
30

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine
for Multicores

BISWABANDAN PANDA and SHANKAR BALACHANDRAN,

Indian Institute of Technology Madras

Aggressive prefetching improves system performance by hiding and tolerating off-chip memory latency.
However, on a multicore system, prefetchers of different cores contend for shared resources and aggressive
prefetching can degrade the overall system performance. The role of a prefetcher aggressiveness engine is to
select appropriate aggressiveness levels for each prefetcher such that shared resource contention caused by
prefetchers is reduced, thereby improving system performance. State-of-the-art prefetcher aggressiveness
engines monitor metrics such as prefetch accuracy, bandwidth consumption, and last-level cache pollution.
They use carefully tuned thresholds for these metrics, and when the thresholds are crossed, they trigger
aggressiveness control measures. These engines have three major shortcomings: (1) thresholds are dependent
on the system configuration (cache size, DRAM scheduling policy, and cache replacement policy) and have
to be tuned appropriately, (2) there is no single threshold that works well across all the workloads, and (3)
thresholds are oblivious to the phase change of applications.

To overcome these shortcomings, we propose CAFFEINE, a model-based approach that analyzes the
effectiveness of a prefetcher and uses a metric called net utility to control the aggressiveness. Our metric
provides net processor cycles saved because of prefetching by approximating the cycles saved across the
memory subsystem, from last-level cache to DRAM.

We evaluate CAFFEINE across a wide range of workloads and compare it with the state-of-the-
art prefetcher aggressiveness engine. Experimental results demonstrate that, on average (geomean),
CAFFEINE achieves 9.5% (as much as 38.29%) and 11% (as much as 20.7%) better performance than
the best-performing aggressiveness engine for four-core and eight-core systems, respectively.

CCS Concepts: �Computer systems organization → Parallel Architectures; Processors and memory

architectures;

Additional Key Words and Phrases: Prefetching, multicore, memory systems, intercore interference, cache
pollution

ACM Reference Format:

Biswabandan Panda and Shankar Balachandran. 2015. CAFFEINE: A utility-driven prefetcher aggressive-
ness engine for multicores. ACM Trans. Archit. Code Optim. 12, 3, Article 30 (August 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2806891

1. INTRODUCTION

Hardware prefetching plays an important role in improving system performance. A
prefetcher prefetches data into a cache before the processor demands the data and
hence improves system performance. But a prefetcher can also degrade system per-
formance because of interference at the shared resources, such as last-level cache

Biswabandan Panda is supported by a TCS Ph.D. fellowship.
Authors’ addresses: B. Panda, Department of Computer Science and Engineering, IIT Madras, Chennai,
India, 600036; email: biswa@cse.iitm.ac.in; S. Balachandran, BSB 349, Department of Computer Science
and Engineering, IIT Madras, Chennai, India, 600036; email: shankar@cse.iitm.ac.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1544-3566/2015/08-ART30 $15.00
DOI: http://dx.doi.org/10.1145/2806891

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:2 B. Panda and S. Balachandran

Fig. 1. Performance improvement (geometric mean of harmonic speedups) for four-core and eight-core
system.

(LLC), DRAM controller, and DRAM. The interference can happen between the prefetch
requests of one core and the demand requests of the other cores (prefetch–demand in-
terference) and between the prefetch requests of one core and the prefetch requests of
the other cores (prefetch–prefetch interference).

Prefetcher aggressiveness engines, on multicore systems, try to improve the system
performance by controlling the aggressiveness of each prefetcher. Aggressiveness of a
prefetcher is described using two factors: how far ahead of the demand access stream1

the prefetch requests are issued (prefetch distance) and the number of prefetch requests
issued in one instant (prefetch degree). A prefetcher aggressiveness engine controls the
aggressiveness of a prefetcher by selecting an appropriate aggressiveness level. Each
level consists of two important prefetching knobs: the prefetch degree and the prefetch
distance. The aggressiveness engine’s job is to switch between the aggressiveness levels
of the prefetchers by throttling (throttling up/down refers to the increase/decrease in
the aggressiveness by one level).

Opportunity: To illustrate the importance of an aggressiveness engine, Figure 1
shows the performance improvement that can be achieved with the ideal but unreal-
izable multicore system. The ideal system would not have prefetcher-caused intercore
interference at the shared resources. To model the ideal system, we eliminate the
prefetcher-caused intercore interference at the LLC, DRAM request queue, DRAM
bus, DRAM banks, and DRAM row-buffers by making the prefetcher-caused intercore
interference latency zero cycle. Compared to no prefetching, on average (geomean), the
ideal system improves the performance by 49% and 51% for four- and eight-core sys-
tems, respectively. In contrast, the state-of-the-art prefetcher aggressiveness engine
called the hierarchical prefetcher aggressiveness controller (HPAC) [Ebrahimi et al.
2009] improves the performance by 7% and 7.8%, respectively. This experiment shows
that there is opportunity to bridge the gap between the state-of-the-art technique and
the ideal multicore system.

The Problem: State-of-the-art aggressiveness engines such as HPAC [Ebrahimi
et al. 2009] use thresholds for various prefetching metrics such as accuracy, cache
pollution, and off-chip bandwidth consumption. The effectiveness of threshold-driven
engines depends on the system configuration (such as LLC replacement policy, DRAM
scheduling policy) and has to be tuned appropriately. Also, there is no fixed set of
thresholds that work well across all the workloads, and thresholds are oblivious to

1Sequence of cache block aligned memory addresses.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:3

the phase-change behavior of applications. In effect, these techniques fail to identify
certain scenarios where the prefetcher-caused intercore interference is significant and
loses opportunities for performance improvement.

Our Goal: Our goal is to design a prefetcher aggressiveness engine, which can im-
prove the system performance by (1) tolerating prefetcher-caused intercore interference
as long as performance is improved and (2) minimizing the prefetcher-caused intercore
interference that affects performance.

Our Approach: In this work, we propose CAFFEINE,2 a utility-driven prefetcher
aggressiveness engine that is based on the buffet principle [Mahajan et al. 2008], to
“continue using more resources as long as the marginal cost can be driven lower than
the marginal benefit.” CAFFEINE advocates the application of the buffet principle in
controlling the aggressiveness of prefetchers on a multicore system. CAFFEINE contin-
ues increasing the aggressiveness if such a decision is likely to improve overall system
performance. We propose a metric called net utility (utilitynet), which quantifies the
net processor cycles saved by a prefetcher. We use this metric to divide the prefetch-
ers into two groups: affecting and affected. Our technique throttles down the affecting
prefetchers and throttles up the affected prefetchers if they are likely to improve the
system performance. We make these throttling decisions without using any threshold.
CAFFEINE uses CAFFEINATION when the prefetcher-caused interference is tolerable
(we define in Section 3.1) and it uses DE-CAFFEINATION when the prefetcher-caused
interference is intolerable. Both these techniques use utilitynet to make throttling deci-
sions.

Key Idea: Our idea is based on this observation: “different levels of prefetcher
aggressiveness provide different net utilities.” At a given instant of time, CAFFEINE
tries to maximize the utilitynet of an entire prefetching unit3 of a multicore system.
We make the following contributions:

1. We propose a metric called utilitynet to measure the utility of hardware prefetchers.
utilitynet indicates the net processor cycles saved because of prefetching at a given
aggressiveness level (Section 3.1).

2. We design a model-based utility-driven prefetcher aggressiveness engine for mul-
ticore systems, called CAFFEINE, which uses utilitynet (Section 3.2).

3. We evaluate CAFFEINE on four- and eight-core systems. We show the effectiveness
of CAFFEINE by comparing it with the HPAC [Ebrahimi et al. 2009]. For four- and
eight-core systems, compared to HPAC, CAFFEINE improves performance (geomean
of harmonic speedups) by 9.5% and 11% across 100 and 64 workloads, respectively
(Section 6).

2. BACKGROUND

2.1. Baseline Multicore Design

Figure 2 shows our baseline multicore system, which consists of N cores and K memory
controllers. Each core has a private L1 cache and a private L2 cache. The LLC (L3) is
shared among all the cores. Each core has a stream prefetcher [Tendler et al. 2002] at
the L3 cache, which sends prefetch requests to the DRAM. All the per-core prefetchers
generate prefetch requests, which are buffered in a prefetch queue (PFQ). Prefetch
requests enter into the PFQ after probing into the cache. The prefetcher does not
insert a prefetch request if it gets a hit at the cache. PFQ is a FIFO queue where the

2CAFFEINE is a stimulant; when taken in a moderate amount, it helps in boosting the alertness of the
nervous system, but high consumption of CAFFEINE causes restlessness. We envision CAFFEINE is anal-
ogous to prefetcher aggressiveness—too much aggressiveness is sometimes harmful and too little does not
“stimulate.”
3A prefetching unit consists of all the prefetchers of a multicore system.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:4 B. Panda and S. Balachandran

Fig. 2. Baseline multicore organization.

oldest prefetch request is sent to the miss status holding register (MSHR) allocators.
The prefetch requests are looked up in the cache before inserting them into the MSHRs.
The PFQ is similar to the prefetch buffer of the Intel Core processor [Doweck 2006]. On
a demand access, the prefetcher issues prefetch requests by dequeuing the predicted
addresses from the PFQ, and these requests enter the MSHRs (not shown in Figure 2).
The baseline MSHR prioritizes demand requests over prefetch requests and LLC fill
buffers are fused with the MSHRs.

