
Comparing optimization modeling
approaches for the multi-mode

resource-constrained
multi-project scheduling problem

Marimuthu Kannimuthu
Department of Civil Engineering,

Indian Institute of Technology Madras, Chennai, India and
Department of Civil and Construction Engineering,

Swinburne University of Technology, Melbourne, Australia

Benny Raphael
Department of Civil Engineering,

Indian Institute of Technology Madras, Chennai, India

Palaneeswaran Ekambaram
Department of Civil and Construction Engineering,

Swinburne University of Technology, Melbourne, Australia, and

Ananthanarayanan Kuppuswamy
Department of Civil Engineering,

Indian Institute of Technology Madras, Chennai, India

Abstract

Purpose – Construction firms keep minimal resources to maintain productive working capital. Hence, resources
are constrained and have to be shared among multiple projects in an organization. Optimal allocation of
resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this
task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project
scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the
multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the
portfolio constraint).
Design/methodology/approach – A direct search algorithm called Probabilistic Global Search Lausanne is
used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three
criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-
criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-
project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data
from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling
problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.
Findings – Computational results prove the superiority of the single-project approach over heuristic priority
rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project
approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.
Research limitations/implications – It is feasible to adopt the single-project approach in practice;
realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good
compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.
Originality/value – An integer programming model was developed in this research to optimize the
multiple objectives in a multi-project environment considering explicit resource constraints and maximum
daily costs constraints. This model was used to compare the performance of the two multi-project
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environment approaches. Unlike existing work in this area, the model used to predict the quality of activity
execution modes is based on data collected from real construction projects.

Keywords Optimization, Scheduling, Project management, Decision support systems,
Construction planning

Paper type Research paper

1. Introduction
Traditional techniques such as the Critical PathMethod and the ProgramEvaluation and Review
Technique consider only unconstrained resource state (Goncalves et al., 2008). However,
construction companies work in a constrained resource environment. Constraints on resources
are explicitlymodeled in themathematical formulation of resource-constrained project scheduling
problems (RCPSP) (Koulinas and Anagnostopoulos, 2012). RCPSP is defined as scheduling of
activities under precedence and resources constraints to minimize the project duration (Hartmann
and Briskorn, 2010). Based on the project environment and activity execution modes, RCPSP
could be classified as classical RCPSP, multi-mode RCPSP (MRCPSP), resource-constrained
multi-project scheduling problem and multi-mode resource-constrained multi-project scheduling
problem (MRCMPSP). MRCMPSP has the highest complexity compared to the other variations
and reflects higher practical relevance. More than 90 percent of all international projects are
executed in a multi-project environment (Payne, 1995). Herroelen (2005) mentions that even a
small improvement in multi-project management would yield a significant benefit.

The presence of multiple objectives, such as time, cost and quality adds further complexity.
The trade-offs amongst conflicting objectives have been considered to identify ways to
complete projects within time and budget under limited resources (Tran and Long, 2018). The
schedule performance of the project depends on the relationship between the allocated amount
of resources and the duration of activities. Many activity execution modes are possible with
different combinations of construction methods, materials and crew sizes (El-Rayes and
Kandil, 2005; Elbeltagi et al., 2016). In “multi-mode” RCPSP, the goal is to identify the
best combination of activity execution modes such that the project duration is minimized.
Most previous researchers approached the time-cost tradeoff problem in a single-project
environment (Aminbakhsh and Sonmez, 2016; Feng et al., 1997). In practice, decision making
in a multi-project environment is complex. Contractors must deliver quality work to survive in
a competitive environment (Kong et al., 1997). Due to the conflicting nature of time, cost and
quality objectives, acceptable schedules can be obtained only by evaluating relative sacrifices
and gains through optimally allocating different types and amounts of resources. Project
quality is a criterion that has been largely ignored in previous studies on schedule
optimization in a multi-project environment. The quality of activities can be estimated through
quality performance indicators (El-Rayes and Kandil, 2005). Developed countries use standard
checklists to measure the activity quality in terms of workmanship (BCA Singapore, 2017;
HKHA Hong Kong, 2016; Kam et al., 2015). However, quantitative data related to quality
collected from real projects have not been used for resource optimization.

Two network modeling approaches have been proposed to handle the multi-project
environment (Kurtulus and Davis, 1982): single-project approach and multi-project approach
(Figure 1). In the multi-project approach, each project is optimized individually, whereas in the
single-project approach all the projects are considered as part of a single network using
fictitious start and end activities. In the multi-project approach, each individual optimization
does not consider the overall resource availability at the organization level. Hence, after
completing one round of optimization, projects might have to be rescheduled if resource
constraints are found to be violated at the portfolio level. Priority rules have been proposed to
help in this process. These are described in the next section.

