Physics Letters B 720 (2013) 410-413

Contents lists available at SciVerse ScienceDirect

PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

Box of ideal gas in free fall

Dawood Kothawala'

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada

ARTICLE INFO

Article history:

Received 25 December 2012

Received in revised form 13 February 2013
Accepted 19 February 2013

Available online 24 February 2013

Editor: M. Cvetic

ABSTRACT

We study the quantum partition function of non-relativistic, ideal gas in a (non-cubical) box falling freely
in arbitrary curved spacetime with center 4-velocity u®. When perturbed energy eigenvalues are properly
taken into account, we find that corrections to various thermodynamic quantities include a very specific,
sub-dominant term which is independent of kinematic details such as box dimensions and mass of
particles. This term is characterized by the dimensionless quantity, & = R@ﬁ/\z, where Rgy = Rapu‘ub

and A = Bfic, and, quite intriguingly, produces Euler relation of homogeneity two between entropy and

energy - a relation familiar from black hole thermodynamics.

© 2013 Elsevier B.V. Open access under CC BY license.

1. Introduction

There have been several intriguing connections between gravity
and thermodynamics discovered over the past few years (see [1]
for a recent review), a better understanding of which necessi-
tates study of thermal systems in presence of gravity. For example,
a study of phase space available to thermal systems in the vicin-
ity of spacetime horizons yields results which might be helpful to
understand certain aspects of horizon entropy [2]. It is indeed pos-
sible that certain features of black hole thermodynamics are simply
features of standard thermodynamic systems when curvature of
spacetime is accounted for in the analysis of the latter [3]. Now,
we know that black hole thermodynamics is inherently quantum
mechanical in origin, and hence one may not learn anything “dras-
tically” new simply from curvature corrections to standard systems
using classical statistical mechanics; at best, classical analysis can
yield terms representing tidal forces (needed to hold the box to-
gether) etc. It is more useful to ask whether a quantum mechanical
calculation can give any new information, which is the question we
hope to address in this Letter in the context of one of the simplest
thermodynamic systems - a box of ideal gas. We consider such
a box of ideal gas in an arbitrary curved spacetime, with its cen-
ter freely falling along a geodesic with 4-velocity u, and compute
corrections to the partition function due to spacetime curvature.
And indeed, we find that all thermodynamic quantities acquire
a specific correction term (besides others) which is independent of
system details such as box dimensions and mass of particles. This
term is characterized by the dimensionless quantity =& = RéﬁAz,
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where Ryq = Rapu®ub and A = Bhc. We highlight several features
of this Z-contribution, in particular the fact that Sz = (1/2)gUgz=,
a relation which is familiar from black hole thermodynamics. It
would be worthwhile to investigate other possible implications of
these corrections from the viewpoint of thermodynamic aspects of
gravity.

We describe the set-up and relevant calculations in the next
section; the perturbed free-particle energy eigenvalues are given
in Egs. (6), and the final results are given in Eq. (9). In the final
section, we conclude with a few remarks on implications of the
result. In order-of-magnitude arguments, we will use R to denote
typical magnitude of curvature tensor components.

2. Thermodynamics of box of ideal gas
Consider a box of gas, whose center is following a timelike tra-
jectory with 4-velocity u. The spacetime in a local neighborhood of

this trajectory can be constructed using Fermi normal coordinates
(FNC), in which the metric takes the form [4]
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where Greek indices run over spatial coordinates, and a is the
acceleration corresponding to u. We shall consider a box whose
center is falling freely, and therefore set @ = 0. In these coordi-
nates, u = 95 (i.e., the original trajectory is simply y# = 0), and we
define a “box” as a confined region with flat “coordinate” faces, i.e.,
—(Lx/2) < x < +(Lx/2) and similarly for y and z. (There would,
of course, be tidal forces on box walls, necessitating some mech-
anism to keep them in place; this can always be taken care of
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and would not change the Hamiltonian of the particles inside the
box.) This box is filled with an ideal gas at temperature f~!. The
Hamiltonian for the constituent particles can be written in FNC as
H = —pg, which can be motivated as follows. The action for a sin-

