Supporting Information

Cation-Halide Transport through Peptide Pores containing Aminopicolinic Acid

Debajyoti Basak †, Sucheta Sridhar ${ }^{\dagger}$, Amal K. Bera ${ }^{*}{ }^{\ddagger}$ and Nandita Madhavan* ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry and ${ }^{\ddagger}$ Department of Biotechnology Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
amal@iitm.ac.in, nanditam@iitm.ac.in

Table of Contents

General Methods S2
Synthesis of Aminopicoline derivative 6 S3
Synthesis of octapeptide 1 S5
Synthesis of octapeptide 2 S11
Vesicle based fluorescence experiments S15
a) HPTS assay in HEPES- NaCl buffer S15
b) Lucigenin assay with sodium halides S19
c) Lucigenin assay with metal chlorides S21
i) Peptide added after addition of salt S21
ii) Peptide premixed with vesicle S27
Dynamic light scattering studies S33
TEM studies S34
Planar lipid bilayer experiment S34
Absorbance Measurements of Peptides with CoCl_{2} and NiCl_{2} S35
References and notes S36
Spectra of compounds S37

General Methods

All reagents for synthesis were purchased from commercial suppliers and used without further purification unless stated otherwise. All air-sensitive reactions were performed using oven-dried glassware in an inert atmosphere of nitrogen. Syringe or cannula was used to transfer airsensitive solvents and solutions. Dichloromethane and N, N-diisopropylethylamine (DIEA) were distilled over calcium hydride, methanol was distilled over magnesium oxide and N, N dimethylformamide (DMF) was dried over $4 \AA$ molecular sieves. All dry solvents were stored over $4 \AA$ molecular sieves prior to use. All peptides were synthesized in solution using O-(6-chlorobenzotriazol-1-yl)- $N, N, N, N^{\prime}, N^{\prime}$-teramethyluronium hexafluorophosphate (HCTU) as a coupling reagent and N, N-diisopropylethylamine (DIEA) as base. Egg yolk phosphatidyl choline (EYPC) and 8-hydroxypyrene-1,3,6 trisulfonic acid, trisodium salt (HPTS) and N, N-dimethyl-9,9'-biacridinium dinitrate (Lucigenin) were purchased from Sigma-Aldrich and used without further purification.

Analytical thin layer chromatography (TLC) was performed on MERCK precoated silica gel $60 \mathrm{~F}_{254}$ TLC plates. Eluting solvents are reported as volume percents. Compounds were visualized using UV light and ninhydrin. Flash column chromatography was performed using silica gel from Acme chemicals and active aluminium oxide from Fischer Scientific. All NMR spectra were recorded on Bruker 500 spectrometers using CDCl_{3}, or $\mathrm{DMSO}-\mathrm{d}_{6}$ as solvent. The NMR spectra were referenced using residual solvent peaks as the standard. Chemical shifts are denoted in parts per million (δ), coupling constants (J) are reported in Hertz (Hz), and spin multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), apparent quintet (app. quint.), multiplet (m). High resolution mass spectra (HRMS) were recorded on the MICRO-Q-TOF mass spectrometer using the ESI technique. FT-IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. All IR spectra were recorded in the form of KBr pellet. IR spectra peaks are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$ as strong (s) and broad (br).

Vesicles were prepared from EYPC lipids using Mini extruder from Avanti Polar Lipids. Conductivity water was used for the preparation of buffers and vesicles. Vesicles were prepared at room temperature in a suitable buffer for the HPTS assay and the buffer pH was adjusted to 7.2 with concentrated NaOH solution. The pH was checked with ${ }^{\mathrm{L} 1} 613 \mathrm{pH}$ meter from Vanira Instruments. Vesicles were prepared in an aqueous solution of $225 \mathrm{mM} \mathrm{NaNO}_{3}$ for the lucigenin assays. Extrusion of vesicles was carried out through $0.1 \mu \mathrm{~m}$ polycarbonate membranes
(Whatman) using the mini excruider from Avanti Polar Lipid. Size exclusion chromatography was carried out using Sephadex (G-50) resin. Fluorescence spectra were recorded on a JASCO FP-6300 fluorescence spectroflurometer using a 3 mL quartz cuvette. A small magnetic stir plate was placed beside the cuvette holder to ensure that the cuvette solutions could be stirred. All graphs were plotted and fitted using Origin Pro8 software. Dynamic light scattering data was recorded on a Malvern Zetasizer ZS instrument using 3 mL quartz cells. For absorbance measurement, A JascoV-650 spectrophotometer equipped with a 1 cm path length quartz cell was used. PMT voltage was kept at 700 V and scans speed at $1,000 \mathrm{~nm} \mathrm{~min}^{-1}$ with the band pass of 2 nm.

Synthesis of Aminopicoline derivative 6: ${ }^{1}$

Scheme S1

N-acetyl 6-aminopicoline 16: To a solution of 6-aminopicoline $15(15.0 \mathrm{~g}, 139.0 \mathrm{mmol}, 1.0$ equiv) in chloroform (75 mL) was slowly added acetic anhydride ($19.7 \mathrm{~mL}, 208.0 \mathrm{mmol}, 1.5$ equiv) and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with chloroform (15 mL) and washed sequentially with water $(2 \times 25 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$ and water $(1 \times 25 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude residue was recrystallized using hexane to afford $18.5 \mathrm{~g}(89 \%)$ of N-acetyl 6-aminopicoline 16 as a white solid. TLC $\mathrm{R}_{f}=0.20$ (10\% ethyl acetate/ hexane).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.66\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 7.98\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.57(\mathrm{t}, J$ $\left.=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 6.86\left(\mathrm{~d}, J=7.5,1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C} H_{3(\mathrm{Ar})}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 168.9,156.3,150.7,139.1,119.3,111.2,24.7,23.8 ;$ IR (KBr pellet): v 3243 (b), 3061 (s), 1666 (b), 1545 (b), 1453(s), 1368 (s), 1305 (b), 1156 (s) cm^{-1}; HRMS: $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}(\mathrm{MH})^{+}$151.0871, found 151.0877.