2.2. Hardware Prefetchers

In this work, we use a stream prefetcher, which is similar to the prefetchers of IBM’s
POWER 4/5 [Tendler et al. 2002; Srinath et al. 2007; Ebrahimi et al. 2009]. It is a
low-cost hardware prefetcher that works well across a large number of applications.
A stream prefetcher keeps track of multiple access streams. Once trained, the stream
prefetcher issues K requests at a time where K is the prefetch degree. We also evaluate
our technique with a GHB-based prefetcher [Nesbit et al. 2004].

2.3. Hierarchical-Prefetcher-Aggressiveness-Controller

To the best of our knowledge, for multicore systems (with N cores), HPAC is the
only technique that tries to minimize the prefetcher-caused intercore interference by
controlling the prefetcher aggressiveness. HPAC is an extension of feedback-directed
prefetching (FDP) [Srinath et al. 2007] and it works in two layers: local throttling and
global throttling. The per-core local throttling mechanism uses FDP [Srinath et al.
2007], which tries to improve the single-core performance by throttling the prefetcher,
based on the prefetch metrics such as accuracy (#pfhits

#pfissued), cache pollution,4 and lateness

(#lateprefetches
#pfhits). The global throttling mechanism collects the feedback on the bandwidth

consumption of core i (BWCi) , the bandwidth needed by all the cores except core i
(BWNOi), and the core i’s prefetcher-caused intercore LLC pollution (POLi). It also
uses the prefetch accuracy of core i (ACCi) in its decision process. For each of these
four metrics, finely tuned thresholds place the value as high and low, giving rise to 16
(24) possible cases, and assigns a throttling decision for each case. The global throttling
mechanism uses a global controller and it overrides (if needed) the decisions of the
local controller to minimize the prefetcher-caused intercore interference. HPAC uses
five different levels of aggressiveness (<1, 4>,<1, 8>,<2, 16>,<4, 32>, and <4, 64>),
where <x,y> corresponds to <prefetch degree, prefetch distance>. It uses the follow-
ing thresholds: for high ACC, 0.60; high POL, 90; high BWC, 50k; and high BWN, 75k
[Ebrahimi et al. 2009].

4A prefetched block evicting a cache block that would otherwise be reused in the near future.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:5

2.4. SOURCES of PREFETCHER-CAUSED INTERFERENCE

This section describes the sources of prefetcher-caused intercore interference at the
shared resources and how to quantify the same. First, we describe the interference
at the LLC that causes cache pollution. Second, we explain the interference at the
DRAM banks and row buffers. Finally, we look into the interference that happens at
the DRAM bus. In all the cases described next, 0 ≤ j ≤ N − 1 and j �= i, where N is
the total number of cores in the system.

LLC POLLUTION (POLL): LLC pollution can happen when an LLC block of core
j is evicted by a prefetched block of core i and the evicted block is requested by core j
in the near future. We quantify it using Polli. Polli captures the number of additional
LLC misses of other cores that happen because of evictions of their cache blocks by
prefetched blocks of core i. For core j, an additional demand miss at the LLC contributes
an additional latency of α cycles (LLC miss penalty of core j).

BANK-LEVEL INTERFERENCE (BLI): This can happen when demand requests
and useful prefetch requests (which are likely to be hit at the LLC) of core j wait,
because a DRAM bank is occupied by a prefetch request P of core i. This incurs a
latency. We quantify this interference that happens because of a prefetcher of core i by
counting it using the metric Blii. This interference incurs an approximate latency of

β =
latency(P)

BankWaitingParallelism
on core j, where latency (P) is the DRAM latency of prefetch

request P and BankWaitingParallelism corresponds to core j’s requests that are wait-
ing to get service from K DRAM banks. If BankWaitingParallelism is K, then core
j is waiting to get service from K number of DRAM banks. We divide latency(P) by
BankWaitingParallelism as latency(P) will be amortized across concurrent requests of
core j that are waiting to get serviced.

ROW BUFFER CONFLICT (RBC): Row buffer conflicts can happen when a
prefetch request of core i causes row conflicts for core j’s demand and useful prefetch
requests. We use Rbci to count the same. This results in an approximate latency of
γ = tRP+tRCD

BankAccessParallelism
, where tRP corresponds to latency for row precharge and tRCD is

the latency that comes from row to column delay of DRAM. BankAccessParallelism is
the number of core j’s requests that are currently getting serviced by the DRAM banks.
We divide tRP + tRCD by BankAccessParallelism as tRP + tRCD will be amortized across
concurrent requests of core j [Glew 1998].

DRAM BUS INTERFERENCE (DBI): This interference happens when a demand
and useful prefetch request of core j has to wait because the DRAM bus is occupied by
a prefetch request of core i. We use Dbii to count the same. This interference incurs
a latency of ζ cycles, which is approximately BL

2 cycles (for read, write, and prefetch
request), where BL is the burst length.

So a prefetcher of one core interferes with the other cores at the LLC, DRAM banks,
DRAM row-buffers, and DRAM bus, resulting in approximate penalties of α, β, γ , and ζ

cycles, respectively. Our definitions of BLI, RBC, and DBI are similar to STFM [Mutlu
and Moscibroda 2007], and our definition of POLL is similar to HPAC [Ebrahimi et al.
2009] and FST [Ebrahimi et al. 2010]. In the next section, we describe how we use these
measures of prefetcher-caused interference in our proposed metric called utilitynet.

3. CAFFEINE FRAMEWORK

3.1. DEFINITIONS AND METRICS

This section describes various metrics that we use in our CAFFEINE framework.
Utilitypositive of core i’s prefetcher: It corresponds to the number of processor cycles

saved by core i’s prefetcher for core i and we define it as follows:

utilitypositive(i) =
prefetchhits(i) ∗ (LLCpenalty(i))

prefetchissued(i)
, (1)

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:6 B. Panda and S. Balachandran

where prefetchhits is the number of LLC hits to the prefetched blocks and prefetchissued

is the number of prefetch requests issued. LLCpenalty(i) is the average LLC miss penalty
of core i. Note that utilitypositive(i) does consider the effects of memory-level parallelism
(MLP) and bank-level parallelism (BLP) indirectly. A higher MLP or BLP leads to lower
LLCpenalty(i).

Utilitynegative of core i’s prefetcher: It corresponds to the number of additional
processor cycles that other cores have to wait at the shared resources because of core
i’s prefetcher. We define it as

utilitynegative(i) =
(Polli ∗ αi) + (Blii ∗ βi) + (Rbci ∗ γi) + (Dbii ∗ ζi)

prefetchissued(i)
. (2)

Utilitynet of core i: It corresponds to the contribution of a prefetcher (in terms of
processor cycles saved) in the overall system performance. For a core i, the utilitynet of
its prefetcher is utilitynet(i) = utilitypositive(i) − utilitynegative(i).

Cyclesaffecting and Cyclesaffected of core i: Cyclesaffecting corresponds to the number
of cycles for which core i affects core j, where 0 ≤ j ≤ N − 1 and j �= i. These metrics
help in finding out the prefetchers that cause high interference at the shared resources
and the cores that are affected by prefetcher-caused intercore interference.

Cyclesaffected corresponds to the number of cycles for which core i is affected (has to
wait because of interference at the LLC pollution, RBC, and BLI) by core j’s prefetcher,
where 0 ≤ j ≤ N − 1 and j �= i.

cyclesaffecting(i) = (Polli ∗ αi) + (Blii ∗ βi) + (Rbci ∗ γi) + (Dbii ∗ ζi) (3)

To calculate cyclesaffected(i), we use a register, which gets incremented by either Poll j*α

(because of POLL), Bli j*β (because of BLI), Rbc j*γ (because of RBC), or Dbi j*ζ (because
of DBI) when a demand request or a useful prefetch request of core i waits because of
interference caused by the prefetcher of core j.

utilitytotalnegative and utilitytotalpositive: For a multicore system with N processor cores,

utilitytotalnegative =
∑N−1

i=0 utilitynegative(i) and utilitytotalpositive =
∑N−1

i=0 utilitypositive(i).
utilitytotalnegative corresponds to the number of processor cycles the entire multicore
system waits because of prefetching and utilitytotalpositive corresponds to the number
of processor cycles saved for the entire multicore system because of prefetching. If
utilitytotalnegative ≥ utilitytotalpositive, then the prefetcher-caused intercore interference is
intolerable.

△ utilitypositive and △utilitynet of core i’s prefetcher: △utilitypositive corresponds to
the effect of change in the aggr. (aggressiveness) levels on utilitypositive. For a prefetcher
of core i, at an interval t, we define it as follows:

△utilitypositive(i)t =
utilitypositive(i)t − utilitypositive(i)t−1

aggr. level(i)t−1 − aggr. level(i)t−2
. (4)

If the denominator is zero, then

△utilitypositive(i)t = utilitypositive(i)t − utilitypositive(i)t−1. (5)

At an interval t, a prefetcher of core i benefits core i if utilitypositive(i)t is positive and

△utilitynegative(i)t is nonnegative. Note, the denominator finds the difference in the ag-
gressiveness levels at t– 1 and t– 2, but the numerator finds the difference in the
utilitypositive at t and t– 1. The reason for this is the cause–effect relationship between
an aggressiveness level and the corresponding utilitypositive. A change in the aggres-
siveness level at t– 1 contributes to the utilitypositive at t. We define △utilitynet(i)t similar

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:7

ALGORITHM 1: CAFFEINE
1: compute utilitytotalpositive and utilitytotalnegative

2: if (utilitytotalpositive − utilitytotalnegative) > 0 then
3: // Interference is tolerable.
4: for all i, where i is the the core-id do
5: Throttling Direction[i] = CAFFEINATION (i) (Algorithm 2)
6: end for
7: else
8: // Intolerable interference.
9: DE-CAFFEINATION (Algorithm 3)
10: end if
11: return Throttling Direction[0: N − 1]

to △utilitypositive(i)t as follows:

△utilitynet(i)t =
utilitynet(i)t − utilitynet(i)t−1

aggr. level(i)t−1 − aggr. level(i)t−2
. (6)

Finally, a prefetcher of core i likely contributes to the overall system performance im-
provement if its utilitynet(i)t > 0.