gle particle can be written in covariant form as | p; dx'. In FNC, the
time coordinate tp assigned to an event P in (a normal convex)
neighborhood of the trajectory is equal to the proper time t at the
point on the trajectory connected to P by a spacelike geodesic; i.e.,
tp = t. The action can therefore be split as f(pé +pp dx#/dr)dr,
which immediately identifies H = —pg. Note that this Hamiltonian
is different from H = —p - u!l, where u!l is u parallel transported to
the location of the particle. We can write out the Hamiltonian ex-
plicitly in terms of the metric coefficients using p - p = —m?; this
gives
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Note that our choice of the Hamiltonian corresponds to choosing
as the relevant time coordinate; in other words, H = —p - . Since
the metric is 7ngq, all along the trajectory in FNC, this Hamiltonian
correctly accounts for the additional “gravity” field which would
appear for particles located away from the trajectory, since the
zero of gravity potential is (by construction) at the trajectory. This
definition is also equivalent to the so-called “energy at infinity”
defined in spacetimes with a timelike Killing vector; in this sense,
the role of u = d; above is the same as that of the Killing vec-
tor when available. These conceptual points are also significant for
what we mean by temperature T = 1. What g~ represents is
the temperature of a reservoir (say, a heating element) at the cen-
ter of the box, which is our reference point. This g is therefore
constant, unlike the Tolman temperature which is defined with re-
spect to local energy of the particles, and hence must be multiplied
by a red-shift factor. The above discussion is important to correctly
describe a thermal equilibrium state as a Gibbs state in a curved

spacetime.
In the non-relativistic limit, the Hamiltonian reduces to
2 P 1
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Further, in the non-relativistic limit p <« mc and terms which go as
Ry?% x (p/mc)? are second order of smallness, and therefore can be
ignored. Using all this, it is easy to see that, in the ¢ — oo limit,
we are finally left with

1
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Incidentally, this expression matches with the non-relativistic limit
of Dirac Hamiltonian obtained by Parker (see Eq. (9.13) in [5]),
which provides further separate support for the arguments leading
to it. In what follows, we shall ignore the time dependence carried
by curvature components. This is a reasonable assumption if time
scale on which curvature changes, R/R, is much larger than typ-
ical time scale associated with the gas; we expect this to be the
case at high enough temperature.

The energy eigenvalues can be easily found using first or-
der perturbation theory, with the unperturbed eigenfunctions
being the standard ones 1/3[ni}(y) = V8/V ]y slsin2nim yi/Li];
cos[(2n; — Dmy;/Li]}. Here V = LxLyL, is the box volume and
n; € [1,00). We assume that the sides of the box are incommen-
surable, so that non-degenerate perturbation theory can be used.
Then one obtains
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The partition function for N particles, assuming Boltzmann statis-
tics, is Z = zN/N! where z is the one-particle partition function.
This can be calculated by approximating intermediate sums as in-
tegrals, and assuming 13/V « 1, where A = h/~/2mmkT is the
thermal de Broglie wavelength. First, define the functions

00 _ 2.2
p(s) = Z expl (7;2/4)5 n<]
n=1

q(s) =sp(s) (6)

The behavior of q(s) can be deduced by properly approximating
sums with integrals. However, as we shall see, the final results can
be stated simply in terms of q(s) and its derivatives at s =0, so
all that is required is that q(s) be analytic at s = 0. Also, in what
follows, terms of the form “RA3/L” have been ignored, since they
are small compared to the terms retained by factors of A/L. The
only sub-dominant term retained below is the one which is inde-
pendent of box dimensions L; and mass m of constituent particles,
and hence expected to be of some fundamental significance - in-
deed, it is this term which will turn out to have an interesting
form.
The canonical partition function turns out to be

In(Z/Zf) = BNmc? { [qg © )} vt
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where In Zg = In(VNA—3N/N1) is the flat space expression. To put
the final results in a neat form, it is convenient to introduce the
following

Definitions.

e A = Bhic which is a length scale independent of mass m (un-
like 1), and is therefore more fundamental.
e Ri= Riioi and §; =Lij/A > 1).

e 1 =—q"(0)/27) and c; = q'(0)/(27); numerical values of
these are not relevant, but can be shown to be ¢; =1/2,
cp=m/12.

e U =U — Ur and Seorr = S — Sp, where Urp = 3N/28 and
Sg=3N/2+ Nln(eV /N23) are standard flat space expressions.

