order to outline the objectives of the article, let us turn our attention to extensions 

of the four classes of matrices mentioned in Theorem 1.1. For a matrix A, we denote the 

range space of A and null space of A by R(A) and N(A), respectively. A matrix A ∈ Rn×n

is called a P#-matrix if for each nonzero vector x ∈ R(A), there is an i ∈ {1, 2, . . . , n}

such that xi(Ax)i > 0 [9]. Equivalently, for any x ∈ R(A), the inequalities xi(Ax)i ≤ 0

for all i = 1, 2, . . . , n imply x = 0. Clearly, every P -matrix is a P#-matrix and so 

the P#-matrix notion is a generalization of the P -matrix concept. In order to consider a 

generalization of statement (b), we must recall the notion of a certain generalized inverse, 

which we do next. A ∈ Rn×n is said to have a group inverse if there exists X ∈ Rn×n

such that the equations AXA = A, XAX = X and AX = XA are satisfied. The group 

inverse is unique, if it exists and coincides with the usual inverse, if the latter exists. The 

group inverse is denoted by A#. A necessary and sufficient condition for A# to exist is 

that rank(A) = rank(A2) (Theorem 4.2, [1]). We need one more notion. A ∈ Rn×n is 

called monotone (see, for instance, [2]) if

Ax ≥ 0 =⇒ x ≥ 0.

It is well known that A is monotone if and only if A−1 exists and A−1 ≥ 0 [2]. In this 

connection let us recall that A ∈ Rn×n is called range monotone [7] if

Ax ≥ 0 and x ∈ R(A) =⇒ x ≥ 0.

There, it was shown that A is range monotone if and only if A# exists and that the 

following implication holds:

x ∈ Rn
+ ∩ R(A) =⇒ A#x ≥ 0.

Thus, a generalization of statement (b) in Theorem 1.1 that we are looking at is the 

condition that A is range monotone. An extension of the M -matrix concept (used in 

statement (c) above) that turns out to be the appropriate one for our purpose is the 

notion of an M -matrix with “property c” [8]. The precise definition will be presented 

in Section 2.3. Let us propose the fourth matrix class (with an intention of extending 

statement (d) above) as follows. A ∈ Rn×n is said to be strictly range semimonotone if 

the following implication holds:

x ∈ R(A), x ≥ 0 and x ◦ Ax ≤ 0 =⇒ x = 0.
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Once again, it is clear that the idea of a strictly range semimonotone matrix could be 

considered as a singular analogue of the notion of a strictly semimonotone matrix. One 

of the primary goals of this work is to prove an analogue of Theorem 1.1 for singular 

M -matrices, where condition (a) is replaced by the statement that A is a P#-matrix, (b) is 

extended to the condition that A is range monotone, (c) is generalized to the requirement 

that A is an M -matrix with “property c” and the assertion that A is a strictly range 

semimonotone matrix, in place of (d). This is shown to be true for symmetric Z-matrices 

and is proved in Corollary 3.2.

There is another class of matrices that could be included in the discussion. Let us 

recall this next. Matrix A ∈ Rn×n is said to be column sufficient [4] if

x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0.

In [4], it is shown that column sufficiency of A is equivalent to LCP (A, q) having (pos-

sibly empty) convex solution set for all q ∈ Rn. It is clear that every P -matrix is a 

column sufficient matrix. For an invertible Z-matrix A, it is known that A is strictly 

semimonotone if and only if A is column sufficient [4,14]. Thus, if A is an invertible 

Z-matrix, then column sufficiency is equivalent to all the statements of Theorem 1.1. 

A singular analogue of column sufficient matrices is proposed next. A ∈ Rn×n is called 

a range column sufficient matrix if the following implication holds:

x ∈ R(A), x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0.

When A is a range column sufficient matrix, we also say that A has the range column 

sufficiency property. In Corollary 3.4, it is shown that range column sufficiency is another 

equivalent statement that could be included in Corollary 3.2.

Let us briefly recall pertinent recent work related to Theorem 1.1. Some extensions of 

each of the statements of Theorem 1.1 have been studied in the literature. The concept of 

a strictly semimonotone matrix in the setting of Euclidean Jordan algebras was consid-

ered in [12], where a proof of the equivalence of (b) and (d) is given (Theorem 3.9), [12]. 

The equivalence of (a) and (d) remains open in this setting. The authors of [9] primarily 

set out to study a possible extension of the equivalence (a) and (b) for characterizing 

nonnegativity of the Moore–Penrose inverse (or the group inverse) to what are called as 

P†-matrices. However, this aim was not achieved. (In any case, interesting connections 

between P†-matrices and certain intervals of matrices were obtained there). From the 

discussion in the earlier paragraph, it is now clear that we have been able to fill this 

lacuna.

The plan of the paper is as follows. In the next section, we present interesting proper-

ties of the new matrix classes that are introduced. In Section 3, we prove an important 

result in Theorem 3.1. This asserts, among other things, that for a Z-matrix A, which 

is also a P#-matrix it follows that A is range monotone; this in turn, implies that A is 

a strictly range semimonotone matrix. We prove that the converse holds for matrices of 
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order 2 × 2 and 3 × 3, thereby generalizing Theorem 1.1 for (possibly) singular matrices 

of these orders. Corollary 3.2, as mentioned earlier, presents the sought after extension of 

Theorem 1.1 for symmetric Z-matrices. For normal Z-matrices, we show that the class 

of range column sufficient matrices coincides with the class of range monotone matrices 

which in turn is equivalent to strictly range semimonotone matrices. This is presented in 

Theorem 3.3. As a consequence of Theorem 3.3, we obtain a result connecting singular 

M -matrices and certain linear complementarity problems. This is given in Corollary 3.5.

2. Matrix classes

We shall be dealing with four classes of matrices (including the three that were defined 

in the introduction) that are made use of, in proving the main results. In what follows, we 

discuss these matrix classes and derive certain interesting properties. Let us begin with 

the first of these classes. For vectors x, y ∈ Rn, x ◦ y denotes the Hadamard entrywise 

product. For v ∈ Rn, let vi denote its ith coordinate. So, if x ◦y = z, then zi = xiyi, 1 ≤

i ≤ n. It is easy to verify that P (u ◦v) = P (u) ◦P (v) for all u, v ∈ Rn for any permutation 

matrix P . In the rest of the discussion, ei will denote the vector all of whose entries are 

zero except the ith coordinate which is one. Let e denote the vector all of whose entries 

equal 1. For a matrix A, let A = (aij).

