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Abstract

At the surfaces of autophoretic colloids, slip velocities arise from local chemical gradients that are

many-body functions of particle configuration and activity. For rapid chemical diffusion, coupled

with slip-induced hydrodynamic interactions, we deduce the chemohydrodynamic forces and torques

between colloids. For bottom-heavy particles above a no-slip wall, the forces can be expressed as

gradients of a non-equilibrium potential which, by tuning the type of activity, can be varied from

repulsive to attractive. When this potential has a barrier, we find arrested phase separation with a

mean cluster size set by competing chemical and hydrodynamic interactions. These are controlled,

in turn, by the monopolar and dipolar contributions to the active chemical surface fluxes.
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I. INTRODUCTION

Non-equilibrium processes, of biological [1] or chemical [2, 3] origin, when confined to

a thin layer around a colloidal particle, create interfacial slip flows. These drive exterior

fluid flows, which mediate long-ranged hydrodynamic interactions between particles [4–7].

In instances where the slip is of biological origin, as for example in suspensions of Volvox

[8, 9], the slip on any one particle is typically independent of the configuration and slip of

other particles. Motion under the active hydrodynamic forces and torques thereby computed

[4–6] is in excellent agreement with experiment [7, 10]. However, when slip is induced by

gradients of chemical species, as for example in autophoretic colloids [3, 11], the gradient

at the location of one particle is determined by the chemical fields of all other particles,

causing the slip to be a many-body function of the colloidal configurations and activities.

Interactions in autophoretic suspensions thus have both chemical and hydrodynamic many-

body contributions. A quantitative theory of these is necessary to understand the dynamics

and non-equilibrium steady-states of such suspensions.

Experiments on active suspensions are often performed in the vicinity of a plane boundary,

for example a no-slip wall [11–13]. Here, aggregation of colloids to a self-limiting cluster size

that is proportional to the self-propulsion speed has been reported. This cannot be explained

by current theories [14–17], which typically only account for chemical (not hydrodynamic)

many-body effects. (Many-body chemohydrodynamics have recently been addressed, but

not near a wall [18, 19].) While it has been shown that translational and rotational diffu-

siophoretic motion in overlapping chemical fields can induce aggregation [14], this predicts

instead a decrease in the size of aggregates with self-propulsion speed [12, 13]. In other

work, aggregation has been attributed to the tendency of particles to propel away from the

chemical they produce [16, 20] leading to formation of patterns. So far, all of the above

theories ignore the local conservation of momentum and/or the role played by plane bound-

aries as barriers to chemical flux and sinks of fluid momentum. A theory which consistently

accounts for these effects remains lacking.

Here we present a microscopic theory for autophoretic colloids in the proximity of bound-

aries, restricting attention, for simplicity, to cases governed by a single chemical diffusant

species. We construct the slip on one particle as a many-body function of the position and

activity of all others. The slip is obtained from the solution of the diffusion equation, in the
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limit of zero Péclet number, and then used in the momentum equation, in the limit of zero

Reynolds number, to compute chemohydrodynamic forces and torques between the colloids.

These forces and torques generically do not admit potentials and explicitly violate the

action-reaction principle [21]. However, for bottom-heavy particles located above and ori-

ented normal to a plane boundary where the chemical flux and fluid flow vanish, the bulk

flow is predominantly irrotational and, strikingly, the interactions can after all be written as

gradients of a non-equilibrium pair potential. To leading order, this potential depends on the

ratio, α, of the magnitudes of monopolar and dipolar chemical activity of the colloids (see

below) and can be varied, by tuning this ratio, from purely repulsive to purely attractive.

This leads to colloidal steady-states that are, respectively, liquid-like and crystalline. When

instead the potential has a barrier, phase separation can arrest to a self-limiting cluster size

that is set by α.

In what follows, we explain how these results are derived, starting in Section II with our

solution of the chemohydrodynamic traction in the presence of fast diffusant. Section III

applies our formalism to the case of bottom-heavy particles near an infinite plane horizontal

no-flux, no-slip wall and we conclude with a brief discussion in Section IV.

II. MANY-BODY CHEMOHYDRODYNAMICS

We consider a suspension of N chemically active spherical colloids of radius b in an

incompressible fluid of viscosity η. The i-th sphere is centered at Ri, has radius vector ρi,

and is oriented along pi with the points ri = Ri + ρi defining its surface Si. The system

of coordinates is shown in Fig.(1). Here we restrict ourselves to the limit of rapid Fickian

diffusion of chemical and rapid viscous transport of momentum. Then, the chemical field

c obeys the steady-state diffusion equation ∇ · j = 0 in the bulk where j = −D∇c is the

diffusive flux with diffusivity D. The chemical reaction determines the normal component

of the flux at the boundaries,

j(r) · ρ̂i = jA(ρi) (r ∈ Si). (1)