N-acetyl-6-aminopicolinic acid 17: $\mathrm{KMnO}_{4}(28.5 \mathrm{~g}, 183.0 \mathrm{mmol}, 2.5$ equiv) was added in portions to a suspension of N -acetyl-6-aminopicoline $16(11.0 \mathrm{~g}, 73.2 \mathrm{mmol}, 1.0$ equiv) in water. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 5 h , following which it was filtered through celite. The precipitate was washed with hot water $(2 \times 25 \mathrm{~mL})$. The filtrate was concentrated to one third of its original volume and cooled in an ice bath. N-acetyl-6-aminopicolinic acid $\mathbf{1 7}$ (8.5 g , 65%) was obtained as a white precipitate after slow addition of hydrochloric acid (12 M). TLC R_{f} $=0.07(10 \%$ ethyl acetate/ methanol). The white solid was used for the next step without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 10.91\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}_{\mathrm{Ar}}\right), 8.24\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.95(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.73\left(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 5.30(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 2.11\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) overlapping peaks $\delta 170.1,165.7,151.9,139.8,120.2,117.0,23.9$; IR (KBr pellet): v 3340 (b), 2923 (b), 1947 (b), 1728 (s), 1632(s), 1575 (s), 1487 (s), 1430 (s), 1290 (s), $1236(\mathrm{~s}), 772(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS: $\left(E S I^{+}\right)$calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{MNa})^{+}$203.0433, found 203.0430 .

Methyl ester 6: To a solution of N-acetyl-6-aminopicolinic acid $\mathbf{1 7}$ ($0.3 \mathrm{~g}, 1.8 \mathrm{mmol}, 1$ equiv) in methanol ($25.0 \mathrm{~mL}, 0.61 \mathrm{~mol}, 320.0$ equiv) was slowly added hydrochloric acid ($12 \mathrm{M}, 7.5 \mathrm{~mL}$). The reaction mixture was allowed to reflux for 72 h . The residue was neutralized with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, diluted with water $(25 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 25$ mL). The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification by column chromatography (50% ethyl acetate/ hexane) afforded 0.2 g (77%) of methyl ester 6 as a pale yellow solid. $\mathrm{TLC}_{f}=0.30$ (50% ethyl acetate/ hexane).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.57\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.44\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right)$, $6.84\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 165.1$, 158.0, 144.0, 139.1, 115.6, 114.2, 53.1; IR (KBr pellet): v 3471 (s), 3362 (s), 1716(s), 1608 (s), 1468 (s), 1351 (s), 1267 (s) cm ${ }^{-1}$. HRMS: (ESI^{+}) calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MH})^{+}$153.0664, found 153.0666.

Synthesis of octapeptide $\mathbf{1}^{2}$

Scheme S2

10

Boc-L-Ala- D-Ala-OMe 20: To a solution of Boc-L-Alanine 19 ($0.6 \mathrm{~g}, 3.1 \mathrm{mmol}, 1.0$ equiv) and D-Ala-OMe 18 ($0.4 \mathrm{~g}, 3.1 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL}$) was added HCTU ($1.5 \mathrm{~g}, 3.6$ mmol, 1.2 equiv). DIEA ($2.1 \mathrm{~mL}, 9.2 \mathrm{mmol}, 3.0$ equiv) was slowly added and the reaction mixture was allowed to stir at RT for 6 h . The solvent was evaporated in vacuo and the residue
was diluted with ethyl acetate (15 mL). The solution was sequentially washed with water (2×15 $\mathrm{mL}), 5 \% \mathrm{HCl}(2 \times 15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by column chromatography (30 \% ethyl acetate/ hexane) afforded 0.7 g (84%) of dipeptide 20 as a white solid. $\mathrm{TLC}_{f}=0.15$ (10% ethyl acetate/ hexane).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- $\left.d_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.15\left(\mathrm{~d}, J=7.5,1 \mathrm{H} ; \mathrm{N} H_{\text {Ala }}\right), 6.82(\mathrm{~s}, 1 \mathrm{H} ;$ NHBoc $)$, 4.26 (app quint, $1 \mathrm{H} ; \mathrm{CH}_{\text {Ala }}$), 4.0 (app quint, $1 \mathrm{H} ; \mathrm{CH}_{\mathrm{Ala}}$), $3.62\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}$; $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.26\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3 \text { (Ala) }}\right), 1.16\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3 \text { (Ala) }}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO- $d_{6}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}$) $\delta 173.0,172.6,154.9,78.0,51.9,49.5,47.5,28.2,18.4,17.2$; IR (KBr pellet): v 3368 (s), 3290 (b), 2983 (s), 1751(s), 1699 (s), 1644 (b), 1542 (s), 1507 (s), 1454 (s), 1366 (s), 1299 (s), 1251 (s), 1162 (b) cm ${ }^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{MNa})^{+}$ 297.1426; found 297.1439.

Boc-L-Ala- D-Ala-OH 21: To a solution of dipeptide 20 ($0.6 \mathrm{~g}, 2.2 \mathrm{mmol}, 1.0$ equiv) in THF (6 mL) were added $\mathrm{LiOH}(0.2 \mathrm{~g}, 5.5 \mathrm{mmol}, 2.5$ equiv) and water (4 mL). The reaction mixture was allowed to stir at RT for 4 h , following which it was diluted with water (10 mL) and washed with ethyl acetate (10 mL). The aqueous layer was acidified with dil HCl to a pH of 1 and was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate and concentrating in vacuo to afford $0.5 \mathrm{~g}(93 \%)$ of dipeptide 21 as a white solid. TLC $\mathrm{R}_{f}=0.25$ (100% ethyl acetate).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.55(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 7.98\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH} H_{\mathrm{Ala}}\right), 6.82(\mathrm{~s}$, $1 \mathrm{H} ; \mathrm{NHBoc}), 4.19$ (app. quint, $1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}$), 4.0 (app. quint, $\left.1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 1.37$ (s, 9 H ; $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.25\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right) 1.16\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 174.0,172.4,154.9,78.1,49.5,47.4,28.2,18.5,17.5$; IR (KBr pellet): v 3327 (b), 3270 (b), 2982 (s), 1720 (s), 1682 (s), 1638 (S), 1564 (s), 1378 (s), 1257 (s), 1170 (s) cm^{-1}; HRMS:(ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{MH})^{+}$261.1450; found 261.1443.

