Get all the updates for this publication
Manual segmentation of brain tumor is often time consuming and the performance of the segmentation varies based on the operators experience. This leads to the requisition of a fully automatic method for brain tumor segmentation. In this paper, we propose the usage of the 100 layer Tiramisu architecture for the segmentation of brain tumor from multi modal MR images, which is evolved by integrating a densely connected fully convolutional neural network (FCNN), followed by post-processing using a Dense Conditional Random Field (DCRF). The network consists of blocks of densely connected layers, transition down layers in down-sampling path and transition up layers in up-sampling path. The method was tested on dataset provided by Multi modal Brain Tumor Segmentation Challenge (BraTS) 2017. The training data is composed of 210 high-grade brain tumor and 74 low-grade brain tumor cases. The proposed network achieves a mean whole tumor, tumor core & active tumor dice score of 0.87, 0.68 & 0.65. Respectively on the BraTS ’17 validation set and 0.83, 0.65 & 0.65 on the Brats ’17 test set.
View more info for "Brain Tumor Segmentation Using Dense Fully Convolutional Neural Network"
Journal | Data powered by TypesetInternational MICCAI Brainlesion Workshop |
---|---|
Publisher | Data powered by TypesetSpringer International Publishing |
Open Access | No |