3.2. CAFFEINE

CAFFEINE is an interval-based technique, which consists of two subtechniques: CAF-
FEINATION and DE-CAFFEINATION. Similar to HPAC [Ebrahimi et al. 2009], it uses
five different levels of aggressiveness (level 1 to level 5) with <prefetch-degree, prefetch-
distance> as <1, 4>,<1, 8>,<2, 16>,<4, 32>, and <4, 64>. A prefetcher that is at
level 5/level 1 cannot be throttled up/throttled down. After a predetermined fixed
interval, CAFFEINE computes utilitypositive, utilitynegative, utilitynet, △utilitypositive,
△utilitynet, utilitytotalnegative, and utilitytotalpositive by collecting the interference count
from the LLC controller and DRAM controllers. Based on these utility values, CAF-
FEINE makes throttling decisions.

Algorithm 1 describes CAFFEINE for an N-core system (core-id 0 to N − 1). Line
1 of Algorithm 1 computes the utilitytotalpositive and the utilitytotalnegative. Line 2 of
Algorithm 1 shows the condition at which the prefetcher-caused intercore interference
is tolerable. If the condition at line 2 succeeds, then CAFFEINE uses CAFFEINATION
or else DE-CAFFEINATION. CAFFEINATION: In CAFFEINATION, each prefetcher
controls its aggressiveness based on Algorithm 2. CAFFEINATION takes a core-id of
the prefetcher as the input and returns the throttling direction. The throttling direc-
tions are ↑,↓, and ↔ and these directions correspond to throttling up, throttling down,
and no throttling. CAFFEINATION throttles up (↑) a prefetcher if △utilitypositive ≥ 0
and △utilitynet ≥ 0. If a prefetcher shows △utilitypositive < 0, CAFFEINATION throttles
it down (↓). The rationale behind these decisions is that a prefetcher, which is able to
save processor cycles for its own core and for the system, should get more opportunity
to improve the performance further. Note that we first check utilitypositive in line 2 and
not utilitynet. Putting utilitynet in line 2 will lead to aggressive throttling in the CAF-
FEINATION phase, where interference is tolerable. If the conditions in line 2 fail, line 9
would throttle down a prefetcher always. The current algorithm conservatively allows
a prefetcher to stay in the same aggressiveness level (line 6). The rationale is that if line
2 evaluates TRUE, then there is a chance that line 3 would evaluate to TRUE in subse-
quent windows. Line 6 of Algorithm 2 shows a special case, in which CAFFEINATION
chooses no throttling (↔) for a prefetcher with △utilitynet < 0 and △utilitypositive ≥

0. The rationale behind this decision is that the prefetcher is able to save processor

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:8 B. Panda and S. Balachandran

Fig. 3. An example illustrating CAFFEINE on a four-core system for interval t to t + 2. For the definitions
of △ utilitypositive and △ utilitynet, refer to Section 3.1.

cycles for its own core but it is also interfering with the other cores. CAFFEINE de-
cides no throttling as the interference is tolerable. But if the interference is intolerable,
DE-CAFFEINATION (Algorithm 3) overrides the decisions of CAFFEINATION.

DE-CAFFEINATION: DE-CAFFEINATION kicks in when the system shows signs
of performance degradation. DE-CAFFEINATION finds out the prefetchers that are
responsible for intercore interference, prefetchers with high values of cyclesaffecting, and
calls them affecting prefetchers (we quantify in Section 4). Similarly, prefetchers with
high values of cyclesaffected are called affected prefetchers. There are prefetchers that
neither affect others nor are affected by others. Line 1 of Algorithm 3 finds out the affect-
ing prefetchers and line 2 throttles down (↓). For all the prefetchers that do not belong
to the affecting group, DE-CAFFEINATION throttles them using CAFFEINATION
(Algorithm 2). Line 7 shows a special case in which DE-CAFFEINATION throttles up
(↑) an affected prefetcher if the CAFFEINATION returns no throttling(↔).

3.3. CAFFEINE: AN EXAMPLE

This section provides an example that illustrates CAFFEINE on a four-core sys-
tem. Figure 3 shows the utilitypositive and utilitynet of each prefetcher along with the
utilitytotalpositive and utilitytotalnegative of the entire system. In Figure 3, we show the
throttling directions for each prefetcher based on CAFFEINE. For ease of understand-
ing, we assume the aggressiveness levels of core-0 to core-3 at interval t– 1 (not shown
in Figure 3) are 2, 3, 2, and 1, respectively. Also, we assume there is no change in the
aggressiveness levels at interval t; that is, the aggressiveness levels of core-0 to core-3
remain at 2, 3, 2, and 1, respectively.

At interval t + 1 (refer to the left panel of Figure 3), the system is tolerable to
the prefetcher-caused intercore interference as the utilitytotalpositive (TPU) is 50 and the

ALGORITHM 2: CAFFEINATION (core-id = i)

1: Input: i, Output: Throttling Direction(i)
2: if ((utilitypositive(i)t > 0) and (△utilitypositive(i)t ≥ 0)) then

3: if ((utilitynet(i)t > 0) and (△utilitynet(i)t ≥ 0)) then
4: Throttling Direction[i] = ↑

5: else
6: Throttling Direction[i] = ↔

7: end if
8: else
9: Throttling Direction[i] = ↓

10: end if
11: return Throttling Direction[i]

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:9

Fig. 4. Snapshot of the interference at interval t + 2.

ALGORITHM 3: DE-CAFFEINATION

1: Find the core-ids of affecting and affected prefetchers
2: for all i, where i is the the core-id do
3: if i’s prefetcher is affecting then
4: Throttling Direction[i] = ↓

5: else
6: Throttling Direction[i] = CAFFEINATION(i)
7: if Throttling Direction[i] == (↔) and i is affected then
8: Throttling Direction[i] = ↑

9: end if
10: end if
11: end for
12: return Throttling Direction[0: N − 1]

utilitytotalnegative (TNU) is 22 and (50–22) > 0. So CAFFEINE uses CAFFEINATION
for all the prefetchers. For core-0 and core-2, △utilitypositive and △utilitynet are ≥ 0.
CAFFEINE throttles up (↑) both core-0 and core-2. For core-3, △utilitypositive ≥ 0 but
△utilitynet < 0. CAFFEINE does not change (↔) the aggressiveness level for core-3.
For core-1, △utilitypositive < 0 and CAFFEINE throttles down (↓) its prefetcher.

At interval t + 2, the system is intolerable to the prefetcher-caused intercore inter-
ference as the utilitytotalnegative (TNU) > utilitytotalpositive (TPU) and thus CAFFEINE
uses DE-CAFFEINATION for the system. The right panel of Figure 4 provides a
snapshot of the prefetcher-caused intercore interference at the interval t + 2, which
shows that the prefetcher of core-2 is an affecting prefetcher and core-3 is an affected
prefetcher. CAFFEINE throttles down (↓) the prefetcher of core-2. For core-0 and core-
1, both △utilitypositive and △utilitynet are less than zero, so CAFFEINE throttles down
(↓) the prefetcher of core-0 and core-1. For core-3, △utilitypositive ≥ 0 but △utilitynet < 0,
and based on line 7 of Algorithm 3, DE-CAFFEINATION throttles up (↑) the prefetcher
of core-3.

4. IMPLEMENTATION DETAILS

This section provides the hardware implementation of CAFFEINE. We place the digital
circuit of CAFFEINE beside the LLC with an access latency the same as that of LLC.

Interval Length: We set an interval of 8K LLC misses for CAFFEINE. We sweep
through interval lengths of 2K, 4K, 8K, and 16K LLC misses and find that an interval
length of 8K provides a good tradeoff. At the end of every 8K misses, the CAFFEINE
circuit is connected to DRAM controllers, an LLC controller, and a prefetch controller
and collects the relevant metrics to compute various utilities and resets these metrics to
zero after making the throttling decisions. All these calculations are not in the critical
path as the applications continue to run and their execution is oblivious to the time
spent by CAFFEINE. Also, CAFFEINE makes a decision in a timely manner, which
takes 0.5% of the interval length.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:10 B. Panda and S. Balachandran

CAFFEINE Hardware Support: CAFFEINE needs combinational logic circuits
for finding out the metrics of interest and comparing them with zero. For each core,
CAFFEINE uses three multipliers, two dividers, two comparators, and three adders.
We assume four cycles for multiplication, one cycle for addition, and eight cycles for
division. CAFFEINE uses an extreme outlier detection [Outliers] algorithm to detect
the affected and affecting prefetchers. It uses a deterministic circuit, which sorts the
core-ids’ cyclesaffected and cyclesaffecting. Then it finds out the median, upper-quartile
(UQ), lower-quartile (LQ), and inter-quartile range (IQR). IQR = k× (UQ − LQ), where
k is 3, which we verify and adopt from Outliers [Outliers]. The circuit provides a
range [LQ-IQR, UQ+IQR] and the core-ids whose affecting/affected values are greater
than UQ+IQR are called affecting/affected prefetchers. All these calculations take 22
processor cycles.5

utilitypositive: To calculate utilitypositive, we augment each cache block at the LLC with
a bit called pfbit. We use counters to count the number of prefetches issued (pfissued)
and the number of prefetch hits (pfhits). To calculate α, we use two registers per core
to store the number of misses and their corresponding miss penalties. We calculate the
average miss penalty by dividing the total miss penalty by the total number of misses
and assign it to α.