OMe-AP-L-Ala-Boc 7: To a solution of methyl 6-aminopicolinate $\mathbf{6}(0.4 \mathrm{~g}, 2.9 \mathrm{mmol}, 1.0$ equiv) and Boc-L-Alanine ($0.6 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ was added HCTU ($1.3 \mathrm{~g}, 3.2$ mmol, 1.1 equiv). DIEA ($2.0 \mathrm{~mL}, 8.7 \mathrm{mmol}, 3.0$ equiv) was slowly added and the reaction mixture was allowed to stir at RT for 12 h . The solvent was evaporated in vacuo, following which the residue was diluted with ethyl acetate (15 mL). The solution was washed sequentially with water $(2 \times 15 \mathrm{~mL}), 5 \% \mathrm{HCl}(2 \times 15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification by column chromatography (30% ethyl acetate/ hexane) afforded 0.7 g (75%) of dipeptide 7 as a white solid. $\mathrm{TLC} \mathrm{R}_{f}=0.30$ (40% ethyl acetate/ hexane).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right) \delta 10.81\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 8.31\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right)$, $7.98\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.77\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H \mathrm{Boc}), 4.26$ (app. quint, $1 \mathrm{H} ; \mathrm{CH}_{\mathrm{Ala}}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H} ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$; $\mathrm{CH}_{3 \text { (Ala) })}$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 173.5,164.9,155.2,152.0,145.8,139.7$, 120.4, 117.4, 78.1, 52.4, 50.3, 28.2, 17.8; IR (KBr pellet): v 3298 (b), 2979 (s), 1713 (s), 1680 (s), 1539 (s), 1449 (s), 1307 (s), 1166 (s), 771 (s) cm^{-1}; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}$ $(\mathrm{MH})^{+} 324.1559$, found 324.1553 .
$\boldsymbol{N H}_{2}$-L-Ala-AP-OMe 22: To a solution of dipeptide 7 ($0.3 \mathrm{~g}, 0.9 \mathrm{mmol}, 1.0$ equiv) in DCM (7 mL) was added trifluoroacetic acid ($0.6 \mathrm{~mL}, 8.3 \mathrm{mmol}, 10.0$ equiv) and the reaction mixture was allowed to stir for 3 h at RT. The solvent was evaporated in vacuo. The residue was dissolved in water and lyophilized to afford $0.3 \mathrm{~g}(95 \%)$ of dipeptide 22 as a pale yellow solid. $\mathrm{TLC}_{\mathrm{f}}=0.10$ ($10 \% \mathrm{MeOH} / \mathrm{DCM}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right) \delta 11.40\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 8.32\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NH}, H_{\mathrm{Ar}}\right), 8.06(\mathrm{t}, J$ $\left.=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.84\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 4.19-4.09\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH} H_{(\mathrm{Ala})}\right), 3.88(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{OCH}_{3}\right), 1.45\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 169.7$, 164.7, 151.3, 145.9, 140.2, 121.1, 117.5, 52.5, 49.0, 17.1; IR (KBr pellet): v 3237 (b), 3045 (b), 1673 (b), 1536 (s), 1447 (s), 1314 (s), 1198 (b), 1136 (s) cm^{-1}. HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH})^{+}$224.1035; found 224.1026.

OMe-AP-L-Ala- D-Ala--L-Ala-Boc 8: To a solution of dipeptide 21 ($0.24 \mathrm{~g}, 0.90 \mathrm{mmol}, 1.0$ equiv) and dipeptide 22 ($0.3 \mathrm{~g}, 0.9 \mathrm{mmol}, 1.0$ equiv) in dry DCM (7 mL) was added HCTU (0.42 $\mathrm{g}, 1.03 \mathrm{mmol}, 1.2$ equiv). DIEA ($0.44 \mathrm{~mL}, 2.6 \mathrm{mmol}, 3.0$ equiv) was slowly added to the reaction mixture and the solution was allowed to stir for 12 h at RT. The solvent was evaporated in vacuo and the residue was diluted with ethyl acetate $(15 \mathrm{~mL})$. The solution was sequentially washed with water $(2 \times 15 \mathrm{~mL}), 5 \% \mathrm{HCl}(2 \times 15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purified by column chromatography (silica gel; 30\%-60\% ethyl acetate in hexane, $v / v)$ to afford $0.29 \mathrm{~g}(70 \%)$ of tetrapeptide $\mathbf{8}$ as a white solid. $\mathrm{TLC}_{\mathrm{f}}=0.2$ (50% ethyl acetate/ hexane).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d $\left._{6}\right) \delta 10.90\left(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H_{\text {Ar }}\right), 8.29(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$; $H_{\text {Ar }}$), 8.15-8.05 (m (rotamers observed), $1 \mathrm{H} ; \mathrm{N} H_{\text {Ala }}$), $7.98\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right.$), $7.93(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{NH} \mathrm{Ala}$), $7.78\left(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz} ; H_{\mathrm{Ar}}\right.$), 7.0-6.91 (m, 1H; NHBoc), $4.58-4.41$ (m (rotamers observed), $\left.1 \mathrm{H} ; \mathrm{CH}_{(\text {Ala) }}\right), 4.35-4.25\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 3.95$ (app. quint; $\left.\mathrm{CH}_{(\text {(Ala) }}\right), 3.87$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}$), 1.38-1.27 $\left(12 \mathrm{H} ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right.$ and $\left.\mathrm{CH}_{3(\mathrm{Ala})}\right), 1.22-1.19\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.15(\mathrm{~d}, \mathrm{~J}=$ $\left.7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO-d6) $\delta 172.6,172.4,171.9,164.8,155.1,151.9$, $145.8,139.6,120.4,117.4,78.1,52.4,49.8,49.0,48.0,28.2,18.5,18.1,17.9$; IR (KBr pellet): v 3347 (b), 1703 (b), 1529 (s), 1453 (s), 1377 (s), 1310 (s), 1166 (b). HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{7}(\mathrm{MH})^{+} 466.2302$; found 466.2294.