Here and below, fields that are restricted to the surfaces Si carry arguments ρi. The slip

flow produced by chemical gradients is

vA(ρi) = µc(ρi)∇s c(ρi), (2)
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Figure 1. The left panel shows the system of coordinates used to describe the kinematics of active

colloids. The i-th colloid is centered at Ri, oriented along the unit vector pi, and has radius vector

ρi. The right panel shows the tensorial modes, Y
(m)
i (pi) · Y(m)(ρ̂i), of an uniaxial surface scalar

field with the direction of axial symmetry along the z-axis, for m = 0, . . . 3.

where ∇s is the surface gradient and µc(ρi) is the phoretic mobility [2]. The flow field v

obeys the momentum balance equation ∇ · σ = 0 where σ = −pI + η(∇v + (∇v)T ) is the

Cauchy stress in an incompressible Newtonian fluid and I is the identity tensor. The slip

flow modifies the usual no-slip boundary condition on a colloid translating with velocity Vi

and rotating with angular velocity Ωi to

v(r) = Vi +Ωi × ρi + vA(ρi) (r ∈ Si). (3)

The chemohydrodynamic problem is to determine the Cauchy stress in the bulk and the

traction at the boundaries in terms of the prescribed active flux jA. The linearity of the

diffusion and Stokes equations and their respective boundary conditions, together with the

linearity of slip flow equation that couples them, makes it possible to obtain a formally exact

solution to the chemohydrodynamic problem. We show this below.

First, we take advantage of the spherical symmetry of the colloids to parametrize the

fields on their surfaces in terms of the l-th rank irreducible tensorial harmonics Y
(l)(ρ̂) =
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(−1)lρl+1∇
lρ−1. The expansion of the surface concentration and surface flux are

c(ρi) =
∞∑

m=0

wmC
(m)
i ·Y(m)(ρ̂i), (4a)

jA(ρi) =
∞∑

m=0

w̃mJ
(m)
i ·Y(m)(ρ̂i), (specified) (4b)

where C
(l)
i and J

(l)
i are l-th rank symmetric irreducible tensorial coefficients with (2l + 1)

independent components [22]. Here and below, a maximal contraction of two tensors is

denoted by a dot product. The coefficients J
(m)
i are specified as part of the problem and,

for uniaxially symmetric activity, can be be parametrized as J
(m)
i = J (m)

Y
(m)(pi), reducing

the number of free parameters considerably. The first four uniaxial tensorial surface modes

are shown in Fig.(1). The corresponding expansions for the active slip and the traction are

vA(ρi) =
∞∑

l=1

wl−1V
(l)
i ·Y(l−1)(ρ̂i), (5a)

fA(ρi) =
∞∑

l=1

w̃l−1F
(l)
i ·Y(l−1)(ρ̂i), (sought) (5b)

where V
(l)
i and F

(l)
i are l-th rank tensorial coefficients, symmetric and irreducible in their

last l − 1 indices, with the dimensions of force and velocity respectively. The l-dependent

expansion weights are

wl =
1

l!(2l − 1)!!
, w̃l =

2l + 1

4πb2
, (6)

and unless otherwise specified, sums over repeated indices m,m′ start from 0 while sums

over repeated indices l, l′ start from 1.

Second, linearity of the diffusion equation and the boundary conditions implies that the

tensorial coefficients of the surface concentration and surface flux are linearly related,

C
(m)
i = −ε

(m,m′)
ik · J(m′)

k . (7)

In the above, repeated harmonic (m,m′) and particle (i, k) indices are summed over. The

coefficients of proportionality, ε
(m,m′)
ik , are tensors of rank (m + m′) and many-body func-

tions of the particle positions. Maxwell, in his study of the capacitance of a system of

spherical conductors, called the coefficients ε
(0,0)
ik elastances [23]. We call the complete set

of coefficients generalized elastance tensors.
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Third, linearity of the slip equation implies that the tensorial coefficients of the slip and

surface concentration are linearly related,

V
(l)
i = −χ(l,m) ·C(m)

i , (8)

where χ(l,m) is a coupling tensor of rank (l+m) that depends on the phoretic mobility µc. We

assume the latter to not vary between particles, making the coupling tensors independent

of the particle indices.

Fourth, linearity of the Stokes equation and the boundary conditions implies that the

tensorial coefficients of the slip and traction are linearly related,

F
(l)
i = −γ

(l,l′)
ik ·V(l′)

k , (9)

where the coefficients of proportionality, γ
(l,l′)
ik , are tensors of rank (l + l′) and many-body

functions of the particle positions. We call the complete set of coefficients the generalized

friction tensors [6].

Finally, eliminating the coefficients of the concentration and slip between the preceding

three equations, we obtain a direct relation between the prescribed coefficients of the active

flux and the sought coefficients of the traction,

F
(l)
i = −γ

(l,l′)
ij

Stokes

·χ(l′,m′) · ε(m′,m)
jk

Laplace

·J(m)
k . (10)

This shows that the force per unit area on autophoretic colloids has both many-body chem-

ical and hydrodynamic contributions encoded, respectively, in the generalized elastance and

friction tensors and determined, respectively, by solutions of the Laplace and Stokes equa-

tions. Ignoring chemical (hydrodynamic) interactions between particles amounts to setting

the components of the elastance (friction) tensors off-diagonal in the particle indices to zero.