2.1. Strictly range semimonotone matrices

In this subsection, we consider the notion of strictly range semimonotone matrices and 

derive some of their properties. Before doing this, however, let us prove an interesting 

result for the stronger class of strictly semimonotone matrices. Let us recall that a real 

square matrix A is said to be a strictly semimonotone matrix if

x ≥ 0 and x ◦ Ax ≤ 0 =⇒ x = 0.

Thus, if A is strictly semimonotone, then at least one component of Ax is positive for ev-

ery nonzero x ≥ 0. We have the following result on the entries of a strictly semimonotone 

matrix.

Theorem 2.1. Let A ∈ Rn×n be strictly semimonotone. Then

(a) The diagonal entries of A are positive.

(b) At least one of the row sums of A is positive.

Proof. (a): Let aii be a diagonal entry of A. Suppose that aii ≤ 0. Since Aei is the ith 

column of A, we have

0 ≥ aiie
i = ei ◦ A(ei).

This is a contradiction since ei 
= 0. Hence aii > 0.
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(b): Consider the vector e. Then Ae denotes the vector whose entries are the corre-

sponding row sums of A. By the observation made earlier, at least one of the row sums 

of A is positive. ✷

Let A be a strictly semimonotone Z-matrix. By Theorem 1.1, it follows that A−1

exists. However, in what follows, we give a direct proof of this result. As far as we know, 

a proof is not available in the literature.

Theorem 2.2. Let A ∈ Rn×n be a strictly semimonotone Z-matrix. Then A is invertible.

Proof. Let Ax = 0 and x = (x1, x2, . . . , xn)T so that 0 ≤ |x| = (|x1|, |x2|, . . . , |xn|)T . 

Since A is a Z-matrix, one has aij ≤ 0 whenever i 
= j. Thus, for all i, j with i 
= j one 

has

aij |xi||xj | ≤ aijxixj .

Also, for all i, we have aii|xi||xi| ≤ aiix
2
i . Now,

(|x| ◦ A|x|)i = |xi|
n

∑

j=1

aij |xj |

=
n

∑

j=1

aij |xi||xj |

≤
n

∑

j=1

aijxixj

= xi

n
∑

j=1

aijxj

= (x ◦ Ax)i.

Since Ax = 0, this yields |x| ◦A|x| ≤ 0 and by the strict semimonotonicity of A it follows 

that x = 0. This shows that A is invertible. ✷

Let us now discuss strictly range semimonotone matrices. Recall that A ∈ Rn×n is 

said to be strictly range semimonotone if the following implication holds:

x ∈ R(A), x ≥ 0 and x ◦ Ax ≤ 0 =⇒ x = 0.

Clearly, every strictly semimonotone matrix is strictly range semimonotone. If a 

strictly range semimonotone matrix is invertible, then it is trivially strictly semimono-

tone. Hence one could think of strictly range semimonotone matrices as singular ana-

logues of strictly semimonotone matrices. First, we obtain a version of Theorem 2.1 for 

this class.
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Theorem 2.3. Let A be a strictly range semimonotone matrix. Then the following hold:

(a) Suppose that ei is a linear combination of the columns of A for some i, 1 ≤ i ≤ n. 

Then aii is positive.

(b) Suppose that the vector e is a linear combination of the columns of A. Then at least 

one of the row sums of A is positive.

Proof. (a): Let ei be a linear combination of the columns of A. Then 0 ≤ ei ∈ R(A). If 

aii ≤ 0, then 0 ≥ aiie
i = ei ◦ Aei. This is a contradiction.

(b): Since A is strictly range semimonotone, at least one component of Ax is positive 

for every nonzero x ∈ R(A) ∩ Rn
+. Note that Ae is a vector whose components are the 

corresponding row sums of A. Hence the result follows. ✷

Next, we prove a result on the eigenvalues of a strictly range semimonotone Z-matrix. 

We need a result (Theorem 6) from [10] which states that if A is a Z-matrix and if

λ := min{Re(µ) : µ ∈ σ(A)},

then λ is an eigenvalue of A and a nonnegative eigenvector is associated with this eigen-

value. Here σ(A) denotes the spectrum of A.

Theorem 2.4. Let A be a Z-matrix. Suppose that A is strictly range semimonotone. Then 

all the real eigenvalues of A are nonnegative.

Proof. Using the just stated result, we have Ax = λx where 0 
= x ≥ 0 and λ defined 

as above. If possible, suppose that λ < 0. Then A( 1
λ

x) = x. Thus, x ∈ R(A). We have 

Ax = λx ≤ 0 and so x ◦ Ax ≤ 0. Since A has the strictly range semimonotone property, 

we have x = 0, a contradiction. Thus λ ≥ 0. If µ is any real eigenvalue of A, then 

0 ≤ λ ≤ µ, completing the proof. ✷

The next corollary follows from the proof of the previous result. This fact will be 

used in the proof of Theorem 3.3. Let us recall that a matrix A ∈ Rn×n is said to be 

semipositive stable if every eigenvalue of A has nonnegative real part.

Corollary 2.1. Let A be a Z-matrix. If A is strictly range semimonotone matrix then A

is semipositive stable.

Remark 2.1. The conclusion of Theorem 2.4 does not hold if A is not a Z-matrix. This 

is shown by the following example. Let

A =

⎛

⎜

⎝

a a 0

−b −b 0

0 0 1

⎞

⎟

⎠
with a, b > 0.
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Then R(A) ∩ Rn
+ = {(0, 0, γ)T : γ ≥ 0}. If 0 ≤ x ∈ R(A) and x ◦ Ax ≤ 0, then x = 0. 

Thus, A is a strictly range semimonotone matrix. In particular, if a = 1 and b = 2, then 

A is not a Z-matrix. Note that the eigenvalues of A are 0, 1, −1.