POLL: To calculate Polli at the LLC, we use a per-core bloom filter [Bloom 1970],
which is an XOR-based filter, consisting of 1,024 entries [Ebrahimi et al. 2009], and
each entry contains a pol bit along with the core-id. pol is set when a core j’s LLC block
is evicted by a prefetched block of core i. In future, if a demand access from core j gets a
hit at the bloom filter, we increment Polli. In future, we reset the pol bit of core i’s filter
once the DRAM finishes responding core j’s request. Our Bloom filter implementation
is the same as that of HPAC’s Bloom filter.

RBC: To calculate Rbci, for each DRAM bank, we maintain a register called last-row-
access, which stores the last row accessed by core j before a prefetch request of core i
closes it. In the future, if a request from core j gets a hit at the last-row-access register
of core i, we increment the counter for Rbci.

BLI: We calculate Blii by keeping an additional bit per bank that we set when a bank
is busy serving a prefetch request of core i. If a demand or useful prefetch request of
core j waits to get a response from the same DRAM bank, we increment Blii.

DBI: To calculate Dbii, whenever a prefetch request keeps the DRAM data bus busy,
we use a register that stores the core-id of the prefetch request and we count such
events using a per-core DBI counter.

A prefetch request of core j is useful if the prefetch accuracy of core j is ≥0.85 [Lee
et al. 2008]. Our implementations of Bli, Rbc, and Dbi are similar to STFM [Mutlu
and Moscibroda 2007], and our implementation of Poll is the same as HPAC [Ebrahimi
et al. 2009] and FST [Ebrahimi et al. 2010].

Implementation of α, β, γ , and ζ : We measure α, β, and γ dynamically and the
process is completely online. As ζ incurs a fixed latency, we measure it offline. To mea-
sure α, we use a per-core register, which stores the average LLC penalty. We calculate
the average LLC penalty by finding out the total miss penalty of an application and
dividing it with the total number of demand misses. Modern systems provide perfor-
mance counters to find out miss penalty and the number of demand misses. We use a
similar approach to count the same for each each application. To measure β, we divide
the LLC latency of a prefetch request with the BankWaitingParallelism. We measure
the LLC latency of a prefetch request with the help of a performance counter and store

5We get this value by synthesizing the circuit with a Synopsys design compiler for 45nm technology.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:11

Table I. Hardware Overhead of CAFFEINE

Overhead

Register/Counter Size for Four-Core

Core-id per LLC tag 131,072 blocks × 2 bits/block 32 KB

Bloom filter for POLL 1,024 entries × 4 × (1 pol bit + 2 bits for Core-id) 2KB

Pref bit per LLC tag 131,072 blocks × 1 bit 16KB

Interval length 13 bits 13 bits

Pfissued, Pfhits 12 bits per core 12×2×4 = 96 bits

BankAccessParallelism, log2(#banks) (3 bits) 6 bits

BankWaitingParallelism

last-row-access log2(#rows/bank) (13 bits) 13×8×2 = 208 bits

Positive, negative, and net
utilities

for 2 intervals, 8 bits/core 3×8×2×4 = 192
bits

Cyclesaf f ected 24 bits per core 24×4 = 96 bits

Cyclesaf f ecting 24 bits per core 24×4 = 96 bits

POLL, BLI, RBC, DBI 13 bits per core 13×4×4 = 208 bits

α, β and γ 22 bits per core 22×4 = 88 bits

Miss count 13 bits per core 13×4 = 52 bits

Miss penalty 12 bits per core 12×4 = 48 bits

Total ≈ 50.1KB

it in a register, and similarly we have a register, which stores the BankWaitingPar-
allelism. The register is updated after every DRAM cycle. The measurement process
for γ is similar to β. We measure γ by dividing the summation of tRP and tRCD with
BankAccessParallelism. Note that tRP and tRCD are constants. We divide this con-
stant with a register that contains BankAccessParallelism. BankAccessParallelism for
a given request and for a given core is incremented whenever a DRAM command is
scheduled and decremented when the command is serviced. To measure ζ , we have a
register that stores the constant BL

2 .
Significance of α, β, γ , and ζ : α, β, γ , and ζ play an important role in approximating

the number of processor cycles for which other cores wait because of a prefetcher-caused
intercore interference at the LLC, DRAM row-buffer, DRAM banks, and DRAM bus,
respectively. The accuracies of BLI, RBC, DBI, γ , and ζ are 100%. On average, α and β

are correct for more than 95% of time and the average false-positive rate of the Bloom
filter is 3.25%.

Hardware Overhead: Table I shows the hardware overhead of CAFFEINE. For
a four-core system with 8MB of LLC, CAFFEINE incurs an additional hardware of
approximately 50.1KB, whereas HPAC incurs an overhead of 52.56KB. This hardware
overhead is negligible (0.6% of 8MB of LLC). Note, we do not add the hardware overhead
of techniques such as PACMAN [Wu et al. 2011] and PADC [Lee et al. 2008] as both
are part of our baseline configuration.

5. EVALUATION METHODOLOGY

Simulation Framework: We use the gem5 [Binkert et al. 2011] simulator for our eval-
uation. Table II shows the baseline configuration of cores and the shared resources. The
baseline system uses HPAC as the aggressiveness engine, PACMAN [Wu et al. 2011]
as the LLC replacement policy, and PADC [Lee et al. 2008] as the DRAM schedul-
ing policy. We find that the combination of HPAC, PACMAN, and PADC provides
significant performance improvement compared to the combination of HPAC, LRU,
and FR-FCFS. We use SPEC 2000 and SPEC 2006 benchmarks for our evaluation.
We collect the statistics for workloads by running each benchmark in a workload for

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:12 B. Panda and S. Balachandran

Table II. Parameters of the Simulated System

Processor 4/8/16-core system, 3.7GHz, Out of Order

Fetch/decode/commit width 8

ROB/LQ/SQ/issue queue 192/96/64/64 entries

L1 D/I cache, L2 cache 32KB (4 way), 256KB (8 way)

L3 shared unified cache 8/16/32MB for 4/8/16 cores with 16/32/32 way

MSHRs 16, 32, 64/128/256 MSHRs

at L1, L2, L3 with 4/8/16 cores

Targets per MSHR = 4

Cache line size 64B in L1, L2 and L3

Replacement policy LRU at L1/L2, PACMAN [Wu et al. 2011] at L3

Per-core prefetchers at L3 Streaming, 32 streams

with degree = 4 and distance = 64

Prefetcher aggressiveness engine HPAC [Ebrahimi et al. 2009] at LLC

Coherence protocol MOESI

On-chip interconnect Crossbar

Transfer latency - 4 clock cycles,

Arbitration latency - 5 clock cycles,

Width of transmission channel - 64B

DRAM Controller Open row, 64 read/write queues,

PADC [Lee et al. 2008], drain-when-full

DRAM Bus Split-transaction, 800MHz, BL = 8

DRAM DDR3 1600 MHz (11-11-11)

1/2 channels for 4/8-core system,

2 Ranks/channel and 8 banks/rank,

Max bandwidth/channel - 12.8GB/sec

500 million instructions after fast-forwarding 10 billion instructions and warming up
1 billion instructions. A workload terminates when the slowest benchmark completes
500 million instructions.