The coefficients F
(1)
i and b ǫ ·F(2)

i , where ǫ is the Levi-Civita tensor, are the active force and

torque on the i-th colloid that determine its rigid body motion. The remaining coefficients

are required to determine suspension-scale quantities such as the rheological response and

the power dissipation [6]. The formal solution above is completed by providing expressions

for the elastance, coupling and friction tensors.

The coupling tensors are obtained straightforwardly from the slip flow equation Eq.(8)

with a prescribed mobility,

χ(l,m) = −
∫

w̃l−1Y
(l−1)(ρ̂i)µc(ρi)wm∇sY

(m)(ρ̂i) dSi. (11)
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The elastance tensors are most conveniently obtained from the solution of the boundary

integral representation of the Laplace equation. To leading order in distance, they assume a

pairwise form given in terms of gradients of the Green’s function H of the Laplace equation,

−ε
(m,m′)
ik ≈ bm+m′

∇
m
Ri
∇

m′

Rk
H(Ri,Rk).

A method for calculating their many-body forms, to any desired order of accuracy, is provided

in the Appendix A. The generalized friction tensors are similarly obtained from the boundary

integral representation of the Stokes equation [6]. To leading order in distance, they assume

a pairwise form given in terms of gradients of the Green’s function G of the Stokes equation

−γ
(l, l′)
ik ≈ bl+l′−2

∇
l−1
Ri

∇
l′−1
Rk

G(Ri,Rk).

A method for calculating them, to any desired order of accuracy, has been presented earlier

[6]. Combining the three preceding equations with Eq.(10) gives explicit expressions for the

active traction in terms of the particle positions, orientations and activities. The Cauchy

stress in the fluid is then determined by the integral representation that relates it to the

traction [6, 24].

We now derive the dynamical equations for autophoretic motion of the colloids from the

balance of forces and torques. The active force F
A
i and torque T

A
i on the i-th colloid follows

from the first two modes of the active traction in (10):

F
A

i = −γ
(T,l)
ij · χ(l,m′) · ε(m′,m)

jk · J(m)
k , (12a)

T
A

i = −γ
(R,l)
ij · χ(l,m′) · ε(m′,m)

jk · J(m)
k . (12b)

where γ
(T,l)
ij = γ

(1,l)
ij and γ

(R,l)
ij = ǫ · γ(2,l)

ij . The drag forces and torques are given by the

standard expressions [25, 26]

F
D

i = −γTT
ik ·Vk − γTR

ik ·Ωk, (13a)

T
D

i = −γRT
ik ·Vk − γRR

ik ·Ωk. (13b)

Conservative body forces and torques, FP
i and T

P
i , may, in addition, act on the particles.

Then, Newton’s equations for the i-th colloid are

MV̇i = F
A

i + F
D

i + F
P

i , (14a)

IΩ̇i = T
A

i +T
D

i +T
P

i . (14b)
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where M is the mass and I the moment of inertia. At the colloidal scale, inertia can be

ignored and Newton equations reduced to implicit algebraic equations for the velocities and

angular velocities. Explicit solutions can be obtained in terms of the active forces and

torques (see Appendix B) and used to evolve the position and orientation according to the

kinematic equations

Ṙi = Vi, ṗi = Ωi × pi. (15)

Autophoretic colloidal motion is thus fully determined by the solution of the chemohydro-

dynamic problem.

III. AUTOPHORESIS OF BOTTOM-HEAVY COLLOIDS NEAR A PLANE WALL

We now apply the above general solution to a specific, experimentally relevant, situation:

autophoretic motion of particles near a planar no-flux, no-slip wall. Motivated by a minimal

representation of autophoretic Janus colloids, we assume that the active surface flux jA has

monopolar and dipolar modes and that the phoretic mobility is constant,

4πb2 jA(ρi) = J (0) + 3 J (1)pi · ρ̂i, 4πb2 µc(ρi) = M (0). (16)

This model has three independent parameters. The assumption of constant mobility leads

to a coupling tensor with exactly one non-zero component,

χ(l,m) = −δl1δm1
M (0)

4πb3
I, (17)

corresponding to l = m = 1. This restricts the sums in Eq.(12) for the active forces

and torques to terms where the second harmonic index of the friction tensor and the first

harmonic index of the elastance tensor are both equal to one. With this simplification, the

active force on a colloid located at R1 and oriented along p1 contains exactly two terms:

F
self
1 = − J (0)γ

(T,1)
11 · ε(1,0)11

︸ ︷︷ ︸

wall-induced propulsion

− J (1)γ
(T,1)
11 · ε(1,1)11 · p1

︸ ︷︷ ︸

polar self-propulsion

, (18)