OMe-AP-L-Ala- D-Ala--L-Ala-NH2 9: To a solution of tetrapeptide $\mathbf{8}(0.18 \mathrm{~g}, 0.37 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was slowly added trifluoroacetic acid ($0.2 \mathrm{~mL}, 3.7 \mathrm{mmol}, 10.0$ equiv) over the period of 5 minutes using a syringe. The reaction mixture was allowed to stir for 4 h at RT. The solvent was evaporated in vacuo and the resultant salt was dissolved in water (2 mL) and lyophilized to afford $0.18 \mathrm{gm}(99 \%)$ of product 9 as a pale yellow solid. $\mathrm{TLC}_{f}=0.10(15 \%$ $\mathrm{MeOH} / \mathrm{DCM})$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 10.92\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}_{\mathrm{Ar}}\right.$ (small peak at 10.86 due to rotamer) $), 8.60\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ala}}\right), 8.4-8.31\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ala}}\right), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$;
$\left.H_{\mathrm{Ar}}\right), 8.10\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NH}_{3}{ }^{+}\right), 7.98\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.78\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 4.6-4.36$ $\left(3 \mathrm{H} ; 3 \mathrm{CH}_{(\mathrm{Ala})}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.35-1.28\left(6 \mathrm{H} ; 2 \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H} ;$ $\left.\mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 172.7,171.6,169.1,164.9,152.0,145.9$, 139.7, 120.6, 117.4, 69.8, 52.5, 49.0, 48.2, 18.9 18.3, 18.0, 17.9, 17.8, 17.32, 17.26; IR (KBr pellet): v 3315(b), 2980(s), 2933(s), 1657(b), 1532(b), 1456(s), 1250(s), 1168(s). HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$366.1777; found 366.1795.

OH-AP-L-Ala- D-Ala-L-Ala-Boc 10: A solution of tetrapeptide 8 ($0.05 \mathrm{~g}, 0.11 \mathrm{mmol}, 1.0$ equiv) in methanol/ water ($2: 1$) (6 mL) was treated with $\mathrm{LiOH}(0.02 \mathrm{~g}, 0.57 \mathrm{mmol}, 5.0$ equiv) at RT. The solution was allowed to stir for 6 h , following which methanol was evaporated in vacuo. The aqueous layer was diluted with water (5 mL), washed with ethyl acetate $(10 \mathrm{~mL})$, acidified with 5% aq. HCl and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo to afford $0.04 \mathrm{~g}(80 \%)$ of tetrapeptide 10 as a white solid. The white solid was used for the next step without further purification. $\operatorname{TLC~} \mathrm{R}_{f}=0.10$ (100% ethyl acetate)

IR (KBr pellet): v 3239 (b), 3087 (b), 1676 (b), 1542(s), 1456(s), 1313(s), 1252 (s), 1203(s), 1136 (s); HRMS: $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{7}(\mathrm{MH})^{+} 452.2145$; found 452.2123.

OMe-AP-L-Ala- D-Ala-L-Ala-AP-L-Ala- D-Ala--L-Ala-Boc 1: To a solution of Boc deprotected tetrapeptide 9 ($0.10 \mathrm{~g}, 0.21 \mathrm{mmol}, 1.0$ equiv) and ester deprotected tetrapeptide $\mathbf{1 0}(0.10 \mathrm{~g}, 0.22$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added HCTU ($0.12 \mathrm{gm}, 0.23 \mathrm{mmol}, 1.10$ equiv). DIEA ($0.12 \mathrm{~mL}, 0.64 \mathrm{~mol}, 3.0$ equiv) was slowly added to the reaction mixture and the solution was allowed to stir for 20 h at room temperature. The solvent was evaporated in vacuo and the residue was diluted with ethyl acetate $(15 \mathrm{~mL})$. The solution was washed with water $(4 \times 15$ $\mathrm{mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification by column chromatography (neutral alumina; 50\%-80\% ethyl acetate in hexane, $v / v)$ afforded $0.14 \mathrm{~g}(77 \%)$ of octapeptide 1 as a pale yellow solid. $\mathrm{TLC}_{\mathrm{f}}=0.20(75 \%$ ethyl acetate/ hexane); $[\alpha]^{33}{ }_{\mathrm{D}}+6.75$ (c 1.0, CHCl_{3}).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right) \delta 10.82\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 10.64\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 8.70(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 8.41-8.32(2 \mathrm{H} ; \mathrm{NH}), 8.25-8.15(3 \mathrm{H} ; \mathrm{NH}, 2$ $\left.H_{\mathrm{Ar}}\right), 8.0-7.94\left(2 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.78-7.65\left(2 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H \mathrm{Boc}), 4.65-4.5(3 \mathrm{H} ;$ $\left.3 \mathrm{CH}_{\text {(Ala) }}\right), 4.32-4.20\left(2 \mathrm{H} ; 2 \mathrm{CH}_{\text {(Ala) }}\right), 4.12$ (app. q, $\left.1 \mathrm{H} ; \mathrm{CH}_{\text {(Ala) }}\right), 3.61$ (s, $3 \mathrm{H} ; \mathrm{OCH}_{3}$), 1.37 (s, 9 H ; $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.35-1.28\left(9 \mathrm{H} ; 3 \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.26-1.22\left(9 \mathrm{H} ; 3 \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO$d_{6}, 25^{\circ} \mathrm{C}$) multiple peaks $\delta, 173.4,173.0,172.6,172.1,172.0,171.9,162.8,162.5,155.4,151.0$, $150.9,148.0,147.9,140.0,117.4,117.3,116.6,78.3,52.1,50.9,50.4,49.1,48.5,48.0,31.7$, 29.2, 28.4, 24.5, 23.3, 21.3, 19.8, 18.1; IR (KBr pellet): v 3459 (br), 3282 (s), 2926(s), 1634 (s), 1528 (s), 1453 (s), 1166 (s) cm ${ }^{-1}$; HRMS: (ESI ${ }^{+}$) Calculated for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{O}_{11} \mathrm{Na}(\mathrm{MNa})^{+}$ 821.3558, found 821.3568 .