Performance and Fairness Metrics: We use the harmonic mean of speedups (HS)
[Luo et al. 2001] and weighted speedup (WS) [Snavely and Tullsen 2000] as our per-
formance metrics. HS is the reciprocal of the average normalized turnaround time and
WS is equivalent to system throughput [Eyerman and Eeckhout 2008]. We measure the
additional traffic because of prefetching using DRAM bus accesses per kilo instructions
(BPKI). The bus accesses correspond to the DRAM bus transactions (reads, writes, and
prefetch requests). We also evaluate the DRAM bandwidth consumption in GB/sec. We
evaluate fairness of CAFFEINE by calculating the metric called unfairness [Mutlu and
Moscibroda 2007], which is the ratio of the largest slowdown to the smallest slowdown
of applications that are running simultaneously. We define these metrics as follows:

ISi =
CPI

together
i

CPIalone
i

, W S =

N−1∑

i=0

IPC
together
i

IPCalone
i

(7)

HS =
N

∑N−1
i=0

IPC alone
i

IPC
together
i

, Unfairness =
MAX{IS0, IS1, . . . , ISN−1}

MIN{IS0, IS1, . . . , ISN−1}
. (8)

IPC
together
i and CPI

together
i are the IPC and CPI of core i when it runs along with other

N – 1 applications on a multicore system of N cores. IPCalone
i and CPIalone

i are the IPC
and CPI of core i when it runs alone on a multicore system of N cores. The rest of the
N – 1 cores are idle. IS corresponds to individual slowdown.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:13

Table III. Benchmark Characteristics When Run Alone on a
Single-Core System with Stream Prefetcher ON

Benchmark Pf ACC (%) MPKI Class

435.gromacs 60 0.05 MI PF (0)

458.sjeng 1 0.57 MI PF (0)

401.bzip2 84 0.17 MI PF (0)

410.bwaves 99 0.37 MIPF (1)

456.hmmer 96 0.05 MIPF (1)

177.mesa 95 0.29 MIPF (1)

168.wupwise 40 0.25 MIPF (1)

429.mcf 31 30.12 MIPF (2)

433.milc 21 24.00 MIPF (2)

173.applu 6 2.35 MIPF (2)

188.ammp 3 1.98 MIPF (2)

471.omnetpp 10 10.23 MIPF (2)

255.vortex 32 1.25 MIPF (2)

434.zeusmp 55 2.50 MIPF (3)

437.leslie3d 89 3.10 MIPF (3)

450.soplex 80 4.12 MIPF (3)

459.GemsFDTD 90 2.00 MIPF (3)

462.libquantum 99 3.12 MIPF (3)

470.lbm 91 3.00 MIPF (3)

171.swim 95 9.11 MIPF (3)

MPKI - Misses Per Kilo Instructions, ACC - Accuracy, COV -
Coverage, MI - Memory intensive, PF - Prefetch Friendly.

Workload Selection: Table III classifies the benchmarks into four classes class-0

(MI PF), class-1 (MIPF), class-2 (MIPF), and class-3 (MIPF). MI corresponds to
memory intensive and PF corresponds to prefetch friendly. A benchmark is memory in-
tensive if the LLC misses per kilo instructions (MPKI) is greater than 1 [Ebrahimi et al.
2009]. We refer to a benchmark as prefetch friendly if the performance improvement
with hardware prefetching is greater than 10% [Ebrahimi et al. 2009]. Table III shows
the characteristics of SPEC 2006 and SPEC 2000 benchmarks with a stream prefetcher
ON. To evaluate our mechanism on multicore systems, we create 100 four-core and 64
eight-core workload mixes by mixing benchmarks based on the previous four classes.
Due to space limitations, we choose a set of representative workloads to analyze the
effectiveness of CAFFEINE. For ease of analysis, we divide the workload mixes based
on the intensity of interference at the LLC and at the DRAM into high (H) and low (L).
At the LLC, a workload with an interference count of more than 16 (average interfer-
ence count of all the workload mixes) per million instructions is termed as high (H);
otherwise, the workload is termed as low (L). Similarly, at the DRAM, a workload with
an interference count of more than 512 (average interference count of all the workload
mixes) per million instructions is termed as high; otherwise, it is termed as low. We
divide 100 four-core workloads into four cases such as HH, HL, LH, and LL, where each
case consists of 25 workloads. Table IV and Table V show the representative workload
mixes along with their class mixes for four-core and eight-core systems, respectively.

6. PERFORMANCE EVALUATION

We show the effectiveness of CAFFEINE on four-core and eight-core systems by com-
paring it with the state-of-the-art HPAC and NOPF (system with no prefetching).
HPAC is an efficient technique, which improves the system performance across a wide
set of workloads. We do not compare CAFFEINE with a system with no throttling as

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:14 B. Panda and S. Balachandran

Table IV. Representative Quad-Core Workloads (WLs); Class Mix Corresponds
to the Class Numbers (as per Table III) of Applications

WL.NO. Quad-Core Workloads Class Mix Case

Q0 libquantum-swim-GemsFDTD-bzip2 3-3-3-0 HH

Q1 mesa-gromacs-lbm-leslie3d 1-0-3-3 HH

Q2 soplex-leslie3d-lbm-hmmer 3-3-3-1 HH

Q3 GemsFDTD-hmmer-bwaves-mcf 3-1-1-2 HH

Q4 bwaves-hmmer-bzip2-leslie3d 1-1-0-3 HL

Q5 bzip2-milc-omnetpp-mcf 0-2-2-2 HL

Q6 milc-soplex-omnetpp-mcf 2-3-2-2 HL

Q7 mesa-gromacs-wupwise-hmmer 1-0-1-1 HL

Q8 bwaves-lbm-libquantum-milc 1-3-3-2 LH

Q9 ammp-lbm-milc-swim 2-3-2-3 LH

Q10 leslie3d-omnetpp-libquantum-milc 3-2-3-2 LH

Q11 GemsFDTD-libquantum-lbm-leslie3d 3-3-3-3 LH

Q12 gromacs-hmmer-bzip2-soplex 0-1-0-3 LL

Q13 hmmer-swim-ammp-bzip2 1-3-2-0 LL

Q14 sjeng-applu-hmmer-bzip2 0-2-1-0 LL

Q15 soplex-zeusmp-ammp-hmmer 3-3-2-1 LL

Table V. Representative Eight-Core Workloads (WLs)

WL.NO. Eight-Core Workloads Class Mix Case

E0 wupwise-vortex-sjeng-leslie3d- 1-2-0-3- LL

sjeng-applu-hmmer-bzip2 0-2-1-0

E1 soplex-zeusmp-ammp-hmmer- 3-3-2-1- HL

bwaves-omnetpp-milc-swim 1-2-2-3

E2 libquantum-swim-GemsFDTD-leslie3d- 3-3-3-3- HH

bzip2-milc-lbm-sjeng 0-2-3-0

E3 bzip2-leslie3d-soplex-swim- 0-3-3-3- LH

ammp-lbm-GemsFDTD-hmmer 2-3-3-1

on average, HPAC performs better than no throttling. Also, the coordination of two
techniques, FST [Ebrahimi et al. 2010] and HPAC [Ebrahimi et al. 2009], in prefetch-
aware shared resource management [Ebrahimi et al. 2011] addresses a problem similar
to CAFFEINE. On top of HPAC’s seven thresholds, FST uses six additional thresholds.
The coordination becomes less effective for most of the four-core workloads and per-
forms worse than HPAC for 8 and 16-core systems because it finds the slowest and
most interfering application only. For these reasons, we do not compare CAFFEINE
with the coordination of FST and HPAC.

First, we present the aggregate results for both four-core and eight-core systems
and then provide a detailed analysis for four-core workloads with four different case
studies.

6.1. Aggregate Results for Four-Core and Eight-Core System

Table VI shows the overall results of CAFFEINE on four-core and eight-core systems
for 100 and 64 workloads, respectively. CAFFEINE outperforms HPAC in terms of HS,
WS, BPKI, and DRAM bandwidth consumption.

Four-Core Results: Figure 5 shows the system performance improvement with
HPAC and CAFFEINE, in terms of HS. We report the performance improvement
based on the four cases of prefetcher-caused interference as mentioned in Section 5.
CAFFEINE outperforms NOPF in all the 100 workloads in terms of HS with a

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:15

Table VI. Summary of Average Results with CAFFEINE

Four-core (100 WLs) HS WS BPKI

Over NOPF 17% (38.98%) 8.82% (15.13%) 6.25% (11%)

Over HPAC 9.5% (38.29%) 3.61% (17.12%) −3.11% (−9.09%)

Eight-core (64 WLs)

Over NOPF 19% (30.6%) 10.91% (12.34%) 7.1% (12.63%)

Over HPAC 11% (20.7%) 6.71% (9.13%) −2.79% (−6.12%)

Fig. 5. Harmonic speedup for 100 four-core WLs normalized to NOPF.

maximum (minimum) performance improvement of 38.98% (1.01%) in workload mix
Q1 (Q10). Our observations are as follows:

—On average (geomean), across 100 four-core workloads, compared to HPAC,
CAFFEINE improves the performance by 9.5% and 3.61% in terms of HS and WS and
an off-chip bandwidth reduction of 10%. Compared to NOPF, CAFFEINE achieves
an improvement in terms of HS and WS of 17% and 8.82%, with a 6.25% increase in
the BPKI.

—Compared to NOPF, HPAC improves the system performance by 7% and 5.3% in
terms of HS and WS, with a 7.13% increase in the BPKI.

Why does CAFFEINE perform better than HPAC? We analyze the results of
all four-core and eight-core workloads and find that CAFFEINE is more effective
than HPAC across all the workloads. The primary reasons for this effectiveness are
as follows:

(1) CAFFEINE’s tracking of prefetcher-caused interference is fine-grained (saved
cycles), whereas HPAC is coarse grained (dependent on seven thresholds: four
for HPAC and three for FDP). As HPAC’s thresholds are dependent on ar-
chitectural parameters, they correlate to the actual interference (interference
that is intolerable) 57.3% of the time. For the other 42.7% of the time, the
throttling decisions of HPAC are conservative and it throttles down (↓) the
prefetchers even though they are not interfering with others. Also, there are
four cases out of 16 cases (refer Section 2.3) in which ACC is high (>0.60)
and POL is low (<90). In these four cases, the global controller of HPAC
does not override the local controller even if the BWC (50K) and BWNO (75K)
are high. This case happens in 21 four-core workloads out of 100 four-core
workloads. In contrast to HPAC, CAFFEINE’s utilitynegative correlates strongly
with the actual prefetcher-caused intercore interference with a correlation
coefficient of 0.89 and CAFFEINE’s utilitypositive correlates strongly with the IPC
with a correlation coefficient of 0.81.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:16 B. Panda and S. Balachandran

Fig. 6. Harmonic speedup for 64 eight-core WLs normalized to NOPF.