The following example shows that the converse of Theorem 2.4 does not hold. Consider 

the Z-matrix

A =

⎛

⎜

⎜

⎜

⎝

0 −1 0 −1

0 0 0 −1

−1 0 1 −1

0 0 0 1

⎞

⎟

⎟

⎟

⎠

whose eigenvalues of A are 0, 1, each with multiplicity two. Let x = (2, 0, 1, 0)T . Then 

0 ≤ x = Ay ∈ R(A) where y = (0, −2, 1, 0)T . Further, x ◦ Ax = (0, 0, −1, 0)T ≤ 0. Hence 

A is not a strictly range semimonotone matrix.

Let us recall that (Theorem 5.1, [5]) all the real eigenvalues of a Z-matrix A are 

nonnegative if and only if all the principal minors of A are nonnegative. Therefore, 

combining this result with Theorem 2.4, we have the following.

Corollary 2.2. Let A be a strictly range semimonotone Z-matrix. Then all the principal 

minors of A are nonnegative. In particular, all the diagonal entries of A are nonnegative.

This corollary will be used in the proof of Theorem 3.2. For a diagonal matrix, the 

converse is also true and this will be proved in Corollary 3.3.

In the next result, we collect some properties of strictly range semimonotone matrices. 

First, we show that strictly range semimonotone matrices are permutation invariant. 

A strictly semimonotone Z-matrix (which is invertible) has the property that its inverse 

is strictly semimonotone, too. This statement appears to be new and follows from the 

next item, viz., (b) where we prove a general result for the group inverse. In (c) we 

obtain a generalization of the result for strictly semimonotone matrices mentioned in 

the introduction. For a real number λ, we write λ+ = max{λ, 0} and λ− = λ+ − λ. Let 

x = (x1, x2, · · · , xn)T ∈ Rn. We define x+ = (x+
1 , x+

2 , · · · , x+
n )T and x− = x+ − x. Then 

x+ ≥ 0 and x− ≥ 0. Let us also collect some pertinent details in connection with the 

group inverse of a matrix. Recall that the existence of the group inverse of a matrix A

is characterized by the fact that the ranks of A and A2 coincide. Another equivalent 

statement is the condition N(A) = N(A2). Clearly, it suffices to show that N(A2) ⊆

N(A), if one wishes to show that A# exists. Another equivalent statement that will be 

used here is that R(A) and N(A) are complementary subspaces. Consequently, it follows 

that if A is range symmetric viz., R(A) = R(AT ), then A# exists. The following property 

of the group inverse is frequently used in the proofs: If x ∈ R(A), then x = AA#x. We 

refer to the book [1] for more details.
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Theorem 2.5. Let A ∈ Rn×n. Then the following statements hold:

(a) If A is a strictly range semimonotone matrix and P is a permutation matrix, then 

P T AP is a strictly range semimonotone matrix.

(b) Suppose that A is range symmetric. If A is a strictly range semimonotone matrix 

such that A# ≥ 0, then A# is a strictly range semimonotone matrix.

(c) A is a strictly range semimonotone matrix if and only if SOL(A, q) ∩ R(A) = {0}

for all q ∈ Rn
+.

Proof. (a) Let B = P T AP . Suppose that 0 ≤ x ∈ R(B) and x ◦ Bx ≤ 0. We must show 

that x = 0. Since P is a permutation matrix, we have P T = P −1 and P (Rn
+) = Rn

+. 

Since x ∈ R(B), there exists y ∈ Rn such that x = P T APy. Then Px = APy so that 

Px ∈ R(A). Since x ≥ 0, we have Px ≥ 0. Let z ∈ Rn
+. Then there exists w ∈ Rn

+ such 

that Pw = z. So, we have, 〈x ◦ Bx, w〉 ≤ 0. Thus,

0 ≥ 〈P T APx, x ◦ w〉

= 〈APx, P (x ◦ w)〉

= 〈APx, Px ◦ Pw〉

= 〈APx, Px ◦ z〉.

Thus, 〈Px ◦ APx, z〉 ≤ 0 for all z ∈ Rn
+. This implies that Px ◦ APx ≤ 0. Since A is 

strictly range semimonotone, Px = 0 and hence x = 0. This completes the proof of (a).

(b): As A is range symmetric, A# exists. Next, let u ∈ R(A#) = R(A), u ≥ 0 and 

u ◦(A#u) ≤ 0. Set v = A#u. Then v ∈ R(AT ) = R(A) and v ≥ 0. Also, Av = AA#u = u. 

Finally, 0 ≥ u ◦ (A#u) = (Av) ◦ v = v ◦ (Av). Since A is strictly range semimonotone, 

we have v = 0 and so u = 0. This shows that A# is strictly range semimonotone.

(c): Let q ∈ Rn
+. Clearly, 0 ∈ SOL(A, q) ∩ R(A). Let x ∈ SOL(A, q) ∩ R(A). Then 

0 ≤ x ∈ R(A), Ax + q ≥ 0 and 〈x, Ax + q〉 = 0. This implies that x ◦ (Ax + q) = 0 and 

hence x ◦ Ax = −(x ◦ q) ≤ 0. Since A is strictly range semimonotone, we have x = 0.

Conversely, assume that SOL(A, q) ∩ R(A) = {0} for all q ∈ Rn
+. Let 0 ≤ x ∈ R(A)

such that x ◦ Ax ≤ 0. We claim that x = 0. Take q = (Ax)+ − Ax = (Ax)− ≥ 0. Since 

x ≥ 0, we have x = x+ ∈ R(A). Now A(x+) + q = Ax + (Ax)+ − Ax = (Ax)+ ≥ 0. From 

x ◦Ax ≤ 0, we have x+◦(Ax)+ = 0. This implies that 〈x+, (Ax)+〉 = 〈x+, A(x+) +q〉 = 0. 

Thus, x+ is a solution of LCP (A, q). By our assumption, x+ = 0 and hence x = 0. This 

proves the result. ✷

Remark 2.2. We observe that a principal submatrix of a strictly range semimonotone 

property need not inherit that property. Consider the strictly range semimonotone matrix 

A of order 3 given in Remark 2.1 and the following (nonsingular) principal submatrix: 
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B =

(

−b 0

0 1

)

with b > 0. Then x ◦ Bx ≤ 0 for a nonzero x = (1, 0)T ≥ 0, showing that 

B is not strictly range semimonotone.