The primary aim of this research is to compare the multi-project environment approaches,
single-project approach and multi-project approach for multiple objectives under the
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resource-constrained project scheduling situation. More specifically, it is examined whether
the heuristic rules proposed for the multi-project approach are able to generate solutions with
comparable project performance. The paper is organized as follows: Section 2 reviews the
studies related to time, cost and quality optimization, and resource-constrained project
scheduling. The proposed approach in this research is presented in Section 3. A mathematical
model is formulated for optimizingMRCMPSP is given in Section 4. The model evaluation and
validation are described in Sections 5 and 6, respectively. Section 7 discusses the results of
modified benchmarking data sets and sample case study projects. Finally, Section 8 contains
the results and possible future research directions.

2. Studies on resource-constrained project scheduling problems in a

multi-project environment
Managing a multi-project environment is arduous and challenging (Blismas et al., 2004;
Patanakul and Milosevic, 2009). Resource optimization is essential to improve portfolio
performances (Kannimuthu et al., 2018; Ugwu and Tah, 2002). However, there is not much
literature on the MRCMPS category involving multi-objective optimization. Existing research
on RCPSPs in the multi-project environment is summarized in this Section by classifying them
according to the mathematical modeling approach, the optimization objectives, and the
solution strategies. Mathematical models include integer programming (IP), mixed integer
programming (MIP), linear programming and constraint programming. Most studies related
to multi-project environment consider only one objective, that is, duration, and other objectives
are ignored. In general, two types of solution strategies have been used, exact and
approximate. Remaining sub-sections are structured based on these broad categories.

2.1 Mathematical modeling approach
2.1.1 Integer programming (IP). Previous researchers have developed various IP
mathematical models for RCPSPs addressing different aspects, such as, peak of total
resource requirements and average tightness of the constraints on resources (Browning and
Yassine, 2010; Kurtulus and Davis, 1982), decomposition of multiple projects (Deckro et al.,
1991), analysis of scheduling schemes (Lova and Tormos, 2001), decentralized multi-project
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scheduling with resource transfers (Adhau et al., 2013), multiple mode of activities
(Monghasemi et al., 2015), optimal trade-offs between different projects’ objectives
(El-Abbasy et al., 2017), etc. Some authors have reduced the MRCMPS problem to MRCPSP
by determining the resources to be dedicated to individual projects (Beşikci et al., 2015).
Many previous researchers have optimized multiple objectives in a single-project
environment (Kannimuthu et al., 2019; Luong et al., 2018; Tran and Long, 2018).

2.1.2 Mixed integer programming (MIP). MIP mathematical models have been
developed for RCPSPs, for example, Chiu and Tsai (2002), Rostami et al. (2017) and
Tavana et al. (2014). Khalili-Damghani et al. (2015) solved multi-objective trade-off problems
under generalized precedence relations using MIP. Geiger (2017) proposed a mathematical
model for optimizing the two objectives, total makespan (TMS) and total project delay
(TPD). Mittal and Kanda (2009b) present an IP model for inter-project resource transfers.

2.1.3 Linear programming (LP). Many researchers have used LP for addressing RCPSPs.
A model for two-stage prioritization of multiple projects for resource allocation is described
(Mittal and Kanda, 2009b). The financial cost is optimized by Alavipour and Arditi (2018), and
profit is maximized (Alavipour and Arditi, 2019a). Time-cost trade-off analysis to minimize
total cost and maximize profit is described (Alavipour and Arditi, 2019b).

2.1.4 Other mathematical models. Liu and Wang (2010) developed a constraint
programming model incorporating cash flow and financial requirements. Liu and Lu (2019)
extended constraint programming model to allocate finite resources to multiple projects and
reduce the interproject resource transfer.

2.2 Optimization objectives
Previous research is categorized based on the number of optimization objectives as follows:

(1) Research works related to single-objective variants:

• minimizing TPD (Browning and Yassine, 2010; Deckro et al., 1991; Geiger, 2017;
Kurtulus and Davis, 1982; Lova and Tormos, 2001; Sonmez and Uysal, 2014;
Wauters et al., 2014).

• maximizing net present value (Alavipour and Arditi, 2018, 2019a, b; Chiu and
Tsai, 2002; Liu and Wang, 2010).

• minimizing total costs (Beşikci et al., 2015; Liu and Lu, 2019; Mittal and Kanda,
2009a, b; Rostami et al., 2017).

• minimizing average project delay (Adhau et al., 2012, 2013; Wang et al., 2017).

(2) Research works related to multi-objective variants:

• optimizing time, cost and quality (Kannimuthu et al., 2019; Khalili-Damghani
et al., 2015; Luong et al., 2018; Monghasemi et al., 2015; Mungle et al., 2013;
Tavana et al., 2014).

• optimizing time, cost, resource moments and cash flow (El-Abbasy et al., 2017;
Elbeltagi et al., 2016; Farshchian and Heravi, 2018).

• optimizing project duration, cost and risk (Tran and Long, 2018).