Synthesis of octapeptide $\mathbf{2}^{2}$

Scheme S3

NH_{2} L-Ala- D-Ala-OMe 23: To a solution of dipeptide 20 ($0.3 \mathrm{~g}, 1.1 \mathrm{mmol}, 1.0$ equiv) in DCM $(7.0 \mathrm{~mL})$ was added trifluoroacetic acid ($1.3 \mathrm{~g}, 10.9 \mathrm{mmol}, 10.0$ equiv) and the reaction mixture was allowed to stir for 3 h at RT. The solvent was removed in vacuo. The resultant salt was dissolved in water and lyophilized to afford $0.3 \mathrm{~g}(99 \%)$ of dipeptide 23 as a pale yellow solid. $\mathrm{TLC} \mathrm{R}_{f}=0.10(7 \% \mathrm{MeOH} / \mathrm{DCM})$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \operatorname{DMSO}-d_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.90\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H_{\text {Ala }}\right), 8.22\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{N} H_{3}{ }^{+}\right)$, 4.32 (app. quin, $\left.1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 3.92-3.82\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.35(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.30\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\text { Ala })}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 172.7$, 169.6, 52.1, 52.0, 48.2, 47.9, 17.3, 17.03, 17.01; IR (KBr pellet): v 3068 (b), 2622 (b), 1736 (b),

1558 (s), 1458 (s), 1140 (b), 838 (s), 722 (s) cm ${ }^{-1}$. HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH})^{+}$ 175.1083; found 175.1091 .

Boc-L-Ala-AP-OH 11: To a solution of dipeptide $7(0.4 \mathrm{~g}, 1.3 \mathrm{mmol}, 1.0$ equiv) in THF (7.0 $\mathrm{mL})$ at RT were added $\mathrm{LiOH}(0.1 \mathrm{~g}, 3.3 \mathrm{mmol}, 2.5$ equiv) and water (5.0 mL). The reaction mixture was allowed to stir for 4 h . Subsequently the reaction mixture was diluted with water (10 $\mathrm{mL})$ and washed with ethyl acetate $(1 \times 15 \mathrm{~mL})$. The aqueous layer was acidified with dil HCl to pH 1 and was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulphate and concentrated in vacuo to afford 0.37 g of Boc-L-Ala-APOH dipeptide 11 (92\%) as a white solid. This white solid was used for the next reaction without further purification. $\mathrm{TLC}_{f}=0.15$ (100% ethyl acetate).

IR (KBr pellet): v 3437 (b), 2926 (s), 2361 (s), 1716 (b), 1628 (s), 1539 (s), 1460 (s), 1379 (s) cm^{-1}; HRMS:(ESI ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}(\mathrm{MH})^{+} 310.1403$; found 310.1411.

Boc-L-Ala-AP-L-Ala- D-Ala-OMe 12: To a solution of L-Ala- D-Ala-OMe dipeptide 23 (0.18 g , $0.62 \mathrm{mmol}, 1.0$ equiv) and Boc-L-Ala-AP-OH dipeptide 11 ($0.19 \mathrm{~g}, 0.62 \mathrm{mmol}, 1.0$ equiv) in dry DCM (7 mL) was added HCTU ($0.31 \mathrm{~g}, 7.40 \mathrm{mmol}, 1.20$ equiv). DIEA ($0.38 \mathrm{~mL}, 2.20 \mathrm{mmol}$, 3.60 equiv) was slowly added to the reaction mixture and the solution was allowed to stir for 12 h at RT. The solvent was evaporated in vacuo, following which the residue was diluted with ethyl acetate (15 mL). The solution was sequentially washed with water $(2 \times 15 \mathrm{~mL}), 5 \% \mathrm{HCl}(2$ $\times 15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification by column chromatography (silica gel; $30 \%-50 \%$ ethyl acetate in hexane, v / v) afforded 0.24 g (84%) of tetrapeptide 12 as a white solid. $\mathrm{TLC}_{\mathrm{R}_{f}}=0.25$ (50% ethyl acetate/ hexane)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right) \delta 10.65\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH} \mathrm{Ar}_{\mathrm{Ar}}\right), 8.69(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH} \mathrm{Ala}), 8.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ala}}$), $8.25\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.98\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$; H_{Ar}), $7.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H \mathrm{Boc}), 4.65-4.59\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 4.32-4.24(\mathrm{~m}, 2 \mathrm{H}$; $\left.\mathrm{CH}_{\text {(Ala) }}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.38-1.23\left(\mathrm{~m}, 18 \mathrm{H} ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $(125 \mathrm{MHz}$,

DMSO-d6) $\delta 172.9,171.7,162.4,155.3,150.8,147.8,140.0,117.2,116.5,78.2,67.4,52.0$, 50.4, 47.8, 28.2, 21.5, 19.6, 17.7, 16.9; IR (KBr pellet): v 3391 (b), 2925 (s), 2857 (s), 2360 (b), 1677 (b), 1531 (b), 1450 (s), 1059 (b). HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{7}(\mathrm{MH})^{+} 466.2302$; found 466.2321.
$\boldsymbol{H}_{2} \boldsymbol{N}$-L-Ala-AP-L-Ala-D-Ala-OMe 13: To a solution of tetrapeptide $\mathbf{1 2}(0.10 \mathrm{~g}, 0.21 \mathrm{mmol}, 1.0$ equiv) in DCM (7 mL) was slowly added trifluoro acetic acid ($0.20 \mathrm{~mL}, 2.10 \mathrm{mmol}, 10.0$ equiv) over a period of 5 minutes using a syringe. The reaction mixture was allowed to stir at room temperature for 3 h , following which the solvent was removed in vacuo. The product was dissolved in water (5 mL) and lyophilized to afford $0.10 \mathrm{~g}(99 \%)$ of tetrapeptide $\mathbf{1 3}$ as a pale yellow solid. This yellow solid was used for the next step without further purification. TLC $\mathrm{R}_{f}=$ 0.10 ($15 \% \mathrm{MeOH} / \mathrm{DCM}$)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \operatorname{DMSO}-d_{6}, 25^{\circ} \mathrm{C}\right) \delta 11.22\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}_{\mathrm{Ar}}\right), 8.73\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH} H_{\mathrm{Ala}}\right)$, $8.37\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 8.28\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{N} H_{3}{ }^{+}\right), 8.06\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.82$ (dd, $J=7.5,0.5 \mathrm{~Hz}, H_{\mathrm{Ar}}$), 4.63 (app quint, $\left.1 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 4.28$ (app quint, $\left.2 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala}}\right), 3.62(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{OCH}_{3}\right), 1.48\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.34\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3(\mathrm{Ala})}\right), 1.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H} ;$ $\left.\mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta 172.9,171.7,169.5,162.2,158.3,158.0$, $150.1,148.0,140.4,118.0,116.7,52.0,49.0,47.8,47.7,19.6,17.1,16.9$; IR (KBr pellet): v 3439(b), 2926(s), 1676(s), 1455(s), 1314 (s), 1202(s), 1026(s). HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$366.1777; found 366.1761.