We conclude this subsection with a result that establishes a relationship between 

strictly range semimonotone matrices and linear complementarity problems.

Theorem 2.6. Let A ∈ Rn×n. If A is strictly range semimonotone then SOL(A, q) ∩R(A)

is a (possibly empty) bounded set, for all q ∈ Rn.

Proof. Suppose for some q ∈ Rn, SOL(A, q) ∩ R(A) is unbounded. Then there exists 

a sequence {xk} in SOL(A, q) ∩ R(A) such that xk 
= 0 and ||xk|| → ∞. Consider the 

sequence {yk} where yk = xk

||xk|| . Then {yk} has a convergent subsequence. Without 

loss of generality, assume that {yk} converges to y ∈ R(A). Since xk ∈ SOL(A, q) and 

||xk|| → ∞, we have 0 
= y ∈ SOL(A, 0) which contradicts (c) of Theorem 2.5. Hence 

SOL(A, q) ∩ R(A) is bounded for all q ∈ Rn. ✷

2.2. Range column sufficient matrices

Let us turn our attention to range column sufficient matrices. Let us recall that A ∈

Rn×n is called a range column sufficient matrix if x ∈ R(A), x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0. 

As mentioned in the introduction, A ∈ Rn×n is called a column sufficient matrix, if 

x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0. For range column sufficient matrices, we require that 

this implication holds only in the subspace R(A). In the next result, we collect certain 

properties of range column sufficient matrices. First, we obtain results for range column 

sufficient matrices that are analogous to strictly range semimonotone matrices, as in 

Theorem 2.3. These are given in (a) and (b). We show in (c) that range column sufficient 

matrices are closed under the operation of group inversion. This appears to be new even 

for the subclass of invertible matrices. In (d), we obtain an analogue of the well known 

result that positive semidefinite matrices are column sufficient [4]. The next item, viz., 

(e) is motivated by a result for column sufficient matrices (Corollary 6.1, [14]), which 

states that if ‖ S ‖≤ 1, then I − S is column sufficient. Here, ‖ . ‖ denotes the matrix 

norm induced by the 2-norm for vectors. A matrix A ∈ Rn×n is said to be positive 

semidefinite on R(A) if 〈x, Ax〉 ≥ 0 for all x ∈ R(A).

Theorem 2.7. Let A ∈ Rn×n. Then the following statements hold:

(a) Suppose that A is range column sufficient and ei is a linear combination of the 

columns of A for some i, 1 ≤ i ≤ n. If aii is non-zero, then it must be positive.

(b) Suppose that the vector e is a linear combination of the columns of a range column 

sufficient matrix A. If a row sum of A is non-zero, then at least one of the row sums 

of A is positive.
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(c) Suppose that A# exists. Then A is range column sufficient if and only if A# is range 

column sufficient.

(d) Let A be positive semidefinite on R(A). Then A is range column sufficient.

(e) Let A be such that A# exists and ‖ A ‖≤ 1. Then the matrix B = A#A − A is range 

column sufficient.

Proof. The proofs for (a) and (b) are similar to the proof of Theorem 2.3 and are skipped.

(c): Since (A#)# = A, it suffices to prove the necessity part. Let u ∈ R(A#) = R(A)

and u ◦ A#u ≤ 0. Set v = A#u. Then v ∈ R(A#) = R(A) and u = AA#u = Av so that 

v ◦ Av = A#u ◦ u ≤ 0. Since A has the range column sufficiency property, it then follows 

that u ◦ A#u = v ◦ Av = 0, showing that A# has the range column sufficiency property.

(d): Let x ∈ R(A) satisfy x ◦Ax ≤ 0. Then 〈x, Ax〉 ≤ 0. Since A is positive semidefinite 

on R(A), it follows that 〈x, Ax〉 ≥ 0. Hence 〈x, Ax〉 = 0. This implies that x ◦ Ax = 0

and hence A is range column sufficient.

(e): First, we observe that R(A#A) = R(A) and so R(B) ⊆ R(A). For x ∈ R(B) we 

have

〈x, Bx〉 = 〈x, A#Ax〉 − 〈x, Ax〉

= 〈x, x〉 − 〈x, Ax〉,

since A#Ax = x. By the Cauchy–Schwarz inequality, we then have

〈x, Bx〉 ≥‖ x ‖2 − ‖ x ‖‖ Ax ‖≥ (1− ‖ A ‖) ‖ x ‖2 .

This shows that B is positive semidefinite on R(B). By (d) above, it follows that B is 

range column sufficient. ✷

Remark 2.3. A principal submatrix of a range column sufficient matrix need not be range 

column sufficient. Consider the matrix

A =

⎛

⎜

⎝

1 1 0

−1 −1 0

0 0 1

⎞

⎟

⎠
.

Then R(A) = {(α, −α, β)T : α, β ∈ R} and 〈x, Ax〉 ≥ 0 for all x ∈ R(A). Hence A is 

positive semidefinite on R(A). By item (d) of Theorem 2.7, A is range column sufficient. 

Consider the (invertible) principal submatrix B =

(

−1 0

0 1

)

of A. Let x = (1, 0)T . Then 

0 
= x ◦ Bx = (−1, 0)T ≤ 0, showing that B is not range column sufficient.

The next result presents a connection to linear complementarity problems.
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Theorem 2.8. Let A ∈ Rn×n. If A is range column sufficient then SOL(A, q) ∩ R(A) is 

a (possibly empty) convex set, for all q ∈ Rn.

Proof. Let q ∈ Rn, λ ∈ [0, 1] and x1, x2 ∈ SOL(A, q) ∩ R(A). Then

0 ≤ λx1 + (1 − λ)x2 ∈ R(A)

and

A(λx1 + (1 − λ)x2) + q = λ(Ax1 + q) + (1 − λ)(Ax2 + q) ≥ 0.

To prove the result it is enough to show that

〈x1, Ax2 + q〉 = 〈x2, Ax1 + q〉 = 0.

Consider

(x1 − x2) ◦ A(x1 − x2) = (x1 − x2) ◦ ((Ax1 + q) − (Ax2 + q))

= −(x1 ◦ (Ax2 + q) + x2 ◦ (Ax1 + q))

≤ 0.