2.3 Solution strategies
Most works on resource optimization use approximate methods which can be divided into
priority rule-based heuristics, classical meta-heuristics and non-standard meta-heuristics
(Kolisch and Hartmann, 2006). Important priority rule-based heuristics include minimum
slack (MINSLK), minimum late finish time (MINLFT) and maximum total work content
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(MAXTWK). Depending on the rule used, the project with MINSLK, MINLFT or MAXTWK
is given priority during scheduling. These rules have been evaluated by various authors as
described in Section 2.3.2.1.

2.3.1 Exact methods. Deckro et al. (1991) used a decomposition approach to solve the
multi-project, resource-constrained scheduling problem to minimize the total activity throughput
time. Liu and Wang (2010) established a profit optimization model for multi-project scheduling
problems using constraint solving. Menesi and Hegazy (2014) developed a constraint
programming model to optimize the project duration using IBM-ILOG-CPLEX-CP solver engine.
Geiger (2017) used a variable neighborhood search, together with the iterated local search to
minimize TMS and TPD. Alavipour and Arditi (2018) optimized financing inflow and outflow
costs using LP solver. Liu and Lu (2019) allocated finite resources to multiple projects and
reducing the interproject resource transfer using CP optimizer engine.

2.3.2 Approximate methods. 2.3.2.1 Heuristic methods. Kurtulus and Davis (1982)
classified the capability of multi-project scheduling rules to minimize TPD according to the
average resource loading factor and average utilization factor. They concluded that MINSLK
satisfies both the location of the peak and tightness of the resources. Chiu and Tsai (2002)
incorporated both the project delay penalty and early completion bonus to maximize the
average total project net present value. Lova and Tormos (2001) analyzed the effect of priority
rules and found that MINLFT with multi-project approach performed the best. Mittal and
Kanda (2009b) proposed a two-stage prioritization process for resource allocation. When the
objective is to minimize the makespan, they suggest allocating resources first to the projects
with the maximum remaining critical path length. If the objective is to minimize mean project
delay, the suggestion is to allocate resources first to the projects with minimum remaining
work. They found that MINLFT produces the best schedules almost comparable to that
produced by MINSLK and minimum late start time (MINLST). Browning and Yassine (2010)
confirmed the superiority of the maximum total work content-late start time (TWK-LST) over
MINSLK, andMAXTWK from an individual project manager’s perspective (Lova and Tormos
2001). Wang et al. (2017) recommended the best priority rules, from a project and portfolio
managers perspective. Priority heuristic rules have been extensively used in practice. However,
heuristic models are problem dependent, which implies that the rules specific to a model cannot
be equally applied for all problems (Leu et al., 2000), and do not guarantee an optimal solution.

2.3.2.2 Meta-heuristic methods. Adhau et al. (2012) developed a novel distributed
multi-agent system using auctions-based negotiation (DMAS/ABN) for resolving resource
conflicts and allocating multiple different types of shared resources amongst competing
projects to minimize the average project delay. Adhau et al. (2013) extended this approach
to consider resource transfer times in a multi-project environment. Wauters et al. (2014)
minimized the TPD and the TMS using nine different search strategies. Genetic algorithm
and its variants, such as fuzzy clustering GA, non-dominated sorting GA (NSGA-II),
backward-forward hybrid GA, multi-objective GA have been used to optimize single and
multiple objectives (Beşikci et al., 2015; El-Abbasy et al., 2017; Monghasemi et al., 2015;
Mungle et al., 2013; Sonmez and Uysal, 2015; Tavana et al., 2014). Khalili-Damghani et al.
(2015) proposed dynamic self-adaptive multi-objective particle swarm optimization
(DSAMPSO) to minimize the overall project duration and cost and maximize the project
quality. Elbeltagi et al. (2016) modified particle swarm optimization with a new evolution
strategy to optimize the schedule considering time, cost, resource moments and cash flow
in a single-project environment. Luong et al. (2018) extended previous work by adding
quality as an objective and used opposition-based multiple objective differential evolution
(DE) for optimizing multiple objectives. Rostami et al. (2017) proposed a decentralized
resource-constrained multi-project scheduling problem considering periodic services to
minimize the cost and the construction cost of the resource pool using a combinatorial
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artificial bee colony algorithm. Probabilistic assessment of uncertainties and risks related
to time, cost and revenue of portfolio of projects have been resolved using stochastic agent
simulation model without considering contractual parameters and quality aspects
(Farshchian and Heravi, 2018). Tran and Long (2018) proposed adaptive multiple objective
DE for minimizing time, cost and risk in a resource-unconstrained single-project
environment. Alavipour and Arditi (2019a, b) considered financing alternatives for a
single-project environment using GA.