Boc-L-Ala-AP-L-Ala- D-Ala-OH 14: A solution of tetrapeptide 12 ($0.24 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.00$ equiv) in methanol-water ($2: 1,12 \mathrm{~mL}$) was treated with $\mathrm{LiOH}(0.03 \mathrm{~g}, 1.30 \mathrm{mmol}, 2.5$ equiv) at RT. The solution was allowed to stir for 6 h , following which methanol was evaporated in vacuo. The mixture was diluted with water $(10 \mathrm{~mL})$ and subsequently washed with ethyl acetate $(2 \times 15$ mL). The aqueous layer was acidified with 5% aq. HCl and extracted with ethyl acetate (3×15 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and
concentrated in vacuo to afford 0.17 g of tetrapeptide $\mathbf{1 4}(71 \%)$ as a white solid. This white solid was used for the next step without further purification. $\mathrm{TLC}_{\mathrm{f}}=0.10$ (100 ethyl acetate).

IR (KBr pellet): v 3429(b), 2926(s), 1662(b), 1456(s), 1338(b), 1167(s), 1026(b). HRMS: (ESI ${ }^{+}$) calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{7}(\mathrm{MH})^{+} 452.2145$; found 452.2127.

Boc-L-Ala-AP-L-Ala- D-Ala- L-Ala-AP-L-Ala- D-Ala-OMe 2: To a solution of Boc deprotected tetrapeptide 13 ($0.06 \mathrm{~g}, 0.12 \mathrm{mmol}, 1.0$ equiv) and ester deprotected tetrapeptide $\mathbf{1 4}(0.06 \mathrm{~g}, 0.12$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added HCTU ($0.06 \mathrm{~g}, 0.15 \mathrm{mmol}, 1.2$ equiv). DIEA ($0.10 \mathrm{~mL}, 4.40 \mathrm{mmol}, 3.0$ equiv) was slowly added to the reaction mixture and the solution was allowed to stir for 12 h at room temperature. The solvent was evaporated and the residue was diluted with ethyl acetate $(15 \mathrm{~mL})$. The solution was washed with water ($4 \times 15 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification by column chromatography (alumina; $50 \%-80 \%$ ethyl acetate in hexane, v / v) afforded $0.065 \mathrm{~g}(67 \%)$ of octapeptide 2 as a pale yellow solid. TLC $\mathrm{R}_{f}=0.20$ (70% ethyl acetate/ hexane); $[\alpha]^{33}{ }_{\mathrm{D}}+7.84\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta 10.84\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 10.68\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{N} H_{\mathrm{Ar}}\right), 8.78(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H), 8.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{N} H), 8.29-8.21$ (3H; $\left.\mathrm{N} H, H_{\mathrm{Ar}}\right), 8.0-7.91\left(2 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.75-7.69\left(2 \mathrm{H} ; H_{\mathrm{Ar}}\right), 7.2-7.18(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N} H \mathrm{Boc}), 4.64-4.51(\mathrm{~m}$, $\left.3 \mathrm{H} ; \mathrm{CH}_{\text {(Ala) }}\right)$, 4.39-4.31 (m, $\left.1 \mathrm{H} ; \mathrm{CH}_{\text {(Ala) }}\right)$, 4.30-4.21 ($\left.2 \mathrm{H} ; \mathrm{CH}_{(\mathrm{Ala})}\right), 3.61$ (s, $3 \mathrm{H} ; \mathrm{OCH}_{3}$), 1.37 (s , 9H; $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, 1.35-1.21 ($\left.18 \mathrm{H} ; 6 \mathrm{CH}_{3(\mathrm{Ala})}\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- $d_{6}, 25^{\circ} \mathrm{C}$) Overlapping peaks $\delta 172.5,172.3,172.0,171.8,170.3,164.8,162.7,151.9,150.6,147.8,145.8,139.8,139.5$, $120.4,117.4,117.2,116.5,78.1,59.7,52.3,49.9,48.9,48.6,48.3,48.1,28.9,28.1,20.7,18.9$, 18.3, 17.9, 17.7; IR (KBr pellet): v 3389 (b), 2926(s), 1672 (s), 1532 (s), 1450 (s), 1168 (s) 1027 (b) cm^{-1}; HRMS: $\left(\mathrm{ESI}^{+}\right)$Calculated for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{O}_{11} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 821.3558$, found 821.3579.

Vesicle based fluorescence experiments.

HPTS assay in HEPES-NaCl buffer ${ }^{2 .}$

Preparation of vesicles

Cholesterol ($1.6 \mathrm{mg}, 4.1 \mu \mathrm{~mol}$, 1 equiv) was added to a solution of EYPC lipids ($28.4 \mathrm{mg}, 36.9$ $\mu \mathrm{mol}, 9$ equiv) in chloroform (0.284 mL). Chloroform was removed under a stream of nitrogen and further in vacuo for 5 h at $0^{\circ} \mathrm{C}$ to give a lipid film. The lipid film was hydrated with 1 mL of a buffer solution containing HPTS dye (0.1 mM HPTS, $10 \mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM}$, HEPES) at pH 7.2. The resulting suspension was allowed to stir at room temperature for 1 h . and then subjected to five freeze-thaw cycles. The vesicle solution was placed in an ice bath and subsequently sonicated in a bath sonicator at $0-4{ }^{\circ} \mathrm{C}$ for a total time of 2 minutes (30 s on $\& 15 \mathrm{~s}$ off in degas mode). The vesicles were allowed to anneal for one hour in the refrigerator, following which they were extruded 20 times through 100 nm polycarbonate membranes using a mini-extruder from Avanti Polar Lipids. The extra-vesicular dye was removed by size exclusion chromatography using Sephadex G-50 (eluent: HEPES buffer at pH $7.2(10 \mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM}$ HEPES). The milky white solution containing vesicles were collected and used for further study.