The first term is the force arising from the broken spherical symmetry of the chemical

monopole field in the vicinity of the wall and the second term is the self-propulsion force of

the chemical dipole. Thus, an apolar active colloid (J (0) 6= 0, J (1) = 0) which, by symmetry,

can have no motion in an unbounded medium, will acquire motion near a wall due the
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Figure 2. The system of coordinates used to describe active colloids above a planar wall. The

height, h, of the colloid from the wall is explicitly indicated, and the system of coordinates of its

image centered at R∗
i below the wall is also shown (see text). Note that in our method the fluid

extends to infinity in the horizontal and upwards directions; we have no need for periodic or other

boundary conditions at the edges of the simulation box. Indeed, there is no simulation box, just a

set of particle coordinates which can in principle be anywhere in the upper half space.

breaking of spherical symmetry. The scaling of the force by −M (0)/4πb3 in the above

equation and the three equations below are for ease of display. With the introduction of a

second colloid, located at R2 with orientation p2, the active force on particle 1 will contain

six additional interaction terms involving particle 2,

F
CI
1 =− J (0)γ

(T,1)
11 · ε(1,0)12 − J (1)γ

(T,1)
11 · ε(1,1)12 · p2, (19a)

F
HI
1 =− J (0)γ

(T,1)
12 · ε(1,0)22 − J (1)γ

(T,1)
12 · ε(1,1)22 · p2, (19b)

F
CHI
1 =− J (0)γ

(T,1)
12 · ε(1,0)21

︸ ︷︷ ︸

orientation-independent

− J (1)γ
(T,1)
12 · ε(1,1)21 · p1

︸ ︷︷ ︸

orientation-dependent

, (19c)

giving a total of eight terms. Every such term is the product of an elastance tensor and a

friction tensor, each of which can be diagonal or off-diagonal in the particle indices, giving

four distinct kinds of interactions. Terms in which both the elastance and friction are di-

agonal represent self-propulsion and self-interaction forces; terms in which the elastance is

off-diagonal and the friction diagonal represent chemical interactions (CI); terms in which
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the elastance is diagonal and the friction off-diagonal represent hydrodynamic interactions

(HI); and terms in which both elastance and friction are off-diagonal represent chemohy-

drodynamic interactions (CHI). The CI are due to chemical gradients induced on particle

1 due to activity of particle 2, the HI are due to the flow incident on particle 1 due to the

slip on particle 2 and the CHI are due to the flow incident on particle 1 from the additional

slip on particle 2 from the chemical gradient induced on it by the activity of particle 1.

The monopolar and dipolar modes of activity yield forces that are, respectively, orientation-

independent and orientation-dependent. The force on particle 2 is obtained by interchanging

indices. Structurally similar expressions are obtained for the active torques.

Explicit expressions for these forces and torques are obtained from the solutions of the

linear systems defining the elastance and friction tensors, as explained in A. The coefficients

of these linear systems are determined by the Green’s functions of the Laplace and Stokes

equations, corresponding to the boundary conditions imposed, respectively, on the chemical

and flow fields at the boundaries. Here we use solutions obtained at the second step of a

Jacobi iteration, which corresponds to evaluating elastance and friction tensors to next-to-

leading order in distance. We emphasize that this iteration can be continued to as many

steps as needed for a prescribed accuracy. The linear system may also be solved by direct

methods but we do not pursue this here. The no-flux Green’s function of the Laplace

equation is

Hw(Ri,Rk) = H0(r) +H0(r∗). (20)

Here 8πDH0(r) = ∇2r is the Green’s function in an unbounded domain, r = Ri − Rk,

r∗ = Ri −R∗

k, R
∗

k = M·Rk, and M = I − 2ẑẑ is the mirror operator with respect to the

wall at z = 0. See Fig.(2) for the system of coordinates. From Appendix (A), the leading

forms of elastance tensors relevant to our minimal model are,

ε
(1,0)
11 =

bẑ

16πDh2
, ε

(1,1)
11 =

1

4πbD
+

b2

4πD

I − 3ẑẑ

8h3
, (21)

ε
(1,0)
12 =

b

4πD

(
r̂

r2
+

r̂∗

r∗2

)

, ε
(1,1)
12 =

b2

4πD

(
I − 3r̂r̂

r3
+

I − 3r̂∗r̂∗

r∗3

)

. (22)

The no-slip Green’s function of Stokes equation is the Lorentz-Blake tensor [27, 28]

Gw
αβ(Ri,Rk) = G0

αβ(r) +G∗

αβ(r
∗), (23a)