2.4 Point of departure
None of the existing works critically compared the two multi-project environment approaches,
namely, single-project approach and multi-project approach for optimizing multiple objectives
of time, cost and quality. The limitations of recent works in the relevant focus areas are
mentioned in Table I. Multi-objective optimization in a multi-project environment under
uncertainties of activity execution modes has not been attempted yet. The mathematical
models in earlier studies have not explicitly included costs due to violation of quality
constraints (Alavipour and Arditi, 2019a; Luong et al., 2018; Monghasemi et al., 2015;
Mungle et al., 2013). Existing benchmark problem data sets such as project scheduling
problem library (PSPLIB) do not contain data related to cost and quality. Table I summarizes
the modeling approach, the objective, the solution approach and the limitations of earlier
studies. Time-cost-quality trade-off is a combinatorial optimization and belongs to the class of
NP-hard problem (Mungle et al., 2013). Multi-project environment adds further complexity.
Meta-heuristic methods provide an optimal/near-optimal solution, which is highly beneficial
for construction planners and decision makers. Therefore, developing or adopting new
solution approaches for the multi-project environment is highly recommended (Alavipour and
Arditi, 2018; Menesi and Hegazy, 2014).

3. The methodology for comparing the single-project approach and the multi-

project approach in a multi-project environment
In this work, two different multi-project environment approaches (Figure 1) are compared in
terms of the performance parameters of the solutions obtained by these approaches. The
evaluation and validation are performed using two sources of data: modified benchmarking
data sets selected from PSPLIB (see Section 5) and sample case studies of real projects in
India (Section 6). For each project instance, five solutions are obtained by optimizing time,
cost and quality individually as well as through two different methods for identifying the
best compromise. Further, the portfolio constraint on maximum daily cost is compared
under two scenarios. Inferences are made about the efficiency of the two approaches by
comparing the time, cost and quality of these solutions obtained.

The overall methodology is illustrated in Figure 2. An integer programming model is
developed to optimize time, cost and quality in a multi-project environment ( for details, see
Section 4). Solution of the optimization problem involves generation of non-dominated
solutions using a suitable optimization algorithm and identification of a compromise
solution by specifying acceptable trade-offs among conflicting objectives. A global search
algorithm called Probabilistic Global Search Lausanne (PGSL) is used for generating the
Pareto front. PGSL is a direct search algorithm in which the search space is sampled using a
probability density function (PDF) (Raphael and Smith, 2003). The PDF is updated
dynamically as the search progresses such that the probability of generating better
solutions is improved without getting trapped in local minima (Raphael and Smith, 2005).
Even though, the original PGSL algorithm handles only a single objective, it can be used to
generate the Pareto front by taking different combinations of weights of objectives and
repeating the optimization many times. All the solutions generated during the process are
filtered according to the criterion of Pareto optimality. After generating the Pareto front, an
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algorithm called Relaxed Restricted Pareto Version 4 (RR-PARETO4) (Raphael, 2011) is
used to select a single solution from the set of non-dominated solution. In the RR-PARETO4
algorithm, the best compromise solution is chosen based on the order of the objectives
(according to their importance) and the sensitivity of each objective (Kannimuthu et al.,
2019). The sensitivity parameter specifies how much sacrifice in the value of each objective
is acceptable to the user. The algorithm works by iteratively removing solutions lying
outside the sensitivity band of each objective, if the user does not specify the sensitivity
parameter, or if multiple solutions remain after applying sensitivity-based filtering, a default
selection algorithm is used. In the default selection, the best compromise solution is the one
in which the net sacrifice in the value of the most important objective is equal to the average
gain in the values of other objectives, when all the Pareto optimal solutions are compared.

Formulation of a mathematical model

for optimizing time, cost and quality in

a multi-project environment 

Single-project approach (portfolio

optimization)

Multi-project approach (each project

optimized individually)

Optimization algorithm (PGSL);

Multi-criteria decision making

algorithm (RR-PARETO4)

Performance evaluation – Modified

benchmark data sets

Performance validation – Sample

case study projects

Performance comparison:

(i) Minimum time

(ii) Minimum cost

(iii) Maximum quality

(iv) Default RR-Pareto based multi-

objective compromise solution

(v) Sensitivity based multi-objective

compromise solution

Performance comparison:

(i) Scenario 1: Portfolio constraint on

maximum daily costs (MAXTWK

heuristic priority rule)

(ii) Scenario 2: Portfolio constraint on

maximum daily costs (MINLFT and

MINSLK heuristic priority rule)

Figure 2.
Methodology for
comparing the multi-
project environment
approaches
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3.1 Single-project approach
In this approach, multiple projects are considered together by introducing start and end
dummy activities (Figure 1). Salient features of this approach are the following:

(1) All the project activities are scheduled under precedence and resource constraints.
Constraints are set on maximum duration, maximum cost and minimum quality for
each project.

(2) Resource constraints and maximum daily costs are set at the portfolio level.

(3) Optimization objectives are the portfolio performance parameters, which are,
duration, cost and quality. Two settings are tested to identify the compromise
solution by specifying the sensitivity parameter and by using the default RR-Pareto
filtering method.

3.2 Multi-project approach
In this approach, each project is optimized individually without considering other projects
(Figure 1). Resource utilization at the portfolio level is not considered during each individual
optimization. Salient features of this approach are given below:

(1) All the project activities are scheduled under precedence and resource constraints.