Assay Procedure

Vesicle solution ($100 \mu \mathrm{~L}$), HEPES, NaCl buffer $(2.9 \mathrm{~mL})$ and an appropriate amount of peptide in methanol $(0.5 \% \mathrm{DMSO})^{3}$ were added to a cuvette equipped with a magnetic stir bar. The solution in the cuvette was stirred for 2 minutes before the fluorescence experiment was started. After 50 s , a solution of $\mathrm{NaOH}(20 \mu \mathrm{~L}, 0.5 \mathrm{~N})$ was added to the vesicles. 5% Triton $\mathrm{X}(50 \mu \mathrm{~L})$ solution was added at 250 s to achieve final equilibration of the dye. Fluorescence measurements were done at an emission wavelength of 510 nm and an excitation wavelength of 460 nm .

Figure S1. Raw fluorescence vs. time plots for HPTS assay with HEPES-NaCl buffer

Rate constant calculations

For each experiment, the curve obtained from $t=50 \mathrm{~s}$ (after addition of NaOH) to $t=250 \mathrm{~s}$ (before addition of Triton X) was fitted to Equation 1, where $\left(1 / t_{1}\right)=k_{\text {peptide. }}$. The curves were fitted using OriginPro 8.5 software.

$$
\begin{equation*}
\mathrm{y}=\mathrm{y}_{0}+\mathrm{A}_{1} \mathrm{e}^{-\mathrm{x} / t_{1}} \tag{1}
\end{equation*}
$$

Figure S2. Fitting of fluorescence versus time plot for HPTS assay with MeOH. Inset table shows fitting results.

Figure S3. Fitting of fluorescence versus time plot for HPTS assay with $20 \mu \mathrm{M}$ of peptide 1. Inset table shows fitting results.

Figure S4. Fitting of fluorescence versus time plot for HPTS assay with $41 \mu \mathrm{M}$ of peptide 1.
Inset table shows fitting results.

Figure S5. Fitting of fluorescence versus time plot for HPTS assay with $20 \mu \mathrm{M}$ of peptide 2. Inset table shows fitting results.

Figure S6. Fitting of fluorescence versus time plot for HPTS assay with $41 \mu \mathrm{M}$ of peptide 2.
Inset table shows fitting results.

Lucigenin assay with sodium halides ${ }^{4,5}$

Preparation of vesicles

Cholesterol ($1.6 \mathrm{mg}, 4.1 \mu \mathrm{~mol}, 1$ equiv) was added to a solution of EYPC lipids ($28.4 \mathrm{mg}, 36.9$ $\mu \mathrm{mol}, 9$ equiv) in chloroform. Chloroform was removed under a stream of nitrogen and further in vacuo at $0^{\circ} \mathrm{C}$ for 2 h to give a lipid film. The lipid film was hydrated with 1 mL of a solution containing Lucigenin dye (1.0 mM Lucigenin, 225 mM NaNO 3). The resulting suspension was allowed to stir at room temperature for 5 minutes and then subjected to five freeze-thaw cycles. The vesicle solution was placed in an ice bath and subsequently sonicated in a bath sonicator at $0-4{ }^{\circ} \mathrm{C}$ for a total time of 2 minutes (30 s on $\& 15 \mathrm{~s}$ off in degas mode), following which they were extruded 20 times through 400 nm polycarbonate membranes using a mini-extruder from Avanti Polar Lipids. The extra-vesicular dye was removed by size exclusion chromatography (SEC) using Sephadex G-50 (eluent: $225 \mathrm{mM} \mathrm{NaNO}_{3}$). (Note: Carrying out the SEC twice ensured removal of majority of the extra-vesicular dye). The milky white solution containing vesicles were collected and used for further study.

Assay procedure

Vesicle solution $(100 \mu \mathrm{~L})$ and $\mathrm{NaNO}_{3}(2.9 \mathrm{~mL})$ was added to a cuvette equipped with a magnetic stir bar. The solution in the cuvette was stirred for 2 minutes before the fluorescence experiment was started. After 50 s , a solution of $2.0 \mathrm{~N} \mathrm{NaX}(35 \mu \mathrm{~L})$, where X is $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or I^{-}was added to the vesicles. At 100 s , an appropriate concentration of peptide in 0.5% DMSO-MeOH was added. ${ }^{3} 5 \%$ Triton $\mathrm{X}(50 \mu \mathrm{~L})$ solution was added at 350 s to achieve final equilibration of the dye. Fluorescence measurements were done at an emission wavelength of 505 nm and an excitation wavelength of 455 nm .

Figure S7. Normalized fluorescence vs. time plots for Lucigenin assay with peptide $\mathbf{1}$ and $\mathbf{2}$ in the presence of I^{-}ions.

Lucigenin assay with metal chlorides

Peptide added after addition of salt

The vesicles were prepared as described above. Vesicle solution ($100 \mu \mathrm{~L}$) and the appropriate metal nitrate solution (2.9 mL) were added to a cuvette equipped with a magnetic stir bar. The solution in the cuvette was stirred for 2 minutes before the fluorescence experiment was started. After 50 s , a solution of the appropriate metal chloride $(2.0 \mathrm{~N}, 35 \mu \mathrm{~L})$, where M is $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Co}^{2+}$ or Ni^{2+} was added to the vesicles. At 100 s , an appropriate concentration of peptide in 0.5% DMSO-methanol was added. ${ }^{3} 5 \%$ Triton $\mathrm{X}(50 \mu \mathrm{~L})$ solution was added at 350 s to achieve the final equilibration of the dye. Fluorescence measurements were done at an emission wavelength of 505 nm and an excitation wavelength of 455 nm .

Figure S8. Raw fluorescence vs. time plots for lucigenin assay with with peptide $1(20 \mu \mathrm{M})$ in the presence of different metal chlorides.

Figure S9. Normalized Fluorescence vs. time plots for lucigenin assay with with peptide $\mathbf{2}(20 \mu \mathrm{M})$ in the presence of different metal chlorides.

Rate constant calculations:

Figure S10. Fitting of fluorescence versus time plot for Lucigenin entrapped vesicles with MeOH using Origin Pro 8.5 Inset table shows fitting results.

Figure S11. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ and NaCl . Inset table shows fitting results.

Figure S12. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ and KCl . Inset table shows fitting results.

Figure S13. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ and CoCl_{2}. Inset table shows fitting results.

