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ABSTRACT

In this short paper, we consider the problem of designing
a near-optimal competitive scheduling policy for N mobile
users, to maximize the freshness of available information
uniformly across all users. Prompted by the unreliability
and non-stationarity of the emerging 5G-mmWave channels
for high-speed users, we forego of any statistical assump-
tions of the wireless channels and user-mobility. Instead,
we allow the channel states and the mobility patterns to be
dictated by an omniscient adversary. It is not difficult to
see that no competitive scheduling policy can exist for the
corresponding throughput-maximization problem in this ad-
versarial model. Surprisingly, we show that there exists a
simple online distributed scheduling policy with a finite com-
petitive ratio for maximizing the freshness of information in
this adversarial model. Moreover, we also prove that the
proposed policy is competitively optimal up to an O(lnN)
factor.

1. INTRODUCTION

Apart from throughput, maximizing the freshness of in-
formation at the user-end is a principal design criterion for
the emerging 5G standards. The Age-of-Information (AoI)
is a newly proposed metric that captures the information-
freshness in a quantitative fashion [1]. However, the channel
states and user-mobility are challenging to model and pre-
dict in 5G-like non-stationary environments. This paper is
concerned with the following question: Does there exist a
scheduling policy that minimizes the maximum AoI across
all users, irrespective of the channel dynamics and user-
mobility patterns? Note that the question is considerably
general, as it does not make any assumptions on either the
channel-state statistics or the user-mobility, both of which
may be dictated by an omniscient adversary in the worst
case. In this paper, we affirmatively answer the above ques-
tion by showing that a simple distributed greedy scheduling
policy is competitively optimal up to an O(lnN) factor.

Closely related to this work, in a recent paper [2], we stud-
ied the problem of minimizing the average AoI for N static
users confined to a single cell within a similar adversarial
framework. We showed that the greedy Max-Age (MA) pol-
icy is competitively optimal up to a factor of O(N). In our
previous paper [3], we showed that the MA policy is optimal
for minimizing the maximum AoI for static users in a sin-
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gle cell with a stochastic channel state process. Within the
stochastic framework, the paper [4] proposes a Max-Weight
scheduling policy, which is shown to be optimal up to a con-
stant factor for the average AoI metric. Due to lack of space,
we refer the reader to the book [1] for a comprehensive in-
troduction to this active area of research and an extensive
bibliography.

Contributions: Compared to the previous works, this
is the first paper to study the problem of minimizing the
maximum AoI for mobile users in an adversarial framework.
Our main results are summarized and contrasted with that
of [2] in Table 1. On the technical side, the proof of the
achievability of Theorem 1 differs from that of [2] in the
way the “Max-users” and “super-intervals” are defined. This
is essential because, due to user movements across multiple
cells, the round-robin structure of scheduled users in [2] does
not hold here anymore. Furthermore, the proof of converse
in Theorem 2 proceeds in a different way, making use of a
Maximal inequality similar to the Massart’s lemma.

2. SYSTEM MODEL

A set of N users move around in an area having a total
of M Base Stations (BS). The coverage areas corresponding
to each BS (i.e., the cells) are disjoint. Time is slotted, and
at any slot, a user can either stay in its current cell or move
to any other M − 1 cells of its choice. Our mobility model
is considerably general, as it does not make any statistical
assumptions on the speed or user movement patterns. At
each slot, all BSs receive a fresh update packet for each user
from an external source (e.g., a high-speed optical network).
The fresh packets replace the stale packets in the BS buffers.
Each BS can beamform and schedule a downlink fresh packet
transmission to only one user under its coverage area at a
slot. The state of the channel for any user at any slot could
be either Good or Bad. The BSs are assumed to be unaware
of the current channel state conditions (i.e., no CSIT). If at
any slot, a BS schedules a transmission to a user under its
coverage having Good channel, the user decodes the packet
successfully. Otherwise, the packet is lost. In the worst case,
the states of the N channels (corresponding to N different
users) and the user movements at every slot may be dictated
by an omniscient adversary (see, e.g., [5]).

Cost Metric: In this paper, we are concerned with com-
petitively optimizing the information freshness for all users.
Accordingly, we define the N-dimensional state-vector h(t),
where hi(t) denotes the length of the time interval prior
to time t before which the ith user successfully received its
most recent packet. The variable hi(t) is called the Age-of-



Table 1: Summary of the results on the Competitive Ratios (η) in the adversarial framework

Metrics Mobility Upper Bound on η Lower Bound on η Gap to optimality

Average Age [2] No O(N2) O(N) O(N)

Maximum Age (This paper) Yes O(N) Ω( N
ln(N)

) O(ln(N))

Information of the ith user at time t [1]. Clearly, the graph
of hi(t) has a saw-tooth shape that increases linearly with
unit-slope until the ith user receives a new packet, mak-
ing hi(t) drop to 1 at that slot. From that point onwards,
hi(t) again continues increasing and repeats the saw-tooth
pattern [4]. The cost C(t) at time t is taken to be the max-
imum age among all users, i.e., C(t) = maxN

i=1 hi(t). The
cumulative cost incurred over a time-horizon of length T is
defined as: Cost(T ) =

∑T
t=1 C(t).

