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We comment on the investigation of the connection between chaos and dynamically generated
entanglement in Phys. Rev. E, 83, 016207, (2011). While, in the referred paper, the authors
give an explicit example of a state initially localized in the regular region and still has entanglement
properties similar to the states localized in the chaotic region, a few clarifications related to previous
works are in order. Firstly, it is crucial to point out that such a behavior can occur for states initially
localized near the border between the chaotic region and regular island, which seems to be the case
in the example provided in the referred paper. We comment on the time evolution of such states
and the extent to which these can be regarded as having “regular dynamics”. Secondly, the degree
to which entanglement is correlated with the chaos in the system is better understood when we
analyze the same initial state and increase the chaoticity in the system gradually. We also discuss
in what capacity entanglement can be regarded as a signature of chaos in such studies.

The role of dynamical chaos in entanglement genera-
tion has been extensively studied in the last decade[1–
9]. Main interest of these works is the connection of
chaotic maps with the generation of random states in
the Hilbert states that have typically high entanglement
[5, 7]. The primary focus here is not whether a particu-
lar regular initial condition can generate more entangle-
ment but to study the entangling power of chaotic maps
and connections to random matrix theory. Therefore, for
fully chaotic classical maps, the corresponding quantum
counterparts generate random states in the Hilbert space.
And the bipartite entanglement for random states is near
maximal [5, 7]. As an example, ror large d-dimensional
spaces, the entanglement of a “typical state” picked at
random from a d1 ⊗ d2 tensor product Hilbert space is
given by the Haar measure average of the entanglement
over the whole space gives [10–12]

Ēd1⊗d2
=

d1d2∑

k=d1+1

1

k
−

d1 − 1

2d2
, d2 ≥ d1. (1)

For large dimensions, Ēd1⊗d2
≈ log d1 − d1/(2d2), which

is close to the maximum possible value of entanglement.
Fully chaotic dynamics generates typical pure states in
an unconstrained bipartite Hilbert space that are highly
entangled [10]. It is in this sense the generation of “high”
entanglement by chaotic dynamics is universal.
Another observation of these works [5, 6] is to study

the dynamically generated entanglement and its correla-
tion with the classical phase space. Performing numeri-
cal calculations of the long-time averaged entanglement
generated by the Floquet map, a clear evidence of its re-
lationship to the classical phase space is seen. The key
focus of these studies is the correlation of phase space
with entanglement. Long time average entanglement is
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higher for states whose initial coordinates are located in-
side the chaotic sea as compared to states localized deep
inside regular islands. As we get near the border between
a regular island and the chaotic sea ( the “edge of chaos”
in [13]), the time average of the dynamically generated
entanglement for an initial condition inside a regular is-
land increases and becomes comparable to a that of a
state with chaotic initial conditions. Therefore, entan-
glement effectively picks out the features of the classical
phase space - regular islands from the chaotic sea, while
the boundary between the regular island and the chaotic
sea remains blurred. While classical chaos can cause in-
finitely fine structures in the phase space, the Plank’s
constant, ~, limits the scale for such structures in the
quantum domain. Our resolution of the phase space is
determined by the Plank’s constant. Therefore, quan-
tum entanglement is a signature of chaos if one considers
it as a tool to differentiate between regular islands from
the chaotic sea in a coarse grained way. It is in this sense
that entanglement is a signature of chaos. This is also the
case for quantum maps with large Hilbert space dimen-
sion though the difference between average entanglement
in the regular region and the chaotic region will be less
pronounced for large Hilbert space dimensions.

In this regard, for the state corresponding to dot “2” in
Fig 9 in [14], where we are at the border between a regu-
lar island and the chaotic sea (but still inside the regular
island), the entanglement generated is high and compa-
rable to the state in the chaotic sea ( dot “1”). Such
states are characterized by a high value of entanglement.
Such states have similar properties to the states localized
in the chaotic sea on other indicators of quantum chaos
like the properties of expansion coefficients in the basis
of Hamiltonian eigenstates[15]. It is to be noted that the
initial location of the quantum state in the phase space
inherently has some information about the system dy-
namics as can be seen in the expansion of such a state in
the basis of Floquet eigenstates and its subsequent time
evolution in this basis. The entropy of overlap of these
states with the Floquet eigenstates is a signature of chaos
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FIG. 1. Flooding of a coherent quantum state, initially localized in the regular region with θ = 1.7416, φ = 2.8728 (shown by
the red dot in the classical phase space in (a)), in the chaotic sea. (b) At t=1, the Husimi representation of the initial state is
well localized.(c) At t = 5, the state is primarily in the regular island with a little support in the chaotic sea. (d)-(f) are the
Husimi representations at t=25, t=34 and t=86 respectively, showing the initial state has “flooded” the chaotic sea. The spin
size, j, is equal to 10 and the parameters of the map are α = 2π ∗ 0.95; and κ = 5.

[15].