G∗

αβ(r
∗) = G0

αβ(r
∗)−

[
2h∇r

∗G0
α3(r

∗)− h2∇2
r
∗G0

αγ(r
∗)
]
Mβγ , (23b)
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Figure 3. One and two-body dynamics of autophoretic colloids near a plane wall. Panel (a-b) are

contour-maps of the chemical field around a colloid at two heights from the wall, while (c-d) are the

corresponding flow streamlines overlaid on the normalized logarithm of the flow speed. Panel (e)

shows the quantitative variation of planar chemical forces, while panel (f) contains the attractive

hydrodynamic force and panel (g) is the sum of the forces. The corresponding autophoretic non-

equilibrium potential is plotted in panel (h) for three values of dimensionless number α. Panel (a-d)

are for α = 2.5. Here Fa = 6πηb vs.

where 8πηG0
αβ(r) = (∇2δαβ −∇α∇β) r, the Oseen tensor, is the Green’s function in an

unbounded domain and G∗
αβ(r

∗) is the correction required to satisfy the boundary condition

on the plane wall. From [6], the leading form of the relevant friction tensors are

γ
(T,1)
11 =








γ‖ 0 0

0 γ‖ 0

0 0 γ⊥








, γ
(T,1)
12 = −








γ‖γ‖G
w
xx γ‖γ‖G

w
xy γ‖γ⊥G

w
xz

γ‖γ‖G
w
yx γ‖γ‖G

w
yy γ‖γ⊥G

w
yz

γ⊥γ‖G
w
zx γ⊥γ‖G

w
zy γ⊥γ⊥G

w
zy








. (24)

Here γ‖ = 6πηb(1− 6πηbG*
xx) and γ⊥ = 6πηb(1− 6πηbG∗

zz) are the friction coefficients of a

colloid at a height h in the directions parallel (‖) and perpendicular (⊥) to the wall [29].

Using the above in Eq.(18) and retaining leading terms in distance gives the self-

contribution to the active force to be

F
self
1 = γ⊥vs

(

p1 +
b2

2αh2
ẑ

)

. (25)

where

vs =
M (0)J (1)

16π2b4D
, α =

J (1)

J (0)
,

are, respectively, the intrinsic self-propulsion velocity and ratio of dipolar to monopolar

activity. The propulsive force is directed along or opposite to the orientation accordingly as
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the product M (0)J (1) is positive or negative. For a given sign of vs the interaction with the

wall depends only on the activity ratio. For a particle with vs, α > 0, forces are balanced

at a height h2 = b2/2α, and a self-levitating state results. For other sign combinations, the

particle is either repelled from or attracted to the wall. In the latter case, when the particle

is brought to rest by steric interactions at a height hm, the Stokeslet (force monopole on

the colloid) on it points normal to and away from the wall. The chemical and flow fields

produced by a particle at heights h > hm and h = hm are shown in Fig.( 3).

The CI force to leading order is

F
CI
1 (r,p2) = 2γ‖vs

(
b2r̂

αr2
+

b3

r3
[p2 − 3(p2 · r̂)r̂] +

b2r̂∗

αr∗2
+

b3

r∗3
[p2 − 3(p2 · r̂∗)r̂∗]

)

, (26)

with orientation-independent inverse-square and orientation-dependent inverse-cube contri-

butions. From the expression for the force on particle 2, obtained by interchanging indices, it

is clear that the forces are non-reciprocal and violate the action-reaction principle. At a fixed

height, the CI force can be expressed as the gradient, with respect to in-plane coordinates,

of a non-equilibrium potential,

ΦCI
1 (r,p2) = 2γ‖bvs

(
b

αr
+

b

αr∗
− b2

r2
[p2 · r̂]−

b2

r∗2
[p2 · r̂∗]

)

. (fixed height) (27)

In general, CI terms at any order can be so expressed if the friction tensors are independent of

configuration. Notably, the autophoretic non-equilibrium potential is orientation-dependent,

unlike the orientation-independent non-equilibrium potentials that appear in phoretic phe-

nomena in externally imposed gradients [30, 31].

The HI force has a more complicated functional form that simplifies when particle 2 is

oriented normal to the wall:

F
HI
1 (r) = −γ‖γ⊥vs

2πη

(

1 +
b2

2αh2

)
3h3

(r2 + 4h2)5/2
r. (28)

It has an explicit dependence on the height of the particle pair from the wall. With the

orientation normal to the wall, the HI force can also be expressed as the gradient, with

respect to in-plane coordinates, of a non-equilibrium potential,

ΦHI
1 (r) = −γ‖γ⊥vs

2πη

(

1 +
b2

2αh2

)
h3

(r2 + 4h2)3/2
, (p2 ⊥ wall). (29)

This follows from the irrotational character the flow assumes when particle 2 is oriented

normal to the wall. In contrast, flow in a Hele-Shaw geometry (parallel walls separated

12



by a gap small compared to their size) is irrotational for any orientation [7, 32, 33] and

non-equilibrium hydrodynamic potentials then exist for arbitrary orientations. In general,

such potentials will fail to express the HI when the flow contains significant amounts of

vorticity. The CHI contains product of gradients of the Laplace and Stokes Green’s functions

and, therefore, is never the gradient of a potential. However, as it has a weaker distance-

dependence than both CI and HI, the potentials, when they exist, capture the leading

contributions to the forces.