It is now straightforward to use standard definitions U =
—dgInZ and S =InZ + BU to evaluate Ucorr, Scorr and heat capac-
ity at constant volume, Cy = —/323,3U =3N/2 + Cycorr- We obtain

2Scon/N =+C1RgA> — 247 Y Risi+0(8;")

i=1,3
BUcorr/N = +c1Rgy A% — (3/2)c2.4> > Ridi
i=1,3
+B(1/24mc* Y RiLZ+0(57)

i=1,3

Cveorr/N = —C1Rgy A2 + 3/4)c2A* Y Ridi + 0(57") (8)
i=1,3
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Note that the third term on RHS of the second expression above,
for mean energy per particle Ucorr/N, is simply due to the constant
term in perturbed energy eigenvalues (see Eq. (5)).

These are the final expressions we wanted to derive, with sev-
eral features worth highlighting:

1. The L; and m independent part of the corrections, which we
denote by &, depend only on & = R66A2 with Rgg = Rapu®ub.
2. Further, Sz and Ug satisfy

1
Sz = 5,3U5 9)

where Sz = (Nc1/2)E and so on. This is Euler relation of
homogeneity two, and is well known from black hole thermo-
dynamics; in particular, black hole horizons have temperature,
entropy and energy which also satisfy S = (1/2)8U, with U
being the Komar energy.?
In fact, such a relation between S and U acquires importance
in the emergent gravity viewpoint, since it can be interpreted as
equipartition law for energy of microscopic degrees of freedom
associated with spacetime horizons [7]. It is therefore quite
intriguing that the & correction terms, which appear due to
quantum mechanics and are independent of system details,
have features in common with thermal features of spacetime
horizons.
The relevance of such Euler relation and area scaling of en-
tropy for self-gravitating systems has also been emphasized
in [8].

3. The Z-contribution to specific heat is negative if the strong-
energy condition (Rs5 > 0) holds.

Incidentally, note that it is possible to incorporate finite size effects

in the calculation rather simply by approximating

> exp(—an®) ~ (/o —1)/2
n=1

instead of just /7 /or/2 as is usually done; if one does this, terms
involving surface area A =2(LxLy + LyL, + L,Ly) of the box gets
added to various quantities such as S/N, U/N etc. in Egs. (8).
These additional terms are of the form coAA/V = 2cp) ; 81‘1
where cg is a number less than unity (see [9]). Therefore, to com-
pare these surface corrections with the curvature corrections, one
would have to keep the (lower order) §; 1 curvature terms in
Egs. (8), and then the comparison of curvature and surface correc-
tions would be determined by relative magnitudes of cg and R; A2
(both of which are less than unity).

Finally, let us point out an important fact concerning the flat
spacetime limit of the result. The curvature terms which appear
in FNC refer to the background spacetime, say S, which must be
evaluated on the trajectory u which is a geodesic of S. However,
since our system has finite energy, for consistency we must con-
sider a geodesic in the spacetime comprising of background and
the box contents, S + BB, where B is the perturbation to S caused
by the box contents. Therefore, even when S is flat, there will
always be some contribution from curvature produced by energy
(rest + thermal) in the box.

3. Discussion and implications
It is well known that thermal behavior of systems with long-

range interactions exhibit several peculiar features, and their sta-

2 This relation is quite general, and holds for charged, rotating black holes in
higher dimensions as well [6]. Moreover, it also extends beyond Einstein gravity,
to static horizons in Lanczos-Lovelock models [7].

tistical analysis requires considerable amount of care [10]. Some of
these features, such as negative specific heat and unequal “local”
temperature in thermal equilibrium, became more widely known
since the discovery of thermodynamic aspects of black holes. How-
ever, these same aspects, which have their origin in quantum field
theory in non-trivial coordinate systems, also indicate that one
must take a closer look at behavior of standard thermal systems
in an external gravitational field and in presence of spacetime
horizons. For example, temperature and entropy associated with
local acceleration horizons are observer dependent, and one must
therefore try to find a natural way to incorporate these inevitable
features in conventional thermodynamics. These and related issues
form the main motivation for the analysis in this Letter.