It is important analyze the system in a way it gives us
an unambiguous correlation of entanglement with chaos.
Matzkin et al. pick a particular state on the border be-
tween chaos and regular island and compare its entangle-
ment properties to another state in the chaotic sea. In
their approach the dynamics (i.e. the quantum map) re-
mains the same while they compare two different initial
conditions. They do find that regular initial conditions
can generate more entanglement. However, to what de-
gree “regular initial” conditions is equivalent to a “regu-
lar dynamics” for the quantum map when we have a map
that classically generates a mixed phase space in unclear.
Quantum dynamics, like classical dynamics, has two im-
portant components - initial conditions and the time evo-
lution. It is unclear how a regular initial condition for a
quantum map whose classical counterpart has a mixed
phase space (or even an almost chaotic phase space in
the extreme case!) can be considered and classified as
“regular dynamics”. For systems with a mixed phase
space the separation into regular and chaotic “dynam-
ics” is complicated and chaotic eigenstates “flood” in the
regular islands [16]. From a dynamical point of view,
the wave packet from the regular islands can flood into
the chaotic sea and vice versa (Fig 1). Therefore, such
a dynamics can hardly be regarded as “regular” dynam-
ics and the high dynamical generation of entanglement is
not surprising. Moreover, the comparison of this with a

“classically regular dynamics” is of limited value.

Such a dynamics wont have the necessary eigenvalue
statistics and level repulsion which is a hall mark of reg-
ular quantum maps and it is inaccurate to classify such
a dynamics as “regular”. Fully regular quantum maps
corresponding to a completely regular classical classical
dynamics have Poisson level statistics which gets per-
turbed when we consider mixed phase spaces. The exam-
ple given in [14] has a “regular” initial conditions, how-
ever the map as a whole generates intermediate level of
chaos through a mixed phase space. It is for this reason
when we talk about entanglement as a signature of chaos,
we either consider entangling power of fully chaotic maps
or the association of phase space with entanglement in a
“coarse grained” fashion. Therefore, we disagree with
this being regarded as a “refutation” of universality [17]
as, to the best of our knowledge, this was never the claim
in the previous works.

Moreover, this distinction gets even more blurred when
we consider the so called “edge states”, i.e the state on
the border between a regular island and the chaotic sea
[13] as we have already discussed.

It is therefore important to see how chaos correlates
with the dynamically generated entanglement for the
same initial state as we increase the chaoticity param-
eter in a systematic manner. The rationale for this is to
study unambiguously how, for a fixed family of maps, the
degree of chaoticity is related to entanglement generation
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FIG. 2. Average entanglement, E, as a function of the
chaoticity parameter, κ, for the kicked top for j = 10. The
average is calculated over the first 350 kicks. The initial state
is given by θ = 2.25, φ = 1.05.

for a particular coherent states. We can then determine
how does this initial state behave under different dynam-
ics characterized by different degrees of chaos. Another
way is to average the entanglement over initial states in
the regular island and compare it with the average value
of entanglement for initial states over chaotic sea.
We give an example of this approach. We consider the

quantum kicked top [6, 18] and take the initial states as
coherent states in the familiar way. To study the dynam-
ics of entanglement, we use an N-qubit representation
of the QKT [4, 14], we trace out two qubits and cal-
culate entanglement between these two qubits and the
rest of the system. The entanglement measure chosen
is the linear entropy. Fig. 2 shows the average entan-
glement generated for the same initial state, given by

(θ = 2.25, φ = 1.05) and j = 10, as we gradually increase
the chaoticity parameter. The average is calculated over
the first 350 kicks. The number of kicks chosen should
be long enough to capture the periodic modulations of
entanglement in the regular region. We see a strong cor-
relation between the degree of chaos in the system and
the average value of entanglement generated. As we in-
crease the degree of chaos in the system, the initial state
transitions from being in the regular island, to be on the
border and then finally lies in the chaotic sea. Therefore,
for a fixed family of maps, the generation of entangle-
ment is correlated with the degree of chaos in the system.
We believe that the initial states mentioned in [14] follow
similar entanglement behavior as a function of chaoticity.
In order to study the entanglement generated in different
parts of the phase space, we calculate the average entan-
glement of the chaotic and regular regions, we take a grid
of coherent states across the phase space. Each point
on the grid is classified as as regular or chaotic by the
Lyapunov exponent of the classical dynamics. Weight-
ing these values according to the measure on phase space
gives us an average entanglement of E = 0.615 in the
chaotic sea and E = 0.344 in the regular islands. There-
fore, using the average value of entanglement, one can
distinguish regular islands from the chaotic sea. In [6] it
was shown how the average entanglement contour plots
correlate with the classical phase space (Fig. 1 and Fig.
6). This approach helps us to see a quantitative difference
between the entanglement generated in different regions
of phase space without considering a particular state.
To summarize, we have briefly discussed in what way

entanglement is regarded as a “universal” signature of
chaos and this comment is to clarify and complement
the findings of [14].
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