Since A is range column sufficient and x1 − x2 ∈ R(A), we have

(x1 − x2) ◦ A(x1 − x2) = 0.

Because x1, x2, Ax1 + q and Ax2 + q are nonnegative, we have

x1 ◦ (Ax2 + q) = x2 ◦ (Ax1 + q) = 0

and hence

〈x1, Ax2 + q〉 = 〈x2, Ax1 + q〉 = 0.

This completes the proof. ✷

The proof of the following result is similar to that of item (c) in Theorem 2.5. So, we 

state it without proof.

Theorem 2.9. If A is a range column sufficient matrix then SOL(A, q) ∩ R(A) = {0} for 

all q > 0.

Remark 2.4. In general, the conclusion of Theorem 2.9 does not hold if q ≥ 0 (and has a 

zero component). The following example shows that if A is range column sufficient then 
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SOL(A, q) ∩ R(A) need not be equal to {0} for some q ≥ 0. Consider A =

(

0 −1

0 0

)

. 

Then R(A) = {(α, 0)T : α ∈ R} and xT Ax = 0 for all x ∈ R(A). Hence A is positive 

semidefinite on R(A). By item (d) of Theorem 2.7, A is range column sufficient. Take 

q = (0, 1)T . Then {(β, 0)T : β ≥ 0} ⊆ SOL(A, q).

In general, a column sufficient matrix need not be strictly semimonotone. For example, 

the zero matrix is column sufficient but not strictly semimonotone. However, for an 

invertible Z-matrix A, it has been proved that A is column sufficient if and only if A is 

strictly semimonotone [4,14]. Further, they are equivalent to A−1 ≥ 0. In the following, 

we consider a partial generalization of this result.

Theorem 2.10. Let A be a Z-matrix which is also range monotone. Consider the following 

statements:

(a) A is range column sufficient.

(b) x ≥ 0, x ∈ R(A) and x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0.

(c) A is strictly range semimonotone.

Then (a) =⇒ (b) ⇐⇒ (c).

Proof. The implications (a) =⇒ (b) and (c) =⇒ (b) are obvious.

(b) =⇒ (c): By item (c) of Theorem 2.5, it is enough to show that SOL(A, q) ∩

R(A) = {0} for all q ∈ Rn
+. Let q ∈ Rn

+ and x = (x1, x2, · · · , xn)T ∈ SOL(A, q) ∩ R(A). 

Then x ≥ 0 and x ◦ (Ax + q) = 0. So x ◦ Ax = −(x ◦ q) ≤ 0. By our assumption, we have 

x ◦ Ax = 0. Let y = Ax = (y1, y2, · · · , yn)T . If xi > 0, then yi = 0. On the other hand, 

if xi = 0, then 〈x, ei〉 = 0. Since A is a Z-matrix, it follows that yi = 〈Ax, ei〉 ≤ 0. Thus 

y ≤ 0. Already, y ∈ R(A). As mentioned in the introduction, the range monotonicity 

of A ensures (that A# exists and) that x = A#Ax = A#y ≤ 0. This implies that x = 0, 

showing that A is strictly range semimonotone. ✷

Remark 2.5. We do not know whether the implication (b) ⇒ (a) of the above theorem 

holds. Later in Theorem 3.3, we show that all the above conditions are equivalent for a 

normal Z-matrix.

2.3. Matrices satisfying “property c”

Next, we move on to the third class. A square matrix T is called semiconvergent if 

limk→∞T k exists. In [8], the author introduced the following subclass of M -matrices. 

An M -matrix A is said to have “property c” if A could be written as A = sI − B for 

some B ≥ 0 and s > 0 such that the matrix T = 1
s
B is semiconvergent. Let A be 

an M -matrix. Then A has “property c” if and only if A# exists (Theorem 1, [8]). The 
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following result holds, also (Theorem 2) [8]. Let A be a Z-matrix. Then A is an M -matrix 

with “property c” if and only if A# exists and that A# is nonnegative on the range space 

of A. This last part means that the following implication holds:

x ∈ Rn
+ ∩ R(A) =⇒ A#x ≥ 0.

As mentioned in the introduction, this is equivalent to the range monotonicity of A. 

Let us underscore the importance of these matrices. Let T be the transition matrix 

for a Markov chain. Then the matrix A = I − T is an M -matrix with “property c” 

(Theorem 8.4.2, [2]).

Remark 2.6. It is not known if the principal submatrices of an M -matrix with “prop-

erty c” inherit that property.

2.4. P#-matrices

Finally, we take a relook at the fourth class of matrices that were introduced in [9]. 

We may recall that A ∈ Rn×n is called a P#-matrix if for each nonzero vector x ∈ R(A), 

there is an i ∈ {1, 2, . . . , n} such that xi(Ax)i > 0. Equivalently, for any x ∈ R(A), the 

inequalities xi(Ax)i ≤ 0 for all i = 1, 2, . . . , n imply x = 0. Using the Hadamard product, 

we may now paraphrase the above as follows: A is a P#-matrix if and only if

x ∈ R(A), x ◦ Ax ≤ 0 =⇒ x = 0.

From this reformulation, it is now apparent that a P#-matrix is both strictly range 

semimonotone and range column sufficient. In Theorem 3.1, among other things we show 

that a P#-matrix which is also a Z-matrix, satisfies “property c”. In the results to follow, 

we show that P#-matrices have certain properties that are analogous to P -matrices.

Theorem 2.11. Let A ∈ Rn×n, q ∈ Rn and A be a P#-matrix. We then have the following:

(a) A# exists and A# is a P#-matrix.

(b) LCP (A, q) has at most one solution in R(A).

Proof. (a): Let x ∈ R(A) ∩ N(A). Then x ◦ Ax = 0 so that x = 0. It now follows that 

R(A) and N(A) are complementary subspaces. Thus, A# exists. Next, let

u ∈ R(A#) = R(A) and u ◦ A#u ≤ 0.

Set v = A#u. Then Av = AA#u = u and so one has

0 ≥ u ◦ A#u = Av ◦ v.

We then have v = 0 so that u ∈ N(A#) = N(A). This means that u = 0.
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(b): Suppose that x1, x2 ∈ R(A) are two solutions of LCP (A, q). Now

(x1 − x2) ◦ A(x1 − x2) = (x1 − x2) ◦ ((Ax1 + q) − (Ax2 + q))

= −(x1 ◦ (Ax2 + q) + x2 ◦ (Ax1 + q)) ≤ 0.