We plot our results for forces and potential in panels (e-h) of Fig.(3), as a function lateral

pair separation r, at different values of α. It should be noted that the planar chemical

force, obtained from Eq.(26), contains contributions up to O(1/r4) when it is evaluated for

orientation vectors along ẑ direction. In this setting, the next term of the chemical force

contributes only at O(1/r6), and is thus, not included for this analysis. In panel (e), we

show that the chemical force F
CI
1 depends on the sign of α, which is controlled by the sign

of J (0), while the hydrodynamic component FHI
1 is always attractive [5]. Thus, the effective

potential has a barrier if the chemical interaction is repulsive, as shown in panel (h); the

effective interaction is then repulsive for r > rc, and attractive for r < rc where

rc ∼ h

√

3αhγ⊥
4πb2η

. (30)

is an interaction scale that depends on the height from the wall. The emergence of a length

scale in slow viscous flow near a wall has also been noted in another context [34].

We emphasize conditions in which non-equilibrium potentials exist. The CI always admits

a potential when the friction tensors are constant; the HI always admits a potential when the

flow is irrotational; the CHI, in general, does not admit a potential. However, as CHI is sub-

dominant in comparison to CI and HI, it is not surprising that the approximation of forces

by potentials leads to good agreement with simulations below, where no such approximation

is made. We do not present a similarly detailed characterization of the active torque but

turn, instead, to simulations of many-body effects where such torques are included.

In panel (a-l) of Fig.(4), we show the dynamics of 211 autophoretic colloids for three

different values of the activity number α. In all cases, we start from an initially random

hard-sphere configuration [35]. Panels (a-d) of Fig.(4) correspond to α < 1; here the chemical

repulsion dominates the hydrodynamic attraction. The result is a liquid-like steady-state

as the effective interaction between the colloids is fully repulsive. For a larger value of
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α = 2.5, there is a barrier at r = rc as explained above (see Eq.(26)). This leads to

arrested phase separation with clusters of particles, as shown in panels (e-h). The dynamic

clusters are similar to those reported in experiments of autophoretic colloids [11, 12]. When

α is negative, both chemical and hydrodynamic interactions are attractive, and full phase

separation is achieved. Thus, we have identified three distinct phases in the space of chemical

parameters; see Fig.(4) (m). We restrict J (1) to positive values as it corresponds to self-

propulsion into the wall, which is necessary in our model to induce the Stokeslet away

from the wall, which leads to the attractive hydrodynamic forces between the colloids. The

chemical monopole J (0), on the other hand, can take both positive and negative values.

Thus, although the dynamics is determined in terms of a single ratio α, it is useful to show

the two-dimensional phase diagram of Fig.(4) (m).

The average number of particles Nc in the arrested clusters can be tuned by varying the

activity parameter α. In panel (n) of Fig.(4), we show that Nc is linearly proportional to

α. The scaling can be understood from the fact that the number of particles in a two-

dimensional cluster is proportional to r2c , and from Eq.(30) rc is proportional to
√
α. It is

interesting to compare the resulting linear scaling with the experiments of [12, 13]. There,

the cluster size grows linearly with the self-propulsion speed vs of isolated colloids, when this

speed is varied by adjusting the fuel concentration or light intensity. Within our theory, vs

is indeed proportional to α, but only if the monopole current J (0) is held fixed as the dipolar

activity J (1) is varied. At present we can see no reason to expect constant J (0) on varying

the overall fuel level, in which case the explanation of the experimental linear scaling lies

beyond the present theory. However, this finding may offer valuable mechanistic information.

Specifically, we assumed autophoresis to stem from the active surface chemical flux jA of

a single diffusant field c, whereas the mechanism of self-propulsion arising in experimental

systems may instead require a description involving multiple (possibly charged) diffusant

species [36, 37].

IV. DISCUSSION

We have shown that chemical and hydrodynamic many-body effects in a suspension of

autophoretic particles can be fully determined in terms of elastance, coupling and friction

tensors. These tensors can be calculated from the phoretic mobility and the Green’s functions

14



Figure 4. Self-assembly of 211 autophoretic colloids. Panels (a-l) corresponds to three distinct states

as indicated in the state diagram of panel (m), in the plane of strengths of the chemical dipole J (1)

and monopole J (0) (see (16) for the model used). The gray dots denote simulation points, and

Ja = Db−2. Panel (n) is average number of particles in a cluster (Nc) as function of the ratio α.

Here τ = b/vs. We emphasize that no periodic boundary condition is used and the system is only

confined by a plane infinite wall. The panels (a-l) have been cropped in the same extent of space

to clearly show the difference in the three regimes.

of the Laplace and Stokes equations that incorporate the appropriate boundary conditions

on the chemical and the flow.