(2) CAFFEINE’s usage of marginal utilities models the contribution of each
prefetcher in improving the system performance and the scenarios where
interference is intolerable are the key in making better decisions. Also, identifica-
tion of affected and affecting prefetchers help in throttling down the prefetchers,
which are responsible for interference. Compared to HPAC’s mechanism for de-
tecting the affecting prefetchers, CAFFEINE’s mechanism is 31.7% more accurate.

(3) The aforementioned differences between HPAC and CAFFEINE cause a reduction
of the LLC interference (based on the count of intercore LLC pollution) and the
DRAM interference (based on the count of bli, rbc, and Dbi) by an additional 7.89%
and 13.69%, respectively.

—In terms of unfairness, compared to HPAC, CAFFEINE reduces the unfairness by
9.52% as it throttles down (↓) prefetch-friendly and memory-intensive applications
that interfere heavily with memory-nonintensive applications.

Eight-Core Results: Figure 6 shows the performance improvement (in terms of HS)
with HPAC and CAFFEINE. In eight-core systems also, CAFFEINE outperforms NOPF
in all the 64 workloads with the maximum performance improvement of 30.6% in
workload mix E2 and the minimum of 3.45%.

—Compared to HPAC, CAFFEINE improves the performance in terms of HS and WS
by 11% and 6.7%, with an off-chip bandwidth reduction of 11.65%, and compared to
NOPF, CAFFEINE achieves a 19% improvement in HS and a 10.91% improvement
in WS, with a 7.1% increase in the BPKI.

—HPAC improves the system performance in terms of HS and WS by 7.8% and 4.15%,
with an 8% increase in the BPKI when compared to NOPF.

—In terms of unfairness, compared to HPAC, CAFFEINE reduces the unfairness by
10%. This shows that the effectiveness of CAFFEINE increases with the increase in
the core count.

6.2. Individual Workload Analysis

We analyze the effectiveness of CAFFEINE with the use of four case studies of LLC
and DRAM interference. We select one workload mix from each of these four cases (HH,
HL, LH, and LL). These case studies provide insights for rest of the workloads.

Case I: High at LLC, High at DRAM—HH (WL Q0): This mix contains
three prefetch-friendly and memory-intensive applications (libquantum, swim, and

GemsFDTD) and one application that is prefetch unfriendly and memory nonintensive
(bzip2). The observations are as follows:

—CAFFEINE improves the performance of bzip2, swim, and libquantum, and it incurs
a slight degradation in the performance of GemsFDTD. DE-CAFFEINATION finds out
affecting prefetchers (prefetchers of GemsFDTD and swim) and the affected prefetcher
(prefetcher of bzip2). Figure 7 shows the difference in the distribution of the

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:17

Fig. 7. Case Study I: Distribution of aggressiveness levels.

Fig. 8. Case Study I: Individual behavior.

aggressiveness levels of swim, GemsFDTD, and bzip2. With HPAC, GemsFDTD spends
more than 60% of the execution time at level 3 and above. In contrast, CAFFEINE
throttles down (↓) GemsFDTD and because of this it spends more than 60% of its time
at level 3 and below. On the other hand, bzip2, which spends 60% of the time at level
1 in HPAC, spends only 10% of the time at level 1 with CAFFEINE.

—The throttling decisions of CAFFEINE reduce the prefetcher-caused interference
coming from GemsFDTD. For the rest, it increases the interference slightly. Figure 8(a)
shows the count of prefetcher-caused interference at the LLC and at the DRAM.
Compared to HPAC, CAFFEINE reduces the interference count by three times, which
comes from GemsFDTD, and this results in improvement in IPCs for the rest (refer to
Figure 8(b)). The increase in the intercore interference count with CAFFEINE for
applications such as libquantum, swim, and bzip2 does not affect the increase in
the IPCs, which shows that the increase in the interference count from these three
applications is tolerable.

—Compared to HPAC, CAFFEINE improves the performance in terms of HS and WS
by 14.75% and 7.79%, with a 6.04% reduction in the unfairness. Compared to NOPF,
CAFFEINE improves the performance in terms of HS and WS by 32% and 13.3%,
with a 6.7% increase in the BPKI.

—Figure 9 shows the changes in the aggressiveness levels that vary over 20 windows.
Compared to HPAC, CAFFEINE throttles down GemsFDTD for a large fraction of time,
which helps other applications such as bzip2 and swim.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:18 B. Panda and S. Balachandran

Fig. 9. Case Study I: Variations in the aggressiveness levels over 20 time windows.

Fig. 10. Case Study II: Individual behavior.

Fig. 11. Case Study II: Changes in the aggressiveness levels over an interval of 20 windows.

Case II: High at LLC, Low at DRAM—HL (WL Q7): All the applications in this mix
are memory nonintensive. hmmer, wupwise, and mesa are prefetch friendly and gromacs

is prefetch unfriendly.

—CAFFEINE finds out mesa as the affecting prefetcher, which affects wupwise and hm-

mer. Out of wupwise and hmmer, wupwise is affected the most. CAFFEINE throttles
up (↑) both wupwise and hmmer and throttles down (↓) mesa. Compared to HPAC,
CAFFEINE reduces the LLC miss count of hmmer and wupwise by 44.81% and 19.2%,
respectively (Figure 10). CAFFEINE outperforms HPAC with performance improve-
ment in terms of HS and WS by 9.32% and 5.58%, respectively. Figure 10 also shows
significant IPC improvement for mesa. This improvement comes from CAFFEINA-
TION. Compared to the HPAC, with CAFFEINATION, mesa spends 17.58% more
time at level 4 and level 5 (it happens in the intervals in which mesa is not an af-
fecting prefetcher). Figure 11 shows the variations in the aggressiveness levels for
an interval of 20 windows where CAFFEINE throttles up hmmer for more time as

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:19

Fig. 12. Case Study III: Individual behavior. y-axis in (b) shows the prefetcher-caused interference count.

compared to HPAC. Similarly, compared to HPAC, CAFFEINE throttles down mesa

for more time.
—Compared to NOPF, HPAC improves the performance by 9.25% and 6.11% in terms

of HS and WS, respectively. Although this mix shows high interference at the LLC,
in a given interval length, none of the applications cross the threshold set for the
LLC POL (90) and stay at level 3 and level 4.

—Compared to NOPF, CAFFEINE improves the performance by 19.4% and 8.66% in
terms of HS and WS, with an increase in the BPKI of 11%. CAFFEINE reduces the
unfairness by 2.7%.

Case III: Low at LLC, High at DRAM—LH (WL Q11): This mix contains applica-
tions that are both prefetch friendly and memory intensive. The observations are as
follows:

—Figure 12(a) shows the distribution of aggressiveness levels with CAFFEINE. With
HPAC, leslie3d stays at level 1 for 88.2% of the time and the rest spend more than
96% of the time at level 5. On the other hand, CAFFEINE throttles down (↓) the
prefetchers of GemsFDTD and lbm, and both of these applications spend their time
at level 3 and above. These decisions translate into the reduction in the prefetcher-
caused intercore interference count (because of GemsFDTD and lbm) at the DRAM (refer
to Figure 12(b)). CAFFEINE reduces the interference count of lbm and GemsFDTD by
43% and 38%, respectively. Figure 12(c) shows the individual IPC of each application
with CAFFEINE and HPAC. The reduction in interference at the DRAM results in
IPC improvement for leslie3d and libquantum.

—Compared to HPAC, CAFFEINE improves the performance by 35.12% and 17.12% in
terms of HS and WS, with a 2.87% reduction in the unfairness. Compared to NOPF,
CAFFEINE improves the performance in terms of HS and WS by 30% and 15.13%,
with an 11.4% increase in the BPKI.

—HPAC performs worse (−7%) than NOPF. HPAC improves the individual perfor-
mance of GemsFDTD, libquantum, and lbm but fails to deliver the same for leslie3d.
The reason for this behavior is that leslie3d undergoes a phase change. Figure 13
shows the throttling decisions of HPAC and CAFFEINE over a window of an ini-
tial thirty-five 8K misses intervals. leslie3d undergoes a phase change from the
14th window to the 28th window. In these windows, leslie3d issues useless prefetch
requests (requests that cause low prefetch accuracy). In between window 7 and

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:20 B. Panda and S. Balachandran

Fig. 13. Case study III: Phase analysis. y-axis shows the aggressiveness level and x-axis shows the interval.

Fig. 14. Contribution stack: Contribution, in terms of number of processor cycles saved by Poll, Bli, Rbc,
and DBI.

window 12, the global controller of HPAC throttles down (↓) leslie3d (from level 4
to level 2) because it affects others. From the 14th to the 28th window, the accuracy of
leslie3d goes down below the predefined accuracy threshold and the local controller
of HPAC throttles it further down (↓) to level 1. On the other hand, with CAFFEINE,
leslie3d spends its phase change time mostly at level 3. CAFFEINE throttles up (↑)
leslie3d even if it has low prefetch accuracy because △utilitypositive ≥ 0. This shows
how CAFFEINE adapts to the phase changes in applications.