Performance index: As standard in the literature on
online algorithms, we compare the performance of any online
scheduling algorithm A against that of an optimal offline
scheduling algorithm OPT using the notion of competitive
ratio ηA, defined as follows:

ηA = sup
σ

(

Cost of the online policy A on σ

Cost of offline OPT on σ

)

. (1)

In the above definition, the supremum is taken over all finite-
length sequences σ denoting the dynamic channel states and
user locations per slot. Note that, while the online policy
A has only causal information, the policy OPT is assumed
to be equipped with full knowledge (including the future) of
the entire sequence σ. Our objective is to design an online
scheduling policy A with the minimum competitive ratio.

3. ACHIEVABILITY

We consider the following distributed scheduling policy,
called Cellular Max-Age (CMA): At every slot, each BS j
schedules a transmission to the ith user that has the maxi-
mum age hi(t) among all other current users in BS j’s cov-
erage area (ties are broken in an arbitrary but fixed order).
Theorem 1 below gives a performance bound for CMA, which
is, quite surprisingly, independent of the number of BSs M .

Theorem 1. ηCMA ≤ 2N.

Proof: At any slot t, define the global “Max-user” that
has the highest age among all N users (ties are broken in the
same way as in the CMA policy). Note that the identity of
the Max-user changes with time. However, by definition, the
CMA policy continues to schedule the user corresponding to
the current Max-user irrespective of its locations until the
transmission is successful. In the subsequent slot, a differ-
ent user assumes the role of the Max-user, and the process
continues.

Let Ti be the time slot at which a total of i success-
ful packet transmissions have been made exclusively by the
Max-users. Let ∆i ≡ Ti − Ti−1 denote the length of the ith

super-interval, defined as the time interval between the ith

and i − 1th successful transmissions by the Max-user. The
super-intervals are contiguous and disjoint. Let the user Mi

be the Max-user corresponding to the ith super-interval. As
argued above, the user Mi gets scheduled by the CMA pol-
icy persistently during the entire ith super-interval of length
∆i, irrespective of its locations. Note that, unlike the case

of static users [2], there could be more than one successful
transmissions within a super-interval by users other than the
Max-user.

We now claim that the Max-user corresponding to the ith

super-interval must have a successful transmission by the
beginning of the last N − 1 super-intervals. If not, by the
pigeonhole principle, some other user j 6= Mi must be the
Max-user at least twice in the previous N super-intervals.
However, this cannot be true as the user j would have less
age than Mi when the user j became the Max-user for the
second time in the previous N super-intervals.

Hence, at the kth slot of the ith super-interval, the age of
theMax-user Mi is upper bounded by k+

∑N−1
j=1 ∆i−j , where

for notational consistency, we have defined Tj ≡ 0, and ∆j ≡
0, ∀j ≤ 0. Thus, the cost CCMA

i incurred by the CMA policy
during the ith interval may be upper-bounded as:

CCMA

i ≤

∆i
∑

k=1

(

k +
N−1
∑

j=1

∆i−j

)

=
1

2

(

∆2
i +∆i) +

N−1
∑

j=1

∆i∆i−j

≤
1

2

(

∆2
i +∆i) +

1

2

N−1
∑

j=1

(

∆2
i +∆2

i−j

)

(2)

=
N

2
∆2

i +
1

2
∆i +

1

2

N−1
∑

j=1

∆2
i−j .

where in Eqn. (2), we have used the AM-GM inequality to
conclude ∆i∆i−j ≤ 1

2

(

∆2
i + ∆2

i−j

)

, 1 ≤ j ≤ N − 1. Hence,
assuming that there are a total of K super-intervals in the
time-horizon T , the total cost incurred by the CMA policy
over the entire time horizon is upper bounded as:

AoICMA(T ) =

K
∑

i=1

CCMA

i ≤
1

2

K
∑

i=1

(

2N∆2
i +∆i

)

.

On the other hand, the cost (i.e., the maximum age among
all users) incurred by OPT during the ith super-interval is
trivially lower bounded by the age of the user Mi, which
was consistently experiencing Bad channels throughout the
ith super-interval, i.e.,

COPT

i ≥

∆i
∑

k=1

(1 + k) =
1

2
∆2

i +
3

2
∆i, (3)

Finally, the cost of the entire horizon may be obtained
by summing up the cost incurred in the constituent inter-
vals. Hence, noting that ∆0 = 0, from Eqns. (2) and (3),
the competitive ratio ηMA of the CMA policy may be upper
bounded as follows:

ηCMA =

∑K
i=1 C

CMA
i

∑K
i=1 C

OPT

i

(a)

≤

1
2

∑K
i=1

(

2N∆2
i +∆i

)

∑K
i=1

(

1
2
∆2

i +
3
2
∆i

) ≤ 2N. �

4. CONVERSE



Theorem 2. For any online policy A, ηA ≥ Ω( N
lnN

).