For particles at fixed heights from, and oriented normal to, a planar no-flux, no-slip

wall, chemical and hydrodynamic forces can be expressed as in-plane gradients of a non-

equilibrium potential. This remarkably simple pairwise description is fully underpinned by

our general treatment of the many-body coupling between a rapid chemical diffusant, slip

and hydrodynamic interactions, whose numerical investigation in other geometries we leave

to future work. The potential can be purely attractive or repulsive, or have a barrier. Our

barrier heights scale like Fab ∼ 6πηb2 vs, which for a typical experiment [11], with radius

b = 2 µm and self-propulsion speed vs = 10 µms−1, is roughly 10−19 J, two orders of

magnitude higher than the thermal energy kBT . This changes for smaller particles so that

15



chemical, hydrodynamic and thermal forces are then all relevant. Our many-body formalism

is generalizable to this case, and also, once they are fully identified, to some of more complex

multi-species mechanisms of autophoresis that may be important experimentally.

Although we have only considered the chemical field, our formalism is applicable to

any harmonic scalar field (for example, a temperature field [38]) produced locally by the

colloids or due to an external gradient. In this work, we do not resolve the near-field

hydrodynamic interactions between the colloids. This can be done in our theory by using

lubrication-corrected friction, mobility, and propulsion tensors [6]. While our simulations

allow for orientational fluctuations, albeit of a small magnitude, the analytical form of the

potential is obtained in the limit of zero orientational fluctuation. The excellent agreement

between the theory and the simulation confirms that small orientational fluctuations do not

significantly change the form of the potential. We leave the investigation of non-equilibrium

potential, if one exists, for large orientational fluctuations to future work. In particular,

when the propulsion direction of particles is not constrained to lie normal to the wall, the

tangential component creates the conditions under which motility-induced phase separation

[39] can be expected to arise. This is a separate mechanism from the one studied here which

can instead be classified as flow-induced phase separation (FIPS) [5]. The full problem

presumably combines both of these types of active phase separation in a complex way. This

is one reason why we have focused here on the pure FIPS limit of strongly aligned particles

as the exemplary problem for combining hydrodynamic and chemical interactions in active

colloidal systems.
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Appendix A: Boundary integrals solution for elastance tensors

The boundary integral equation of the Laplace equation gives the concentration field on

the surface of the i-th colloid in terms of and integral over boundaries of all the colloids

1
2
c (ri) =

∫

H(Ri + ρi, Rk + ρk) j
A(ρk) dSk +

∫

L(Ri + ρi, Rk + ρk) c(ρk) dSk. (A1)

Here L = Dρ̂ · ∇H and the integrand vanishes at any other boundary in the bulk fluid

and at the infinity. We use the Galerkin method of solution by expanding the boundary

fields in terms of tensorial spherical harmonics, as given in Eq.(4). The principle advantage

of the Galerkin method is that the matrix elements of the linear system, which are double

integrals over the particle boundaries, can be calculated exactly in terms of the Green’s

functions, and thus, provides the greatest accuracy for the least number of discrete degrees

of freedom [40, 41]. Such calculations would be prohibitively expensive in the boundary

element method, which instead collocates the integral equation at specific points on the

boundary. Multiplying both sides of Eq.(A1) by the m-th basis function and integrating on

the surface of the i -th colloid gives a linear system for the unknown C
(m)
i

1
2
C

(m)
i = H

(m,m′)
ik (Ri,Rk) · J(m′)

k +L
(m,m′)
ik (Ri,Rk) ·C(m′)

k

Comparing with Eq.(7), the elastance tensors are given as

ε
(m,m′)
ik = −

[(
1
2
I −L

)−1
H

](m,m′)

ik
. (A2)

Here H and L are matrices, whose (m, m′) element in the ik block are H
(m,m′)
ik (Ri,Rk)

and L
(m,m′)
ik (Ri,Rk) respectively. The matrix elements of the linear system are

H
(m,m′)
ik (Ri,Rk) = w̃mw̃m′

∫

Y
(m)(ρ̂i)H(Ri + ρi,Rk + ρk)Y

(m′)(ρ̂k) dSidSk,

L
(m,m′)
ik (Ri,Rk) = w̃mwm′

∫

Y
(m)(ρ̂i)L(Ri + ρi,Rk + ρk)Y

(m′)(ρ̂k)dSidSk.

The above integrals are completed by Taylor expansion of the Green’s function and using the

orthogonality of the basis functions (wmw̃m′

∫
Y

(m)(ρ̂i)Y
(m′)(ρ̂i) dSi = δmm′∆) and standard
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Bessel integrals to obtain [4]

H
(m,m′)
ik (Ri,Rk) =







δikδmm′

4πbDwm
∆

(m) k = i,

bm+m′

∇
m
Ri
∇

m′

Rk
H(Ri,Rk) k 6= i,

L
(m,m′)
ik (Ri,Rk) =







−1
2
∆

(m) k = i,

em∇
m
Ri
∇m′

Rk
H(Ri,Rk) k 6= i.