Since A is a P#-matrix and x1 − x2 ∈ R(A), it follows that x1 = x2, completing the 

proof. ✷

Remark 2.7. It follows from the definition that a principal submatrix of a P -matrix is 

also a P -matrix. However, by means of an example, we show that such a property does 

not hold for P#-matrices. Consider

A =

⎛

⎜

⎝

2 2 0

−1 −1 0

0 0 1

⎞

⎟

⎠
.

Then R(A) = {(2α, −α, β)T : α, β ∈ R}. Let x ∈ R(A) such that x ◦Ax ≤ 0. Then x = 0. 

Hence A is a P#-matrix. Consider a principal submatrix B =

(

−1 0

0 1

)

of A. Since B is 

nonsingular, B is a P#-matrix if and only if B is a P -matrix, which it is not.

3. Range monotonicity of A

As mentioned in the introduction, the main objective is to study extensions of The-

orem 1.1 for the group generalized inverse. Our results rally around the nonnegativity 

of the group inverse of A on its range space which, we have seen is the same as saying 

that A is range monotone. Matrices belonging to this class have been studied in [7,8]. 

First, we present certain necessary conditions and some other sufficient conditions for a 

matrix to be range monotone. The precise statements appear in Theorem 3.1. This is 

one of the main results of this article. In this result, the Perron–Frobenius theorem will 

be used, which we recall briefly. For more details we refer to [2]. Let B ∈ Rn×n be such 

that B ≥ 0. Then the spectral radius ρ(B) of B is an eigenvalue of B and there is an 

eigenvector associated with ρ(B) each of whose coordinates is nonnegative. Observe that 

the proof of the equivalence of (c) and (d) below is given in [8]. Nevertheless, a proof is 

provided both for the sake of completeness and for ready reference.

Theorem 3.1. Let A be a Z-matrix. Consider the following statements:

(a) A is a P#-matrix.

(b) A is an M -matrix with “property c”.

(c) A is range monotone.

(d) A# exists and A#x ≥ 0 whenever x ∈ Rn
+ ∩ R(A).
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(e) Ax ≤ 0 and x ∈ Rn
+ ∩ R(A) =⇒ x = 0.

(f) A is strictly range semimonotone.

Then (a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d) =⇒ (e) =⇒ (f).

Proof. (a) =⇒ (b): Suppose that A is a P#-matrix. By (a) of Theorem 2.11, A# exists. 

Since A is a Z-matrix, there exists s > 0 such that A = sI − B where B ≥ 0. We show 

that s ≥ ρ = ρ(B). By the Perron–Frobenius theorem, there exists 0 
= z ∈ Rn
+ such that 

Bz = ρz. Thus,

Az = (sI − B)z = sz − Bz = (s − ρ)z.

Suppose that s < ρ. Then z ∈ R(A), Az ≤ 0 and z ◦ Az ≤ 0, since z ≥ 0. Since A is a 

P#-matrix, we then have z = 0, a contradiction. Hence s ≥ ρ. This means that A is an 

M -matrix. Since A# exists, by the result of [8] mentioned in Section 2.3, it follows that 

A has “property c”.

(b) ⇐⇒ (c): This follows from the discussion in Section 2.3.

(c) =⇒ (d): Let A2x = 0. Set y = Ax ∈ R(A) so that Ay = 0 and so y ≥ 0. Replacing 

y by −y, we get y ≤ 0. Hence y = Ax = 0 and so N(A2) ⊆ N(A). This shows that A#

exists. Let x ≥ 0 and x ∈ R(A). Set z = A#x. Then z ∈ R(A) and Az = AA#x = x ≥ 0. 

Thus A#x = z ≥ 0, completing the proof.

(d) =⇒ (c): Let y = Ax ≥ 0 and x ∈ R(A). Then y ∈ R(A) and A#Ax = AA#x = x. 

We have 0 ≤ A#y = A#Ax = x, proving (d).

(d) =⇒ (e): Let x ∈ R(A), x ≥ 0 and Ax ≤ 0. Set y = −x. Then y ∈ R(A) and 

Ay = −Ax ≥ 0. By hypothesis, we have 0 ≤ A#Ay = AA#y = y. Thus 0 ≤ y = −x and 

so x ≤ 0, proving that x = 0.

(e) =⇒ (f): Let x ∈ R(A), x ≥ 0 and x ◦ Ax ≤ 0. If we set y = Ax, then x ◦ Ax ≤ 0

transforms into xiyi ≤ 0 for each i. If xi > 0, then yi ≤ 0. On the other hand, if xi = 0, 

then 0 = xi = 〈x, ei〉. Since A is a Z-matrix, we then have yi = 〈Ax, ei〉 ≤ 0. We have 

shown that Ax ≤ 0. By (e), we then have x = 0, proving (f). ✷

The following consequence of Theorem 3.1, brings out the first relationship between 

singular M -matrices and linear complementarity problems.

Corollary 3.1. Let A be a Z-matrix. If A is an M -matrix with “property c”, then 

SOL(A, q) ∩ R(A) = {0} for all q ≥ 0.

Proof. From the implication (b) =⇒ (f) of Theorem 3.1, one has that A is strictly range 

semimonotone. By Theorem 2.5, the conclusion now follows. ✷

Remark 3.1. Consider A as in Remark 2.1 with a ≤ b. Let 0 
= y = (a, −b, 0)T . Then 

y ∈ R(A) and y ◦ Ay = (a2(a − b), b2(a − b), 0)T ≤ 0. Thus A is not a P#-matrix. This 
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shows that a strictly range semimonotone matrix need not be a P#-matrix if it is not a 

Z-matrix.

Consider the case a < b. Then R(A) ∩N(A) = {0} and hence A# exists. On the other 

hand, if a = b, then (1, −1, 0)T ∈ R(A) ∩ N(A) so that A# does not exist. This shows 

that the group inverse of a strictly range semimonotone matrix may not exist, in general.