Proof: We establish a slightly stronger result by proving
the lower bound for the particular case when all N users
remain stationary at a single cell throughout the entire time
interval. Using Yao’s minimax principle, a lower bound to
the competitive ratios of all deterministic online algorithms
under any input channel state distribution p yields a lower
bound to the competitive ratio, i.e.,

η ≥
Eσ∼p(Cost of the Best Deterministic Online Policy)

Eσ∼p(Cost of OPT)
. (4)

To apply Yao’s principle in our setting, we construct the
following symmetric channel state distribution p: at ev-
ery slot t, a user is chosen independently and uniformly
at random and assigned a Good channel. The rest of the
N − 1 users are assigned Bad channels. Hence, at any slot t:
P(useri’s channel is Good) = 1

N
, and is Bad otherwise. The

rationale behind the above choice of the channel state distri-
butions will become apparent when we compute OPT’s ex-
pected cost below. In general, the cost of the optimal offline
policy is obtained by solving a Dynamic Program, which is
challenging to analyze. However, with our chosen channel
distribution p, we see that only one user’s channel is in Good
state at any slot. This greatly simplifies the computation of
OPT’s expected cost. We lower bound the competitive ratio
using Eqn. (4) by lower bounding the numerator and upper
bounding the denominator for the symmetric channel state
distribution described above.

An Upper bound to OPT’s cost: The OPT policy,
with a priori channel state information, schedules the only
user having a Good channel at any slot. Hence, the limiting
distribution of the age of any user is Geometric ( 1

N
), i.e.,

lim
t→∞

P(hi(t) = k) =
1

N

(

1−
1

N

)k−1
, k ≥ 1.

Hence, for upper bounding the time-averaged cost incurred
by the OPT policy, using Cesaro’s summation formula, it is
enough to upper bound the expected value of maximum ofN
dependent but identically Geometrically distributed random
variables. The MGF of the Geometric distribution G is:

E(exp(λG)) =

{

eλ/N

1−eλ(1−1/N)
, if λ < − log(1− 1/N)

∞ o.w.

Let the r.v. Hmax denote limiting maximum age of the users.
We proceed similarly to the proof of Massart’s lemma for
upper bounding E(Hmax). For any − log(1− 1/N) > λ > 0,
we have

exp
(

λE(Hmax)
)

(a)

≤ E(exp(λHmax)) ≤
N
∑

i=1

E(exp(λGi)) ≤
eλ

1− eλ(1− 1
N
)
,

where the inequality (a) follows from Jensen’s inequality.
Taking natural logarithm of both sides, we get

E(Hmax) ≤ 1−
1

λ
log

(

1− eλ(1− 1/N)
)

. (5)

Now, let us choose λ = α
N
, for some fixed 0 < α < 1 to be

determined later. First, we verify that, with this choice for
λ, we always have λ < − log(1− 1

N
). Using the convexity of

the function ex, we can write

1 = e0 ≥ ex + (0− x)ex = (1− x)ex=⇒ex ≤
1

1− x
, x < 1. (6)

As a result, we have

eλ ≡ e
α

N ≤
1

1− α
N

<
1

1− 1
N

; i.e., λ < − log(1−
1

N
).

Next, for upper bounding the RHS of Eqn. (5), we start with
the simple analytical fact that for 0 < α < 1,

inf
0<x<1

1− (1− x)eαx

x
= 1− α. (7)

This result can be verified by using Eqn. (6) to conclude
that for 0 < x < 1, we have

1− (1− x)eαx

x
≥

1

x

(

1−
1− x

1− αx

)

=
1− α

1− αx
≥ 1− α,

where the infimum is achieved when x → 0+. Substituting
x = 1

N
in the inequality (7), we have the following bound

1− eα/N(1− 1/N) ≥
1− α

N
.

Hence, using Eqn. (5), we have the following upper bound
to the expected Max-age under OPT:

E(Hmax) ≤ 1 +
N

α
ln

N

1− α
,

for some 0 < α < 1. Setting α = 1− 1
lnN

yields the following
asymptotic bound:

E(Hmax) ≤ N lnN + o(N lnN).

Lower Bound to the cost of any online policy: To
lower bound the cost of any online policy A, we use Theorem
1 of [3] with the success probability pi =

1
N
, ∀i, yielding:

lim inf
T→∞

1

T

T
∑

t=1

E(max
i

hA

i (t)) ≥ N2.

Combining the above results and using Eqn. (4), the com-
petitive ratio of any online algorithm is lower bounded as:

ηA
≥ sup

T>0

Cπ(T )

COPT(T )
≥ Ω(

N

lnN
). �
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