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Abstract

We classify, up to diffeomorphism, all closed smooth manifolds homeomorphic to

the complex projective n-space CP
n, where n = 3 and 4. Let M2n be a closed smooth

2n-manifold homotopy equivalent to CP
n. We show that, up to diffeomorphism, M6

has a unique differentiable structure and M8 has at most two distinct differentiable

structures. We also show that, up to concordance, there exist at least two distinct

differentiable structures on a finite sheeted cover N2n of CPn for n = 4, 7 or 8 and six

distinct differentiable structures on N10.
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1 Introduction

A piecewise linear homotopy complex projective space M2n is a closed PL 2n-manifold ho-
motopy equivalent to the complex projective space CPn. In [10], Sullivan gave a complete
enumeration of the set of PL isomorphism classes of these manifolds as a consequence of
his Characteristic Variety theorem and his analysis of the homotopy type of G/PL. He also
proved that the group of concordance classes of smoothing of CPn is in one-to-one correspon-
dence with the set of c-oriented diffeomorphism classes of smooth manifolds homeomorphic
(or PL-homeomorphic) to CPn, where c is the generator of H2(CPn;Z).

In section 2, we classify up to diffeomorphism all closed smooth manifolds homeomorphic
to CPn, where n = 3 and 4.
Let M2n be a closed smooth 2n-manifold homotopy equivalent to CPn. The surgery theory
tells us that there are infinitely many diffeomorphism types in the family of closed smooth
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manifolds homotopy equivalent to CPn when n ≥ 3. In the second section, we also show
that if N is a closed smooth manifold homeomorphic to M2n, where n = 3 or 4, there is
a homotopy sphere Σ ∈ Θ2n such that N is diffeomorphic to M#Σ. In particular, up to
diffeomorphism, M6 has a unique differentiable structure and M8 has at most two distinct
differentiable structures.
In section 3, we prove that if N2n is a finite sheeted cover of CPn, then up to concordance,
there exist at least |Θ2n| distinct differentiable structures on N2n, namely {[N2n#Σ] | Σ ∈
Θ2n}, where n = 4, 5, 7 or 8 and |Θ2n| is the order of Θ2n.

2 Smooth Structures on Complex Projective Spaces

We recall some terminology from [6]:

Definition 2.1. (a) A homotopy m-sphere Σm is an oriented smooth closed manifold ho-
motopy equivalent to the standard unit sphere S

m in R
m+1.

(b) A homotopy m-sphere Σm is said to be exotic if it is not diffeomorphic to S
m.

(c) Two homotopy m-spheres Σm
1 and Σm

2 are said to be equivalent if there exists an
orientation preserving diffeomorphism f : Σm

1 → Σm
2 .

The set of equivalence classes of homotopy m-spheres is denoted by Θm. The equivalence
class of Σm is denoted by [Σm]. When m ≥ 5, Θm forms an abelian group with group
operation given by connected sum # and the zero element represented by the equivalence
class of Sm. M. Kervaire and J. Milnor [6] showed that each Θm is a finite group; in particular,
Θ8 and Θ16 are cyclic groups of order 2.

Definition 2.2. Let M be a topological manifold. Let (N, f) be a pair consisting of a
smooth manifold N together with a homeomorphism f : N → M . Two such pairs (N1, f1)
and (N2, f2) are concordant provided there exists a diffeomorphism g : N1 → N2 such that
the composition f2 ◦ g is topologically concordant to f1, i.e., there exists a homeomorphism
F : N1 × [0, 1] → M × [0, 1] such that F|N1×0 = f1 and F|N1×1 = f2 ◦ g. The set of all such
concordance classes is denoted by C(M).

Start by noting that there is a homeomorphism h : Mn#Σn → Mn (n ≥ 5) which is the
inclusion map outside of homotopy sphere Σn and well defined up to topological concordance.
We will denote the class in C(M) of (Mn#Σn, h) by [Mn#Σn]. (Note that [Mn#S

n] is the
class of (Mn, Id).)

Theorem 2.3. (i) C(CP3) = 0.

(ii) C(CP4) = {[CP4], [CP4#Σ8]} ∼= Z2.

Proof. (i): Consider the following Puppe’s exact sequence for the inclusion i : CPn−1 →֒ CP
n

along Top/O:

.... −→ [SCPn−1, T op/O]
(S(g))∗

−→ [S2n, T op/O]
f∗

CPn−→ [CPn, T op/O]
i∗

−→ [CPn−1, T op/O], (2.1)
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where S(g) is the suspension of the map g : S2n−1 → CP
n−1. If n = 2 or 3 in the above

exact sequence (2.1), we can prove that [CPn, T op/O] = 0. Now by using the identifications
C(CP3) = [CP3, T op/O] given by [7, pp. 194-196], C(CP3) = 0. This proves (i).
(ii): Now consider the case n = 4 in the above exact sequence (2.1), we have that f ∗

CP
4 :

[S8, T op/O] ∼= Θ8 7→ [CP4, T op/O] is surjective. Then by using [2, Lemma 3.17], f ∗
CP

4 is an

isomorphism. Hence C(CP4) = {[CP4], [CP4#Σ8]} ∼= Z2. This proves (ii).