Case IV: Low at LLC, Low at DRAM—LL (WL Q12): In this mix, soplex is
the only application that is memory intensive. soplex and hmmer are prefetch friendly
applications and the rest are not. soplex is the application that affects the rest but the
interference is not significant. Compared to NOPF, HPAC improves the performance
by 7.8% and CAFFEINE improves it by 8.85%. This slight improvement comes from
the decisions of CAFFEINATION.

6.3. Analysis of CAFFEINE

CAFFEINE on 16-Core System: We now quantify the effectiveness of CAFFEINE
on 16-core system. We create two 16-core workload mixes by mixing (E0 and E1) and
(E2 and E3). In both workloads, in terms of HS, CAFFEINE outperforms HPAC by
more than 11.28%. We believe the effectiveness of CAFFEINE will increase with the
increase in the core count.

Contributions of Interference Metrics: To understand the individual contribu-
tion of Poll, Bli, Rbc, and DBI on the overall performance improvement, we show the
number of processor cycles saved by each one of them in Figure 14, for 16 representative
workloads. Bli dominates in all the workloads except in Q4, Q7, and Q14. Dbi provides

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:21

Fig. 15. Performance stack: Contribution of Poll, Bli, Rbc, and Dbi in improvement in system performance
(in terms of HS).

Table VII. Sensitivity Studies: Average (max) Changes
in HS and BPKI Compared to HPAC

LLC Size HS BPKI

16MB 11.28% (42.11%) −3.68% (−7.25%)

32MB 10.69% (36.59%) −3.16% (−5.12%)

#DRAM Banks

16 9.69% (29.12%) −2.76% (−3.96%)

32 10.33% (36.24%) −1.66% (−3.11%)

marginal benefit (less than 0.4%) across all the workloads. We conclude that Poll, Bli,
and Rbc play an important role for CAFFEINE. Figure 15 shows the contribution of
Poll, Bli, and Rbc in the improvement in the harmonic speedup. We find a similar
trend for the rest of the 84 WLs. We can conclude that the prefetcher-caused intercore
interference plays an important role at the DRAM system and not at the LLC.

Sensitivity Studies: We perform sensitivity studies by changing the LLC size and
the number of DRAM banks on four-core systems. Table VII shows the effects of differ-
ent LLC sizes and different numbers of DRAM banks on HS and BPKI over HPAC. As
the thresholds used in HPAC are oblivious to the LLC size and the number of DRAM
banks, there is a slight degradation in the performance of HPAC. On the other hand,
the effectiveness of CAFFEINE remains the same and the performance of CAFFEINE
improves with the increase in LLC size and number of DRAM banks.

Effect of Intracore Interference: Till now, we emphasized the prefetcher-caused
intercore interference. We also study the effect of prefetcher-caused intracore interfer-
ence on the performance. We add the intracore interference in our utilitynegative and run
CAFFEINE. We find that the change in the HS compared to CAFFEINE is marginal
(less than 1%), with one exception. Workloads consisting of applications that belong to
class-2 (MIPF) show an average improvement of 1.78% over CAFFEINE. We conclude
that the effect of prefetcher-caused intracore interference is marginal.

Effect of LLC Replacement Policy and DRAM Scheduling: Till now, we showed
the effectiveness of CAFFEINE with PACMAN [Wu et al. 2011] and PADC [Lee et al.
2008] as the LLC replacement policy and DRAM scheduling policy. We also study the
behavior of CAFFEINE with TA-DRRIP [Jaleel et al. 2010] and FR-FCFS as the re-
placement policy and DRAM scheduling policy, respectively. Compared to HPAC, on
four-core systems, CAFFEINE improves the performance (HS) by 13.19%. We con-
clude that the effectiveness of CAFFEINE is dependent neither on the LLC replace-
ment policy nor on the DRAM scheduling policy. Also, CAFFEINE can help in making

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:22 B. Panda and S. Balachandran

Table VIII. Comparison of Performance Improvement and Hardware Overhead of HPAC, ABS, and CAFFEINE

Technique Cost Benefit

HPAC 52.5KB (20.5KB) 6.1%

ABS 17KB 10.5%

CAFFEINE 50.1KB (18.1KB) 19%

Compared to a system with no prefetching. For HPAC and CAFFEINE, we report two types of hardware
costs in the form x (y). x corresponds to the actual hardware cost and y corresponds to the hardware cost
excluding the hardware overhead that comes from using a core-id bit per tag.

better DRAM scheduling decisions by helping techniques such as PARBS [Mutlu and
Moscibroda 2008] and TCM [Kim et al. 2010] in creating batches and clusters.

CAFFEINE Versus ABS: ABS [2012] is a prefetcher aggressiveness controller for
multiported, multibanked distributed LLC, where each LLC bank has a hardware
prefetcher. It uses a hill-climbing approach to control the aggressiveness of each bank.
For a fair comparison with CAFFEINE, we employ ABS in our baseline organization
with a centralized LLC that uses the state-of-the-art AMPM prefetcher [Ishii et al.
2011]. The rest of the implementation of the ABS remains the same for our comparison.
We use five different levels of aggressiveness with prefetch degree (0, 1, 4, 8, and 16)
as per ABS [Albericio et al. 2012] and compare it with CAFFEINE.

Compared to ABS, on an average, across 100 four-core WLs, CAFFEINE improves
the system performance in terms of HS by 7.8% with a reduction of 5.21% in unfairness.
Out of 100 4-core WLs, CAFFEINE outperforms ABS in 87 WLs and performs slightly
worse (−1.29%) for 13 WLs. The primary reason behind this behavior is that there are
WLs that contain applications such as bzip2, hmmer, and gromacs where CAFFEINE
throttles them up, whereas ABS does not change their aggressiveness levels. These
applications are not sensitive to the changes in the prefetcher aggressiveness level, but
CAFFEINE throttles them up assuming these applications will improve the overall
utilitynet. Please note these applications are not memory intensive in nature and they
do not affect others, and because of this, CAFFEINE’s decisions are biased toward them.

ABS outperforms HPAC on 45 out of 100 WLs but unable to outperform CAFFEINE
on 87 WLs. The primary reason behind this behavior of ABS is the throttling decisions
of ABS, which are more biased toward utilitynet. Please note that ABS does not use
utilitynet and uses reduction in LLC bank misses as an indicator of the utilitynet. In
WLs where utilitynet is positive but the prefetcher of the corresponding core is an
affecting one, CAFFEINE’s decisions performs better than ABS. ABS does not consider
utilitynegative and does not throttles down the affecting prefetchers (continuously throttle
up as long as the bank miss ratio is improving) and similarly throttles up the affected
prefetcher. This kind of scenario happens in 89 out of the 100 WLs.

Cost-Benefit Analysis Between HPAC, ABS, and CAFFEINE: Table VIII shows
the comparison of performance improvement and hardware overhead of HPAC, ABS,
and CAFFEINE for a four-core multicore system with the state-of-the-art hardware
prefetcher called AMPM [Ishii et al. 2011]. To control the aggressiveness of AMPM,
we use five levels of aggressiveness with prefetch degrees of 0, 1, 4, 8, 16. Please note
that the hardware cost mentioned in ABS [Albericio et al. 2012] does not consider
the overhead that comes from a pref-bit as it uses a sequential tagged prefetcher. On
an average, CAFFEINE outperforms both HPAC and ABS. If we ignore the hardware
cost associated with the core-id bit per LLC tag (which is already available in the
multicore systems), then CAFFEINE provides an improvement of 12.5% over HPAC
with a 2.4KB reduction in the hardware overhead. Compared to ABS, CAFFEINE
provides an additional 7.8% improvement with an additional hardware overhead of
1.1KB, which is modest. So CAFFEINE provides a fair tradeoff between performance
improvement and the hardware overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:23

CAFFEINE on GHB Prefetcher: We run CAFFEINE on GHB [Nesbit et al. 2004]
and evaluate it on the 16 four-core representative workloads. For a GHB prefetcher,
the aggressiveness is controlled by its prefetch degree. We use five different levels of
aggressiveness with prefetch degrees (2, 4, 8, 12, 16) as per Ebrahimi et al. [2009]
and compare CAFFEINE with HPAC. CAFFEINE outperforms HPAC in all the 16
workloads with a speedup (HS) of 6.19%.

CAFFEINE for Parallel Applications: For parallel applications where all threads
perform similar computations and show similar behavior at the memory system, CAF-
FEINE will throttle down or throttle up all the prefetchers, which is a correct decision
as all the prefetchers will belong to either the affected or affecting group. One way to
eliminate this decision process, which can lead to a live-lock situation (all prefetchers
use same throttling decisions), is through randomization. Prefetchers can be assigned
to the affected group in a random way and the rest can be assigned to the affecting
group.

Intolerability: In this work, we call the prefetcher-caused intercore interference
intolerable if utilitytotalnegative ≥ utilitytotalpositive. We also study the effect of allow-
ing some level of intolerance on the system performance by using a parameter w

(weight of intolerance). We change the condition for intolerable interference as follows:
(utilitytotalpositive – w × utilitytotalnegative) < zero. We sweep through different levels of w

(from 0.1 to 1) and find that w = 1 provides the best performance.