For matrices of order 2 × 2 and 3 × 3, condition (f) above implies (a) and so all the 

statements are equivalent. This is what is shown next. Hence, for matrices of order 2 × 2

and 3 ×3, all the statements of Theorem 3.1 are equivalent (see also Theorem 3.2). Let us 

also point out that for matrices of higher order, we do not know if this is true. However, 

for symmetric Z-matrices we show that all the statements of Theorem 3.1 are equivalent 

and this is presented in Corollary 3.2. While extending the proof of Theorem 3.2 to 

higher order matrices, the difficult part is to determine the sign of the components of 

Ax when the corresponding components of x are zero. Alternatively, for x ∈ R(A), if we 

prove |x| = (|x1|, |x2|, . . . , |xn|)T ∈ R(A), then strictly range semimonotonicity implies 

P#-property. We do not know whether this condition holds.

Theorem 3.2. Let A be a Z-matrix which is also a strictly range semimonotone matrix. 

If A is of order 2 × 2 or 3 × 3, then A is a P#-matrix.

Proof. Let A be a strictly range semimonotone matrix of order 2 × 2. Let

A =

(

a11 a12

a21 a22

)

.

By Corollary 2.2, we have a11 ≥ 0 and a22 ≥ 0. Also, a12 ≤ 0 and a21 ≤ 0. We must 

show that A is a P#-matrix. Suppose that x ∈ R(A) and x ◦ Ax ≤ 0. We must show 

that x = 0. Suppose that this is not the case. As A is strictly range semimonotone, we 

have x � 0 and x � 0. Assume without loss of generality (by replacing x by −x, if need 

be) that x1 > 0 and x2 < 0. Let y = (y1, y2)T = Ax. As x ◦ y ≤ 0, one has x1y1 ≤ 0

and since x1 > 0 one has y1 ≤ 0. Since y = Ax, we have y1 = a11x1 + a12x2. By the sign 

constraints, we have a11x1 + a12x2 ≥ 0 with each term being nonnegative and so y1 ≥ 0. 

This means that y1 = 0, which in turn means that a11 = 0 = a12. Thus the first row of 

A is zero. Since x ∈ R(A), it then follows that x1 = 0, a contradiction. This completes 

the proof that A is a P#-matrix, in this case.

Let us consider the case of a strictly range semimonotone Z-matrix A of order 3 × 3. 

Let

A =

(

a11 a12 a13

a21 a22 a23

a31 a32 a33

)

.

Again, we have a11 ≥ 0, a22 ≥ 0 and a33 ≥ 0 and all the off-diagonal entries being 

nonpositive. Suppose that x ∈ R(A) and x ◦ Ax ≤ 0. We must show that x = 0. Suppose 
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that x 
= 0. Then x � 0 and x � 0 since A is strictly range semimonotone. Then there 

exists at least one i and at least one j such that xi > 0 and xj < 0.

Case (i): x1 = 0. We may assume without loss of generality that x2 > 0 and x3 < 0. 

As before set y = Ax. Then x2y2 ≤ 0 and x3y3 ≤ 0. Then y2 ≤ 0 and y3 ≥ 0. Since 

x1 = 0, we have y2 = a22x2 + a23x3 ≥ 0 with each term being nonnegative. This means 

that y2 = 0 and so we have a22 = 0 = a23. Also, y3 = a32x2 + a33x3 ≤ 0 with each 

term being nonpositive. This means that y3 = 0 and so we have a32 = 0 = a33. Thus the 

matrix A takes the form

A =

(

a11 a12 a13

a21 0 0
a31 0 0

)

.

Since x ∈ R(A), we then have x = Az for some z ∈ R3. Then 0 < x2 = a21z1 and 

0 > x3 = a31z1. These inequalities do not hold simultaneously due to the fact that both 

the numbers a21 and a31 are nonpositive. Hence we arrive at a contradiction, in the case 

when x1 = 0.

Case (ii): x1 
= 0. If either x2 = 0 or x3 = 0, we may proceed as in Case (i) to arrive 

at a contradiction. So, let us suppose that both x2 and x3 are nonzero. Without loss 

of generality, suppose that x1 > 0. Then, we have y1 ≤ 0. Consider the subcase where 

x2 < 0 and x3 < 0. Now, y1 = a11x1 + a12x2 + a13x3, where each term is nonnegative, 

so that y1 ≥ 0. Thus y1 = 0 and so we have a11 = a12 = a13 = 0. This means that the 

first row of A is zero so that x1 = 0, a contradiction. Since (−x) ◦ A(−x) = x ◦ Ax, the 

remaining two subcases, viz., x2 > 0, x3 < 0 and x2 < 0, x3 > 0 could be analysed in 

a similar manner by replacing x with −x. This completes the proof when A is of order 

3 × 3 and concludes the proof of the theorem. ✷

Remark 3.2. Let A ∈ Rn×n be a Z-matrix. It is useful to observe that the analysis 

considered in the proof of Theorem 3.2 could be generalized to the case where x has one 

positive entry and n − 1 negative entries or vice versa. For, let xi > 0 for some fixed i

and xj < 0 for all j 
= i. Since x ◦ Ax ≤ 0, we have 0 ≥ (Ax)i =
∑n

j=1 aijxj . Note that 

each term on the right hand sum is nonnegative and so it follows that (Ax)i = 0. The 

requirement that x ∈ R(A) forces xi = 0, a contradiction.

We now discuss an important consequence of Theorem 3.1 for symmetric Z-matrices. 

This is an extension of Theorem 1.1, that we set out to achieve.

Corollary 3.2. Let A be a symmetric Z-matrix. Then the following statements are equiv-

alent:

(a) A is a P#-matrix.

(b) A is an M -matrix with “property c”.

(c) A is range monotone.
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(d) A# exists and A#x ≥ 0 whenever x ∈ Rn
+ ∩ R(A).

(e) Ax ≤ 0 and x ∈ Rn
+ ∩ R(A) =⇒ x = 0.

(f) A is strictly range semimonotone.

Proof. In view of Theorem 3.1, it is enough to show the implication (f) =⇒ (a). Suppose 

that A is strictly range semimonotone. Let x ∈ R(A) such that x ◦ Ax ≤ 0. We claim 

that x = 0. Since A is symmetric, all the eigenvalues of A are real and A# exists. 