(2) Resource constraints and maximum daily costs are set at the project level.

(3) Optimization objectives are the project performance parameters, which are duration,
cost and quality. Two settings are tested to identify the compromise solution as in
the single-project approach.

(4) After optimization of individual projects, constraints at the portfolio level are
checked and selected projects are rescheduled according to heuristic rules. If the
portfolio constraint is to limit the maximum daily costs, two heuristic priority rules
are used, MAXTWK; or MINSLK and MINLFT.

3.3 Portfolio constraint on maximum daily costs
Even though the optimization model is able to accommodate constraints on different types
of resources, such as equipment, in the present study, resource usage is modeled implicitly
through the use of daily costs of resources. This is justified because, in many construction
companies, equipment are rented, and resource availability depends on cash flow.
Individual project managers prepare the schedule for their projects, considering the
constraint of maximum daily costs at the project level. Then, the portfolio manager will
check whether the sum of maximum daily costs of all the projects are still under the
acceptable level, if yes, all the projects will be carried out with the initial plan, otherwise,
the portfolio manager will use the heuristic priority rule to select the project to reschedule
the activities in order to bring down the maximum daily costs. The single-project
approach can meet the portfolio constraints without using heuristic priority rules because
it explicitly checks the constraint on the maximum daily costs at the portfolio level,
whereas the multi-project approach has to use heuristic priority rules, such as MAXTWK,
or MINSLK and MINLFT.

4. Formulation of a mathematical model
Consider a project p with n activities and each activity i can have multiple execution modes.
Time, cost and quality are the project performance parameters that are optimized based on
the concept of Pareto optimality. The mathematical formulation in this research is an
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extended version of previous work by Kannimuthu et al. (2019) in a single-project
environment. The total cost of the project includes two components: direct and indirect
costs; costs due to constraint violations, i.e. penalties for exceeding the project due date, and
not meeting the quality set by the user; as well as a bonus for the early completion and
quality satisfaction. The quality of the project is calculated based on the construction
quality assessment system (CONQUAS), using a database of past projects in which the
CONQUAS scores of each activity executed in a particular mode is stored.

The model assumptions are:

• each activity can be executed in one of the many possible modes;

• activity cannot start until all preceding activities have been completed;

• activity pre-emption is not permitted;

• identified activity execution modes apply to similar kinds of projects; and

• uniform maximum daily costs throughout the project duration.

The indices and input parameters:

• n: set of project activities, I,j ∈ n, where j is a successor activity of i.

• M: set of activity execution modes, m ∈ M.

• Lp: project network path p.

• L: set of project network paths, Lp∈L.

• I: activity i in path Lp.

• C
UB
p : upper bound of cost in project p.

• Q
LB
p : lower bound of quality of project p.

• QUB: upper-bound of the project quality (100 percent).

• Dp: contractual due date of the project p.

• timp : duration of activity i in project p with mode m.

• Cp1: direct and indirect costs of project p.

• Cp2: costs of constraint violation in project p.

• dcimp : direct cost of activity i in project p with mode m.

• icp: indirect cost of the project p per period.

• βpt, βpq: penalty of time and quality violation for project p, respectively.

• Ipt, Ipq: bonus for early completion and quality satisfaction for project p, respectively.

• wpt, wpc, wpq: weight of time, cost and quality objective of project p, respectively.

• Q
m
ie : quality performance of activity i of element e in mode m.

• Q
m
i : quality of activity i in mode m ¼

P

eAEQ
m
ie .

• Qp, min: minimum quality of project p among the selected activity modes.

• Qp, avg: average quality of project p among the selected activity modes.

• αp: relative importance between the minimum and average quality of project p.

• x: auxiliary variable that represents a time step in the range [0, T].
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• Aimx(p): 1 if activity i of project p is performed at time step x; that is, if
Si pð ÞpxoðSiðpÞþ timp Þ, 0 otherwise.

RUx(p): resource utilization (direct costs) at time step x of project p:
�

P

i

�

dcimp

timp

�

X im
p A

imxðpÞ

�

:

• RUUB: upper-bound of the maximum daily resource utilization (direct costs).

• RRk(p): renewable resource type k of project p.

• RRUB(k)(p): upper-bound of the renewable resource type k of project p.

Decision variable:

• X im
p : 1 if activity i of project p executed in mode m, 0 otherwise.

• Si pð Þ: start time of activity i of project p.

Mathematical model:

Min multiproject duration Tp

� �

¼ maxLp ALmaxiAn

X

mAM

SiðpÞþ timp

� �

X im
p

 !

; (1)

Min multiproject cost Cp

� �

¼
X

pAP

Cp1þCp2

� �

¼
X

pAP

X

iAn

X

mAM

dcimp X im
p

 !" 

þ icp � Tp

� �

þ bpt Tp�Dp

� �� þ
�I pt Dp�Tp

� �þ

þ bpq Q
LB
p �Qp

h iþ

�I pq Qp�Q
LB
p

h iþ i
#!