Figure S14. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ and NiCl_{2}. Inset table shows fitting results

Figure S15. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ and NaCl . Inset table shows fitting results

Figure S16. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ and KCl . Inset table shows fitting results

Figure S17. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ and CoCl_{2}. Inset table shows fitting results

Figure S18. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ and NiCl_{2}. Inset table shows fitting results

Peptide premixed with vesicles

The vesicles were prepared as described above. Vesicle solution ($100 \mu \mathrm{~L}$) and the appropriate metal nitrate solution $(2.9 \mathrm{~mL})$ and an appropriate amount of peptide in methanol $(0.5 \% \mathrm{DMSO})^{3}$ were added to a cuvette equipped with a magnetic stir bar. The solution in the cuvette was stirred for 2 minutes before the fluorescence experiment was started. After 100s, a solution of the appropriate metal chloride $(2.0 \mathrm{~N}, 35 \mu \mathrm{~L})$, where M is $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Co}^{2+}$ or Ni^{2+} was added to the vesicles. 5% Triton $\mathrm{X}(50 \mu \mathrm{~L})$ solution was added at 400 s to achieve the final equilibration of the dye. Fluorescence measurements were done at an emission wavelength of 505 nm and an excitation wavelength of 455 nm .

Figure S19. Normalized Fluorescence vs. time plots for lucigenin assay with with peptide $1(20 \mu \mathrm{M})$ premixed in the presence of different metal chlorides.

Figure S20. Normalized Fluorescence vs. time plots for lucigenin assay with with peptide $2(20 \mu \mathrm{M})$ premixed in the presence of different metal chlorides.

Figure S21. Fitting of fluorescence versus time plot for Lucigenin entrapped vesicles with MeOH using Origin Pro 8.5 Inset table shows fitting results.

Figure S22. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ (premixed) and NaCl . Inset table shows fitting results

Figure S23. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ (premixed) and KCl . Inset table shows fitting results

Figure S24. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ (premixed) and CoCl_{2}. Inset table shows fitting results

Figure S25. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{1}$ (premixed) and NiCl_{2}. Inset table shows fitting results.

Figure S26. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ (premixed) and NaCl . Inset table shows fitting results.

Figure S27. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ (premixed) and KCl . Inset table shows fitting results.

Figure S28. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ (premixed) and CoCl_{2}. Inset table shows fitting results.

Figure S29. Fitting of fluorescence versus time plot for Lucigenin assay with $20 \mu \mathrm{M}$ of peptide $\mathbf{2}$ (premixed) and NiCl_{2}. Inset table shows fitting results.

Dynamic light scattering studies

For the blank readings, $20 \mu \mathrm{~L}$ of MeOH was added to vesicle solutions ($100 \mu \mathrm{~L}$) diluted with HEPES buffer (2.9 mL). For measurement with peptides, an appropriate concentration of peptide in MeOH was added to the vesicle solution.

Figure S30. Dynamic light scattering study with octapeptide $1(41 \mu \mathrm{M})$ and vesicles

Figure S31. Dynamic light scattering study with octapeptide $2(41 \mu \mathrm{M})$ and vesicles

TEM studies

Sample preparation

A solution of peptide ($3.2 \mathrm{mg} / \mathrm{mL}$) in 1% DMSO-MeOH was kept for 48 h at $0^{\circ} \mathrm{C}$. A small amount of this solution ($5 \mu \mathrm{~L}$) was placed on a carbon-coated Copper grid using a micropipette. The loaded support was dried in vacuo for 6 h before TEM images were collected.

Planar Lipid Bilayer Experiment

The ion transport through the peptide channels was also investigated with Planar lipid bilayer (PLB) recording. Synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids, Alabaster, AL) was dissolved in n-decane at a concentration of $20 \mathrm{mg} / \mathrm{ml}$ and used to make the lipid bilayer. Briefly, the lipid was painted on to the aperture (pore diameter of 150 $\mu \mathrm{m}$) of a polystyrene bilayer cuvette (Warner Instruments, USA). Both chambers of the cuvette
contained symmetrical solution $(1 \mathrm{M} \mathrm{KCl})$. The cis chamber was held at virtual ground and the trans chamber connected to a recording amplifier via a PC501A head-stage (Warner instrument). $\mathrm{Ag}-\mathrm{AgCl}$ electrodes were used. Currents were low pass filtered at 1 kHz and digitized at 5 kHz using the Digidata 1440A (Axon Instruments). Once a stable bilayer was obtained, the synthetic peptide was added to the cis chamber and mixed with a magnetic stirrer. Membrane currents were frequently checked to monitor channel incorporation. After stable insertion of the peptides in bilayer, membrane current was recorded at different positive and negative voltages. For measuring reversal potential, the solution of the cis chamber was replaced with 0.5 M KCl while the trans chamber had 1 M KCl . Theoretical reversal potential was estimated using the Nernst Equation and compared with the experimentally derived value.

Absorbance Measurements of Peptides with $\mathbf{C o C l}_{2}$ and $\mathbf{N i C l}_{2}$:

For complexation studies, peptide and chloride salt were mixed at a ratio of $1: 5.4 \times 10^{3}$ which is exactly the same as the peptide to salt ratio used for vesicle bound fluorescence assay.
a)

Figure S32. Absorbance spectra to check binding of peptide $\mathbf{1}$ with a) CoCl_{2} and b) NiCl_{2}.

Figure S33. Absorbance spectra to check binding of peptide $\mathbf{2}$ with a) CoCl_{2} and b) NiCl_{2}

References and notes:

1) M. Jonathan Fray; A. T. Gillmore; M. S. Slossop; D. J. McManus; I. B. Moses and C. F.B. Praquin, Org. Proc. Res. Develop. 2010, 14, 263.
2) B. P. Benke and N. Madhavan, Chem. Commun. 2013, 49, 7340.
3) Peptide solution was made 3 days before experiment.
4) B. A. McNally, A. V. Koulov, B. D. Smith, J.-B. Joos and A. P. Davis, Chem. Commun., 2005, 1087.
5) N. Madhavan and M. S. Gin, ChemBioChem. 2007, 8, 1834.

Spectra of compounds

茄

$\left|\left.\right|^{\circ} \stackrel{\circ}{\text { No m }}\right.$
N

-17.148
-17.148