By Theorem 2.4, all the eigenvalues of A are nonnegative. Therefore, A is a positive 

semidefinite matrix. That is, yT Ay ≥ 0 for all y ∈ Rn. From x ◦ Ax ≤ 0, we have 

xT Ax ≤ 0. Thus xT Ax = 0. Since A is positive semidefinite and symmetric, it follows 

that Ax = 0. Thus x ∈ R(A) ∩ N(A), so that x = 0. This completes the proof. ✷

In the following, we characterize P#-property for diagonal matrices. This shows that, 

for a diagonal matrix, the statements in Corollary 3.2 are equivalent to the condition 

that the diagonal entries are nonnegative.

Corollary 3.3. Let D ∈ Rn×n be a diagonal matrix with diagonal entries d1, d2, · · · , dn. 

Then D is a P# matrix if and only if di ≥ 0 for all i.

Proof. The necessity part follows from Corollaries 2.2 and 3.2. To prove the sufficiency 

part, let us assume that di ≥ 0 for all i. Let x ∈ R(D) be such that x ◦ Dx ≤ 0. Since 

x ∈ R(D), we have x = Dy for some y = (y1, y2, · · · , yn)T . The condition x ◦ Dx ≤ 0

implies that d3
i y2

i ≤ 0. Since di ≥ 0, we have d3
i y2

i = 0 and hence diyi = 0. Thus 

x = 0. ✷

Let us recall that a matrix A ∈ Rn×n is said to be normal, if AAT = AT A, where 

AT denotes the transpose of A. A square complex matrix U is said to be unitary if 

UU∗ = I, where U∗ is the adjoint of U and I is the identity matrix. For two vectors 

u = (u1, u2, · · · , un)T and v = (v1, v2, · · · , vn)T in Cn, we denote the inner product by 

〈u, v〉C = u1v1 + u2v2 + · · · + unvn, where z is the complex conjugate of z.

We now study an interconnection between range column sufficient and range monotone 

matrices. For a normal matrix A, we show that range column sufficiency is equivalent 

to range monotonicity. In order to prove this equivalence, we need the following result. 

If A is a normal matrix which is also semipositive stable, then A is positive semidefinite 

(Lemma 5.1, [13]). For the sake of completeness and ready reference, we give a proof 

which is a modification of the proof of Theorem 2 in [11].

Lemma 3.1. Let A ∈ Rn×n be a normal matrix. If A is semipositive stable, then A is 

positive semidefinite.

Proof. Suppose that A is semipositive stable. We show that 〈Ax, x〉 ≥ 0 for all x ∈ Rn. 

Since A is normal, there exist a unitary matrix U and a diagonal matrix D such that 

A = U∗DU (Theorem 2.5.4, [6]). Let d1, d2, · · · , dn be the diagonal entries of D. Since 
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A is semipositive stable, Re(di) ≥ 0 for all i, where Re(di) is the real part of di. Let 

x ∈ Rn and z = Ux = (z1, z2, · · · , zn)T . Then

〈Ax, x〉 = 〈Ax, x〉C = 〈DUx, Ux〉C = 〈Dz, z〉C =
n

∑

i=1

di|zi|
2.

Since 〈Ax, x〉 is real, we have

〈Ax, x〉 = Re(

n
∑

i=1

di|zi|
2) =

n
∑

i=1

|zi|
2Re(di) ≥ 0,

proving that A is positive semidefinite. ✷

Theorem 3.3. Let A be a Z-matrix that is also normal. Then the following statements 

are equivalent:

(a) A is an M -matrix with “property c”.

(b) A is range monotone.

(c) A is strictly range semimonotone.

(d) A is range column sufficient.

(e) x ≥ 0, x ∈ R(A) and x ◦ Ax ≤ 0 =⇒ x ◦ Ax = 0.

Proof. The equivalence of (a) and (b) is the same as the equivalence of (b) and (c) in 

Theorem 3.1. The implication (b) =⇒ (c) follows from the implication (c) =⇒ (f) of 

Theorem 3.1. These implications hold even without the assumption of normality.

(c) =⇒ (d): Suppose that A is strictly range semimonotone. From Corollary 2.1, it 

follows that A is semipositive stable. Since A is normal, it follows that A is positive 

semidefinite, by Lemma 3.1. By item (d) of Theorem 2.7, we conclude that A is range 

column sufficient (A is even column sufficient).

(d) =⇒ (e): Trivial.

(e) =⇒ (a): Since A is normal, A is range symmetric and hence A# exists (pp. 159, 

[1]). In view of a result of [8] mentioned in Section 2.3, it is enough to show that A is 

an M -matrix. However, the argument for this is similar to the implication (a) =⇒ (b) in 

Theorem 3.1. This completes the proof. ✷

Combining Corollary 3.2 and Theorem 3.3, we obtain the following consequence, whose 

proof is immediate.

Corollary 3.4. Let A be a symmetric Z-matrix. Then any of the statements (a)–(f) of 

Corollary 3.2 is equivalent to the range column sufficiency of A.

Remark 3.3. The following example shows that the equivalence between range column 

sufficient and range monotone matrices does not hold if we drop the assumption of 
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normality. Consider a non-normal M -matrix A =

(

0 −1

0 0

)

. By Remark 2.4, A is range 

column sufficient. Let x = (1, 0)T ≥ 0. Then x ∈ R(A) and x ◦ Ax ≤ 0. Thus A is not 

strictly range semimonotone. From Theorem 3.2, it follows that A is not range monotone.

We also have the second connection between singular M -matrices and linear comple-

mentarity problems, as described next. This addresses the converse of Corollary 3.1 and 

is an important consequence of Theorem 3.3.

Corollary 3.5. Let A be a Z-matrix that is also normal. Then A is an M -matrix with 

“property c” if and only if SOL(A, q) ∩ R(A) = {0} for all q ≥ 0.

Proof. Follows from (c) of Theorem 2.5 and Theorem 3.3. ✷

We conclude with an observation.

Remark 3.4. The following example shows that a strictly range semimonotone symmetric 

Z-matrix which must be a P#-matrix, need not necessarily have a nonnegative group 

inverse. Consider the symmetric Z-matrix A =

(

1 −1

−1 1

)

. Then A is strictly range 

semimonotone, but A# = 1
4A � 0.
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