; (2)

Max multiproject quality Qp

� �

¼ apQp; minþ 1�ap
� �

Qp;avg : (3)

Objective function:

minimize z ¼
X

pAP

Tp

Dp

� wpt

� 	

þ
Cp

C
UB
p

� wpc

 !

�
Qp

Q
UB
p

� wpq

 !" #

: (4)

Subject to:

TppDp; (5)

CppC
UB
p ; (6)

apQ
min
p þ 1�ap

� �

Q
avg
p XQ

LB
p ; (7)

Si pð Þþ timp pSj pð Þ p ¼ 1; 2; . . .; P; i ¼ 1; 2; . . .; n; m ¼ 1; 2; . . .; M ; (8)
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X

i

dcimp

timp

 !

X im
p Aimx pð ÞpRUUB p ¼ 1; 2; . . .; P; i ¼ 1; 2; . . .; n; m ¼ 1; 2; . . .; M ; (9)

RRk pð ÞpRRUB kð Þ pð Þ p ¼ 1; 2; . . .; P; k ¼ 1; 2; . . .; K; (10)

X

mAM

X im
p ¼ 1 p ¼ 1; 2; . . .; P; i ¼ 1; 2; . . .; n; m ¼ 1; 2; . . .; M ; (11)

timp X0 p ¼ 1; 2; . . .; P; i ¼ 1; 2; . . .; n; m ¼ 1; 2; . . .; M ; (12)

X im
p A 0; 1f g p ¼ 1; 2; . . .; P; i ¼ 1; 2; . . .; n; m ¼ 1; 2; . . .; M ; (13)

xA 0;T½ �: (14)

The portfolio duration is calculated using Equation (1) by computing the maximum time taken
by all the network paths of projects. The network path with the maximum time determines the
portfolio duration. To satisfy resource constraints, the start time of each activity is taken as an
optimization variable. The optimization algorithm determines the best start time for each
activity such that each resource such as labor and equipment is within the available capacity.
The total resource utilization at each time step should be less than the maximum value set by
the user. The assumption involved is that the cost of the activity is distributed uniformly
throughout the activity duration (Equation (9)). In Equation (2), the total portfolio cost is
computed as the sum of direct, indirect and constraint violation costs of projects. The net quality
of the portfolio is computed in Equation (3) as a combination of the minimum and average
quality values among the selected activity modes of projects. The optimal solution obtained by
minimizing the objective function (Equation (4)) contains the values of decision variables.
The objective function is a weighted sum of normalized values of time, cost and quality.
The optimization is executed multiple times with different combinations of weight factors in
order to obtain many solutions that have different trade-offs among the three objectives. The
resulting solutions are filtered according to the Pareto optimality criterion. The bounds for time,
cost and quality in the constraints represented by Equations (5)–(7) are input by the user. This
might be as per the contractual requirements (Monghasemi et al., 2015; Mungle et al., 2013) or
from practical project management considerations. The precedence constraints are used to
establish the sequence of activity implementation (Equation (8)). Constraint (Equation (10))
satisfies the renewable resource availability. Constraint (Equation (11)) guarantees the selection
of only one mode for each activity. Constraints (Equations (12)–(13)) define the domain of
variables. Constraint (Equation (14)) specifies the time step.

5. Evaluation–testing with modified MRCPSP data sets (PSPLIB)
Selected MRCPSP data sets from the PSPLIB are modified and used in this study, as shown in
Figure 3. The data sets are modified to accommodate cost and quality aspects by using the
relationships found in sample case study projects. A total of ten portfolio instances have been
created for testing. For illustration, project no. 1 of the first instance is shown in Table II.
Other projects of this instance, no. 2 and no. 3, can be found by following the URL link
(https://shorturl.at/ixCEK). Data related to remaining portfolio instances are also available in
the above link. Each project activity consists of three execution modes. The estimated total
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number of combinations for the first instance are 310, 320 and 330, where the exponent is the
number of activities, and the base is the average number of execution modes. This indicates
that the problem is exponentially complex and exhaustive search is not feasible.

The comparison of single-project approach and multi-project approach optimal
solutions are tabulated in Table III for the instance no. 1. The single-project approach
finds better solutions with respect to single or multiple objectives. Even though the
single-project approach contains many variables considering all projects together;
it has the advantage that the variation of maximum daily costs is shared among the
projects. It helps to identify the schedules with the best project and portfolio performances
compared to the multi-project approach solutions. A comparison of the remaining nine
data sets can be found by following the URL link (http://bit.ly/2GlIraC). The single-project
approach (portfolio optimization) solutions, i.e. activity execution modes, direct costs and
resource utilization over time of all data sets can be found by following the URL link
(http://bit.ly/2UHA8Ka). Portfolio constraint on maximum daily costs is considered in the
next subsections.