Definition 2.4. Let Mm be a closed smooth, oriented m-dimensional manifold. The inertia
group I(M) ⊂ Θm is defined as the set of Σ ∈ Θm for which there exists an orientation
preserving diffeomorphism φ : M → M#Σ.
Define the concordance inertia group Ic(M) to be the set of all Σ ∈ I(M) such that M#Σ
is concordant to M .

Theorem 2.5. [3, Theorem 4.2] For n ≥ 1, Ic(CP
n) = I(CPn).

Remark 2.6.

(1) By Theorem 2.3 and Theorem 2.5, Ic(CP
n) = 0 = I(CPn), where n = 3 and 4.

(2) By Kirby and Siebenmann identifications [7, pp. 194-196], the group C(M) is a homo-
topy invariant.

Theorem 2.7. Let M2n be a closed smooth 2n-manifold homotopy equivalent to CP
n.

(i) For n = 3, M2n has a unique differentiable structure up to diffeomorphism.

(ii) For n = 4, M2n has at most two distinct differentiable structures up to diffeomorphism.

Moreover, if N is a closed smooth manifold homeomorphic to M2n, where n = 3 or 4, there
is a homotopy sphere Σ ∈ Θ2n such that N is diffeomorphic to M#Σ.

Proof. Let N be a closed smooth manifold homeomorphic to M and let f : N → M be a
homeomorphism. Then (N, f) represents an element in C(M). By Theorem 2.3 and Remark
2.6(2), there is a homotopy sphere Σ ∈ Θ2n such that N is concordant to (M#Σ, Id). This
implies that N is diffeomorphic to M#Σ. This proves the theorem.

Remark 2.8. Since Θ8
∼= Z2 and I(CP4) = 0, by Theorem 2.7, CP4 has exactly two distinct

differentiable structures up to diffeomorphism.

3 Tangential types of Complex Projective Spaces

Definition 3.1. Let Mn and Nn be closed oriented smooth n-manifolds. We call M a
tangential type of N if there is a smooth map f : M → N such f ∗(TN) = TM , where TM
is the tangent bundle of M .
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Example 3.2.

(i) Every finite sheeted cover of CPn is a tangential type of CPn.

(ii) Since Borel [1] has constructed closed complex hyperbolic manifolds in every com-
plex dimension m ≥ 1, by [8, Theorem 5.1], there exists a closed complex hyperbolic
manifold M2n which is a tangential type of CPn.

Lemma 3.3. [9, Lemma 2.5] Let M2n be a tangential type of CPn and assume n ≥ 4. Let
Σ1 and Σ2 be homotopy 2n-spheres. Suppose that M2n#Σ1 is concordant to M2n#Σ2, then
CP

n#Σ1 is concordant to CP
n#Σ2.

Theorem 3.4. [4] For n ≤ 8, I(CPn) = 0.

Theorem 3.5. Let M2n be a tangential type of CPn. Then

(i) For n ≤ 8, the concordance inertia group Ic(M
2n) = 0.

(ii) For n = 4k + 1, where k ≥ 1,
Ic(M

2n) 6= Θ2n.

Moreover, if M2n is simply connected, then

I(M2n) 6= Θ2n.

Proof. (i): By Theorem 3.4, for n ≤ 8, I(CPn) = 0 and hence Ic(CP
n) = 0. Now by

Theorem 3.3, Ic(M
2n) = 0. This proves (i).

(ii): By [5, Proposition 9.2], for n = 4k + 1, there exists a homotopy 2n-sphere Σ not
bounding spin-manifold such that CPn#Σ is not concordant to CPn. Hence by Theorem
3.3,

Ic(M
2n) 6= Θ2n.

Moreover, CPn is a spin manifold and hence the Stiefel-Whitney class wi(CP
n) = 0, where

i = 1 and 2. Since M2n is a tangential type of CPn, there is a smooth map f : M2n → CPn

such that f ∗(TCPn) = TM2n. This implies that wi(M
2n) = f ∗(wi(CP

n)) = 0. So, M2n is a
spin manifold. If M2n is simply connected, then by [5, Lemma 9.1], Σ /∈ I(M2n) and hence

I(M2n) 6= Θ2n.

This proves the theorem.

Remark 3.6. Let M2n be a tangential type of CPn. By Theorem 3.5, up to concordance,
there exist at least |Θ2n| distinct differentiable structures, namely {[M2n#Σ] | Σ ∈ Θ2n},
where n = 4, 5, 7 or 8 and |Θ2n| is the order of Θ2n.
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