Here em = wm−1Db(m+m′−5)/(4πw̃mw̃m−1) and ∆
(m) is a tensor of rank 2m, which reduces

a tensor of rank m to its symmetric irreducible form.

With the matrix elements so determined, the linear system can be solved by a variety of

methods. Here, we use the venerable “method of reflections” due to Smoluchowski, which is

the Jacobi iteration in disguise. The solution after the n-th iteration is [42]

(

ε
(m,m′)
ik

)[n]

= − 1

A
(m,m)
ii

[

H
(m,m′)
ik −

′∑

A
(m,m′′)
ij ·

(

ε
(m′′,m′)
jk

)[n−1]
]

. (A4)

Here A
(m,m′)
ik = 1

2
I
(m,m′)
ik −L

(m,m′)
ik , and the primed summation in Eq.(A4) indicates that the

diagonal term (i = j = k and m = m′ = m′′) is excluded [42]. To start the iteration, we use

the one-body solution of the linear system,
(

ε
(m,m′)
ik

)[0]

= δikδmm′ε
(l)
ii =

δikδmm′

4πbDwm

∆
(m).

Chemical interactions, given by the off-diagonal (i 6= j) elastance tensors, appear at the

second iteration,
(

ε
(m,m′)
ik

)[1]

= −bm+m′

∇
m
Ri
∇

m′

Rk
H(Ri,Rk).

The solution of the elastance tensors at the third iteration is
(

ε
(m,m′)
ik

)[2]

=
(

ε
(m,m′)
ik

)[1]

+
′∑[

− 4πDb2m+2m′−1

(m′−1)!(2m′+1)!!
∇

m
Ri
∇

m′

Rj
H(Ri,Rj)

]

∇
m
Rj
∇

m′

Rk
H(Rj,Rk).

The above recipe can then used to be used to systematically obtain the elastance tensors

at all orders. The higher order Jacobi solutions are obtained in terms of higher gradients of

the Green’s function, and are thus, subleading to the lower order solutions. In this work, we

have used the solution of the elastance tensor at the second iteration. The coupling tensors

of Eq.(11) satisfy

χ(l,m) = − w̃l−1wm

bwl+m−2

M
(l+m−2)
i I +

w̃l−1wm

bwl+m

M
(l+m)
i ,

where the first term is non-vanishing for l + m − 2 ≥ 0, and M
(m)
i = wl

∫
µc(Ri +

ρi)Y
(m)(ρi) dSi are tensorial spherical harmonic coefficients of phoretic mobility.
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Appendix B: Simulation Details

With vanishing inertia, Newton’s equations Eq.(14) can be inverted to obtain the rigid

body motion of active colloids in terms of known quantities:

Vi = µTT
ik · FP

k + µTR
ik ·TP

k + π
(T,l)
ij ·χ(l,m′)· ε(m′,m)

jk · J(m)
k , (B1a)

Ωi = µRT
ik · FP

k + µRR
ik ·TP

k + π
(T,l)
ij ·χ(l,m′)· ε(m′,m)

jk · J(m)
k . (B1b)

Here the propulsion tensors π(α,l′σ′) give active contributions due to the slip [4] and the

mobility matrices µαβ, with (α, β) = (T,R) give passive hydrodynamic interactions [25, 26].

The above dynamical system, in simulations, is truncated at l = 3 and integrated numerically

using the open-source PyStokes library [43] with an initial condition of random packing of

hard-spheres [35]. We then study the system near a plane wall by computing the mobility,

propulsion and elastance tensors using the Green’s function of sec III. Our system is only

confined by a plane wall and there is no periodic boundary condition. Thus, it is a distinctive

feature of the present approach to colloid hydrodynamics that a finite number of colloids in

an infinite expanse of fluid can be simulated, without having to either truncate the size of

the system or impose periodic boundary condition.

The orientations of the colloids are stabilized along the wall normal by external torques

T
P = T0(ẑ × pi). The number of colloids N , for respective plots, are: Fig.3(a-d): N = 1;

Fig.3(e-f): N = 2; Fig.4: N = 211. Other parameters used in the simulations are: radius of

colloids (b = 1), strength of the chemical monopole (J
(0)
0 = 4), strength of the chemical dipole

(J (1) = 10), the strength of the bottom-heaviness (T0 = 0.2), diffusion constant (D = 1000),

and dynamic viscosity (η = 1). We vary the ratio α = J (1)/J
(0)
0 in Fig.4(n) to map the

state diagram. The conservative inter-particle force F
P
i = −∇Ri

U is due to a short-ranged

repulsive potential U(r) = ǫ
(
rmin

r

)12 − 2ǫ
(
rmin

r

)6
+ ǫ, for r < rmin and zero otherwise [44],

where ǫ is the potential strength. The WCA parameters for particle-particle repulsion are:

rmin = 4.4, ǫ = 0.04, while for the particle-wall repulsion we choose rmin = 3, ǫ = 0.08.
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