5.1 Scenario 1: portfolio constraint on maximum daily costs
The project with MAXTWK regarding total cost is selected for rescheduling to absorb the
over-assigned daily costs. The sensitivity-based compromise solution point is considered for
rescheduling. The maximum daily portfolio cost is INR994,235. If the daily portfolio cost is
limited to INR900,000, it is required to distribute the deviation (INR94,235) to any of the
projects, and the selection is based on the heuristic priority rule, MAXTWK. Applying
MAXTWK rule, Project no. 3 must be rescheduled (Table IV). A critical comparison of the
multi-project approach and the single-project approach is given in Table V. The single-
project approach finds a better solution compared to the multi-project approach under the
constraint of maximum daily costs.

5.2 Scenario 2: portfolio constraint on maximum daily costs
Based on the MINLFT rule, the project with minimum finish time is rescheduled first.
Therefore, Project no. 1 must be rescheduled to achieve portfolio maximum daily costs.
The daily portfolio cost is INR994,235. If the daily portfolio cost is limited to INR900,000, it
is required to distribute the deviation (INR94,235) to any of the projects, and the selection
is based on the heuristic priority rules, MINLFT and MINSLK. Applying the priority rule,
Project No. 1 must be rescheduled. A critical comparison of multi-project approach and

PSPLIB data set

P1
P2

P3
P30

Portfolio Instances 9–10Portfolio Instances 7–8Portfolio Instances 6Portfolio Instances 1–5

Project 1: 10 activities

Project 2: 20 activities

Project 3: 30 activities

Project 1: 10 activities

Project 2: 10 activities

Project 3: 10 activities

Project 1: 20 activities

Project 2: 20 activities

Project 3: 20 activities

Project 1: 30 activities

Project 2: 30 activities

Project 3: 30 activities

(30 instances of single projects, i.e.,

10 portfolio instances)

Figure 3.
Creation of

benchmark test data
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single-project approach found (http://bit.ly/2GlIraC). Single-project approach finds a
better solution compared to a multi-project approach under the constraint of maximum
daily costs.

6. Validation–testing with case study projects
Three building construction projects are used to demonstrate the effectiveness of the
proposed approach (Kannimuthu et al., 2019). The projects X, Y and Z have 32, 28 and 18
activities, respectively. These projects data can be found by following the URL link
(https://bit.ly/2To6TMh). The estimated total number of combinations are 14.9132, 18.6128

and 18.6118, where the exponent is the number of activities, and the base is the average
number of execution modes for each activity. This indicates that the problem is
exponentially complex and exhaustive search is not feasible. Similar comparison
(Table III) of multi-project approach and single-project approach optimal solutions for case
study projects found by following the URL link (http://bit.ly/2Xq52ZM). The single-project
approach (portfolio optimization) solutions, i.e., activity execution modes, direct
costs and resource utilization over time can be found by following the URL link
(https://bit.ly/2RiQ43m). Portfolio constraint on maximum daily costs is considered in the
next subsections.

6.1 Scenario 1: Portfolio constraint on maximum daily costs
The project with MAXTWK regarding the maximum total cost is selected for rescheduling
to absorb the over-assigned maximum daily costs. The sensitivity-based compromise

Priority rule
Project no. 1
(j103_10)

Project no.
2 (j209_8)

Project no. 3
(j309_10) Daily costs (Portfolio) Decision

MAXTWK
(total costs)

2,336,041 4,700,886 6,164,874 (376,151 + 242,017 +
249,658 ¼ 867,826)

Suggest Project no. 3 must
be rescheduled (⩽281,832)

Table IV.
Selection of project
based on a heuristic
priority rule

Project
information

Project
performances

Multi-project approach
(each project optimized
individually – priority

rule)

Single-project
approach
(portfolio

optimization)

Comparison of single-project
approach against the multi-
project approach

Project no.
1 (j103_10)

Time (d) 16 14 Improvement in time (13%), cost
(5%), and quality (1.99%)

Min cost (INR) 2,336,041 2,216,546
Quality (%) 71.36 72.81

Project no.
2 (j209_8)

Time (d) 32 18 Improvement in time (44%), cost
(16%), and quality (0.19%)

Min cost (INR) 4,700,886 3,961,024
Quality (%) 69.73 69.86

Project no.
3 (j309_10)

Min time (d) 41 31 Improvement in time (24%), cost
(9%), and quality (1.13%)

Min cost (INR) 6,605,131 5,996,956
Max quality (%) 70.84 71.65

Portfolio
daily costs

900,000 867,826 599,549 The single-project approach
identifies improvement over max
portfolio daily costs (33.38%), a
multi-project approach (30.91%)

Table V.
Comparison of
rescheduled solutions
based on the multi-
project approach
(priority rule) and
single-project
approach (max daily
costs at the portfolio
INR900,000)

910

ECAM
27,4



solution point is considered for rescheduling. The daily portfolio cost is INR383,402. If the
daily portfolio cost is limited to INR350,000, it is required to distribute the deviation
(INR33,402) to any of the projects, and the selection is based on MAXTWK rule. Applying
MAXTWK rule, Project X must be rescheduled. A critical comparison of multi-project
approach and single-project approach found by following the URL link (http://bit.ly/2Vf0
WBz). Single-project approach finds a better solution compared to a multi-project approach
under the constraint of maximum daily costs at the portfolio level.