7. RELATED WORK

Sandbox Prefetching (SBP): Pugsley et al. [2014] propose a simple yet effective
mechanism to control the aggressiveness of hardware prefetchers. It uses a Bloom filter
[Bloom 1970] to test whether a prefetch address (without issuing actual prefetch re-
quests) is part of any strided stream. After testing, it issues prefetch requests based on a
score that is driven by prefetch accuracy. SBP does not consider the effect of prefetcher-
caused intercore interference as it is a technique proposed mainly for single-core sys-
tems that also performs well for some of the multicore workloads. As CAFFEINE is
orthogonal to the underlying prefetching technique, it can be used along with SBP to
further increase the effectiveness of SBP.

Adaptive Prefetching on IBM POWER 7: Jiménez et al. [2012] propose a tech-
nique that uses a per-core configuration status register (CSR) to inform the operating
system about the different prefetch configuration settings The operating system ex-
plores all the possible configuration settings and chooses the best setting for each indi-
vidual core. This work is a software-based technique, which is orthogonal to our work.

TCPT: Panda and Balachandran [2013] propose an aggressiveness controller for
multithreaded applications called TCPT. TCPT uses a metric called criticality along
with the prefetch accuracy to throttle the prefetchers. Our model can be used along
with TCPT to further improve the execution time of a multithreaded application. As
threads do cooperate and share data in multithreaded applications, intercore coopera-
tive sharing at the shared resources can be added to CAFFEINE.

Prior proposals such as the filtering mechanism of Zhuang and Lee [2003] use cache
pollution as the metric to control the aggressiveness. Wu and Martonosi [2011] charac-
terize cache pollution in the real system and propose a prefetch manager that controls
the aggressiveness at runtime. Liu and Solihin [2011] propose an analytical model to
study the interaction of hardware prefetching and bandwidth partitioning on a multi-
core system.

8. CONCLUDING REMARKS

This article proposed CAFFEINE, a low-cost and robust aggressiveness engine for
multicore systems. CAFFEINE uses a utility-driven model to find out the prefetchers

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

30:24 B. Panda and S. Balachandran

that cause intercore interference. The main idea behind CAFFEINE is it finds out the
number of processor cycles saved in the entire system because of prefetching and is free
from setting and tuning of thresholds. With negligible hardware overhead, CAFFEINE
results in 9.5% and 11% performance improvement on four-core and eight-core systems,
respectively. We conclude that CAFFEINE is an effective prefetcher aggressiveness
engine.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Rupesh Nasre, Dr. Madhu Mutyam, and Prof. R. Govindarajan for their
valuable comments.

REFERENCES

Jorge Albericio, Rubén Gran, Pablo Ibáñez, Vı́ctor Viñals, and Jose Marı́a Llaberı́a. 2012. ABS: A low-cost
adaptive controller for prefetching in a banked shared last-level cache. ACM Trans. Archit. Code Optim.
8, 4, Article 19 (Jan. 2012), 20 pages. DOI:http://dx.doi.org/10.1145/2086696.2086698

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput.
Archit. News 39, 2 (Aug. 2011).

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7
(July 1970), 422–426. DOI:http://dx.doi.org/10.1145/362686.362692

J. Doweck. 2006. Inside Intel Core Microarchitecture and Smart Memory Access. Intel technical white paper.

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2010. Fairness via source throttling: A
configurable and high-performance fairness substrate for multi-core memory systems. In Proceedings
of the 15th Edition of ASPLOS on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XV). ACM, New York, NY, 335–346. DOI:http://dx.doi.org/10.1145/1736020.1736058

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2011. Prefetch-aware shared resource
management for multi-core systems. In Proceedings of the 38th Annual International Symposium
on Computer Architecture (ISCA’11). ACM, New York, NY, 141–152. DOI:http://dx.doi.org/10.1145/
2000064.2000081

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009. Coordinated control of multiple
prefetchers in multi-core systems. In Proceedings of the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 42). ACM, New York, NY, 316–326. DOI:http://dx.doi.org/10.1145/
1669112.1669154

Stijn Eyerman and Lieven Eeckhout. 2008. System-level performance metrics for multiprogram workloads.
IEEE Micro 28, 3 (May 2008), 42–53. DOI:http://dx.doi.org/10.1109/MM.2008.44

A. Glew. 1998. MLP yes! ILP no! wild and crazy idea session. In Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating Systems.

Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for high performance data
cache prefetch. J. Instruction-Level Parallelism 13 (2011).

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel Emer. 2010. High performance
cache replacement using re-reference interval prediction (RRIP). In Proceedings of the 37th An-
nual International Symposium on Computer Architecture (ISCA’10). ACM, New York, NY, 60–71.
DOI:http://dx.doi.org/10.1145/1815961.1815971

Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu, Pradip Bose, and Francis P.
O’Connell. 2012. Making data prefetch smarter: Adaptive prefetching on power7. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques (PACT’12). ACM,
New York, NY, 137–146. DOI:http://dx.doi.org/10.1145/2370816.2370837

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010. Thread cluster memory
scheduling: Exploiting differences in memory access behavior. In 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’10). 65–76. DOI:http://dx.doi.org/10.1109/MICRO.2010.51

Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. 2008. Prefetch-aware DRAM controllers. In
Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 41).
IEEE Computer Society, Washington, DC, 200–209. DOI:http://dx.doi.org/10.1109/MICRO.2008.4771791

Fang Liu and Yan Solihin. 2011. Studying the impact of hardware prefetching and bandwidth partitioning
in chip-multiprocessors. In Proceedings of the ACM SIGMETRICS Joint International Conference on

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

CAFFEINE: A Utility-Driven Prefetcher Aggressiveness Engine for Multicores 30:25

Measurement and Modeling of Computer Systems (SIGMETRICS’11). ACM, New York, NY, 37–48.
DOI:http://dx.doi.org/10.1145/1993744.1993749

Kun Luo, Jayanth Gummaraju, and Manoj Franklin. 2001. Balancing thoughput and fairness in SMT pro-
cessors. In Proceedings of the 2001 IEEE International Symposium on Performance Analysis of Systems
and Software. 164–171. DOI:http://dx.doi.org/10.1109/ISPASS.2001.990695

Ratul Mahajan, Jitu Padhye, Ramya Raghavendra, and Brian Zill. 2008. Eat all you can in an all-you-can-eat
buffet: A case for aggressive resource usage. In Proceedings of the 7th ACM Workshop on Hot Topics in
Networks (HotNets-VII). 43–48. Available at http://conferences.sigcomm.org/hotnets/2008/papers/8.pdf.

Onur Mutlu and Thomas Moscibroda. 2007. Stall-time fair memory access scheduling for chip multipro-
cessors. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 40). IEEE Computer Society, 146–160. DOI:http://dx.doi.org/10.1109/MICRO.2007.40

Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-aware batch scheduling: Enhancing both perfor-
mance and fairness of shared DRAM systems. In Proceedings of the 35th International Symposium on
Computer Architecture (ISCA’08). 63–74. DOI:http://dx.doi.org/10.1109/ISCA.2008.7

Kyle J. Nesbit, Ashutosh S. Dhodapkar, and James E. Smith. 2004. AC/DC: An adaptive data cache prefetcher.
In Proceedings of the 13th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT’04). IEEE Computer Society, 135–145. DOI:http://dx.doi.org/10.1109/PACT.2004.4

Calculating Outliers. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/
handbook/, http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm.

Biswabandan Panda and Shankar Balachandran. 2013. TCPT: Thread criticality-driven prefetcher throt-
tling. In Proceedings of the 22nd International Conference on Parallel Architectures and Compilation
Techniques (PACT’13). IEEE Press, 399–400.

Seth H. Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L. Scott, Aamer Jaleel, Shih-Lien
Lu, Kingsum Chow, and Rajeev Balasubramonian. 2014. Sandbox prefetching: Safe run-time evalua-
tion of aggressive prefetchers. In 20th IEEE International Symposium on High Performance Computer
Architecture (HPCA’14), February 15-19, 2014, Orlando, FL. 626–637. DOI:http://dx.doi.org/10.1109/
HPCA.2014.6835971

Allan Snavely and Dean M. Tullsen. 2000. Symbiotic job scheduling for a simultaneous multithreaded
processor. In Proceedings of the 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS IX). ACM, New York, NY, 234–244.
DOI:http://dx.doi.org/10.1145/378993.379244

Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback directed prefetching: Im-
proving the performance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture (HPCA’07). IEEE
Computer Society, 63–74. DOI:http://dx.doi.org/10.1109/HPCA.2007.346185

Standard Performance Evaluation Corporation. SPEC CPU2006, SPEC CPU 2000. Available at http://www.
spec.org.

J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. 2002. POWER4 system microarchitecture.
IBM J. Res. Dev 46, 1 (Jan. 2002), 5–25.

Carole-Jean Wu and Margaret Martonosi. 2011. Characterization and dynamic mitigation of intra-
application cache interference. In IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS’11), April 10-12, 2011, Austin, TX. 2–11. DOI:http://dx.doi.org/10.1109/
ISPASS.2011.5762710

Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely Jr., and Joel Emer. 2011. PACMan:
Prefetch-aware cache management for high performance caching. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM, New York, NY, 442–
453. DOI:http://dx.doi.org/10.1145/2155620.2155672

X. Zhuang and H.-H. S. Lee. 2003. A hardware-based cache pollution filtering mechanism for aggres-
sive prefetches. In Proceedings of the 2003 International Conference on Parallel Processing. 286–293.
DOI:http://dx.doi.org/10.1109/ICPP.2003.1240591

Received June 2015; revised July 2015; accepted July 2015

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 3, Article 30, Publication date: August 2015.

