Header menu link for other important links
Combustion of fuel droplets without and with addition of nanoparticles in turbulent atmosphere
Published in ILASS Europe, Institute for Liquid Atomization and Spray Systems
This paper intends to study the effect of air turbulence on the burning characteristics of fiber suspended n-heptane droplets without and with addition of nanoparticles. Dilute concentration of Alumina nanoparticles (mass loading from 0.3% to 1%) in conjunction with the oleic acid (as surfactant) are added to the base fuel followed by ultra-sonication such that a stable suspension of the nano-fuel is obtained. Time resolved images of the burning droplets are captured using a high speed camera. In order to study the effect of turbulence alone (in absence of mean flow) on droplet burning, the experiments were conducted in a so called 'box of turbulence', where zero-mean isotropic turbulence is achieved at the central region of the box. The turbulence was characterized by the application of LDV/PIV technique. The burning of pure heptane and heptane plus surfactant droplets (without nanoparticles) are also studied in the absence/presence of air turbulence. Interestingly, for pure heptane the burning rate was found to decrease for higher turbulent intensity. In case of nano-fuel droplet burning three distinct stages of droplet burning (classical combustion following d2-law, bulging of droplet followed by explosion, surfactant flame) were observed. However, the low intensity explosions are primarily attributed to the difference in the boiling point of the surfactant and base fuel. The addition of nanoparticles promotes such explosions and increases the burning rate in comparison to that for pure fuel droplet. © 2018 Solar Turbines Incorporated.
About the journal
JournalICLASS 2018 - 14th International Conference on Liquid Atomization and Spray Systems
PublisherILASS Europe, Institute for Liquid Atomization and Spray Systems
Open AccessNo