6.2 Scenario 2: portfolio constraint on maximum daily costs
Based on MINLFT rule, the project with minimum finish time is rescheduled first
considering sensitivity based multi-objective compromise solution. Therefore, Project Z
must be rescheduled to achieve portfolio maximum daily costs. The daily portfolio cost is
INR383,402. If the daily portfolio cost is limited to INR350,000, it is required to distribute the
deviation (INR33,402) to any of the projects, and the selection is based on the heuristic
priority, MINLFT and MINSLK. Applying the priority rule, Project Z must be rescheduled. It
can absorb only INR2,802. Therefore, the next immediate project, i.e., Project Y must
reschedule to absorb INR30,600. It can also absorb only INR29,374. Thus, Project X must be
rescheduled. A critical comparison of multi-project approach and single-project approach
found by following the URL link (http://bit.ly/2Vf0WBz). Single-project approach finds a
better solution compared to a multi-project approach under the constraint of maximum daily
costs at the portfolio level.

7. Discussion
The results of the two approaches show significant differences when the resources are
constrained in terms of the maximum daily costs of the portfolio. Figure 4 shows the
advantages of finding minimum time through the single-project approach compared to the
multi-project approach for the modified benchmark data sets. Similar inference is obtained
from the sample case study projects, which can be found by following the URL link (http://
bit.ly/2Vhc2WF). The single-project approach solutions are shown to be better both in the
cases of single objectives and multiple objectives, for different settings, such as, whether to
use the default RR-Pareto method or the sensitivity-based filtering.

Identical or better solutions have been obtained through portfolio optimization for the
sample case study projects when the objective is to minimize costs and maximize quality,
using the default RR-Pareto filtering, and the sensitivity-based filtering. Details are
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available in the above URL link. When the heuristic priority rule, MAXTWK is used to meet
portfolio constraints in the multi-project approach, more constrained projects attract
resources from less constrained projects, resulting in overall low performance. The single-
project approach also shows significant advantage compared to the multi-project approach
when MINLFT and MINSLK heuristics are used (http://bit.ly/2Vhc2WF). The single-project
approach is superior when the resources are constrained, which replicates the realistic
environment of a construction organization.

The following inferences are made using the evaluation and validation cases:

• Sharing of constrained (limited) resources with multiple projects is required to
maximize resource utilization and also to meet the projects’ needs (Liu and Lu, 2019).
The single-project approach reveals the importance of sharing renewable resources
among the multiple concurrent projects to achieve better project performances in
terms of time, cost and quality. Whereas in the multi-project approach, limited
sharing of resource is possible because each project has only partial information
about the other projects.

• The time at which the resources could be shared with other projects to enhance portfolio
performance is available in the single-project approach. It enables coordination among
the project personnel.

• The optimization algorithm is able to find solutions within cash-flow constraints, in
terms of maximum daily cost constraint. The mathematical model considers penalty
and bonus of all the projects in the portfolio in order to assign constrained resources
to each project.

8. Summary and conclusions
Multi-project scheduling under a resource-constrained environment is a challenging task
for any construction company. It is evident that companies work in a resource-constrained
setting, striving to achieve compromises among the multiple conflicting objectives of time,
cost and quality in a multi-project environment. In the resource-constrained state, it is
possible to change activity execution modes by altering the construction method,
materials and crew sizes. Different combinations of these can provide many possible ways
to complete the activities with different time, cost and quality values. This paper proposes
a framework for identifying the best combination of activity execution modes for
achieving the objectives and satisfying the constraints in a multi-project environment.
In the proposed framework, an MRCMPSP is formulated and solved using multi-objective
optimization. The framework is evaluated using modified benchmark data sets of
MRCPSPs from the PSPLIB. The framework is also validated using actual construction
projects. Using this framework, the effectiveness of the single-project approach (portfolio
optimization) is compared with the multi-project approach (projects are optimized
individually). The conclusions are the following:

• in a multi-project environment, the single-project approach generates better
schedules than the multi-project approach.

• The single-project approach permits resources to be shared effectively among
projects and results in better performance when the resources are constrained.

• Heuristics proposed in the multi-project approach are not efficient in reducing the
maximum daily costs to acceptable limits.

Contributions of this paper are: formulation of a new mathematical model for optimizing
multiple objectives in a multi-project environment considering explicit resource
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constraints and daily cost restrictions at the portfolio level; and demonstration of new
techniques for identifying compromise solutions for the MRCMPSP. The framework
proposed in this paper provides construction and portfolio planners to make managerial
decisions under constrained resource situations in a multi-project setting. This framework
could be further extended by incorporating other aspects, such as resource transfer
time and cost.
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