Let us first summarize the main steps of the calculation. We
defined the non-relativistic Hamiltonian in FNC, and then found its
energy eigenvalues by using first order perturbation theory. It must
be emphasized that the role of the box in this calculation is rather
subtle, and it does not lead just to a pure finite size effect; indeed,
the Z term is independent of L; and m. We must also emphasize
that the interesting features we have highlighted are shown only
by the Ricci corrections, and not by the full expressions. The con-
nection with thermodynamic features of black holes would require
us to probe deeper into the physical significance of pure Ricci cor-
rections.? In this context, it is also worth mentioning that the time
scale t, = A/c = h/kT appearing in the Ricci term has recently
been discussed by Haggard and Rovelli [11] as the average time
a system in thermal equilibrium at temperature T takes to move
from a state to the next distinguishable state, thereby making this
time step universal and independent of any details of the system
other than its temperature.

One context in which the result might be relevant is the
so-called generalized second law (GSL), which was formulated by
Bekenstein [12] based on the fact that horizons have entropy (pro-
portional to area). GSL states that the total entropy of matter and
horizon (when present), never decreases. Classically, the minimum
increase in entropy of horizon, when a particle (or a system) falls
across it, is actually zero - it acquires a non-zero value only when
quantum effects are taken into account, using which examples can
be given (as Bekenstein did) which conform with GSL. In our case
also, quantum mechanics yields an additional term proportional to
E = R@@AZ (besides other terms depending on details of the sys-
tem) in the expression for entropy S of the system. However, note
that the curvature correction in Eq. (5) does not have h in it - the
only non-trivial aspect at this level is the dependence of energy
eigenvalues on 1/"1‘2- Nevertheless, quantum nature of the result is
evident in the £ corrections which are O (h?) since A = O(h). It
would be interesting to investigate how (if at all) does this affect
the analyses related to GSL.

It is, of course, important to generalize the result presented
here to different systems, and also to the relativistic case. How-
ever, the fact that the relevant term depends only on the length
scale A = Bhic suggests that the result will survive in the relativis-
tic limit (since it does not depend on mass).* A rigorous analysis
of other systems (such as harmonic oscillator) confined in a box
is complicated by the fact that even unperturbed energy eigen-
values and eigenfunctions are not known in analytic form. One
hopes to arrive at a better understanding of deeper physical im-

3 Note that Ricci tensor does play the key role in defining, for example, entropy
in Einstein theory. Specifically, the Noether current of diffeomorphism invariance
which gives the entropy is proportional to Ricci in Einstein theory.

4 In fact, a close look at the results in [5] indicates that relativistic corrections
produce qualitative changes only in [ # 0 energy levels of Hydrogen atom, which
strengthens this belief further.
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plications of the result provided such technical issues could be
overcome. Incidentally, note that the time scale At = A/c =h/kT
is the time uncertainty associated with thermal fluctuations of en-
ergy kT. There is a hint here of interplay between thermal and
quantum fluctuations, but again, more work is needed to under-
stand the underlying physics better.
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Appendix A. An outline of steps leading to Eq. (7)
We here briefly outline the steps needed to arrive at Eq. (7). Let

E = Eg + E1 with
3 .2

h2m2 n?
Eg=—— ) -%;
= m ;le

> 6
=yl )
i=1 1

where A; = (1/24)mc®RojoiL?. The one-particle partition function
is then

z= ZGXP[—ﬂ(Eo + Ey)]
{ni}

~ Y expl—BEol — B ) _ E1 exp[—BEo] (A1)
{ni} {ni}
to O(Rﬁbcd,VRabcd). The first term on RHS is standard textbook

expression, and evaluates to V/}L3 = 7. The second term on RHS
of Eq. (A.1) can be expanded out as

> 6 Aipi
> " Eyexp[—BEo] =ZOZ[A:‘ -3 }
{ni} i=1 :

where p; = p(s)|s=x/r; and p;/8; = pir/Li = qi = q(s)|s=x/L;- Sub-
stituting in Eq. (A.1), and defining R; = Rojo; for shorthand, we get

pme? & pme® &
z=zo|:1— >4 Y Rl + y ZRiLizqi]
i=1 i=1

The final expression for the full partition function can now be
obtained easily by expanding g;’s for small A/L; in Taylor series
(q(0) = 0 is easily verified): q; = q'(0)A/L; + (q"(0)/2)(A/Li)?* +
0(23/L}). The coefficients q”(0) and q'(0), which are eventually
responsible for the terms independent and linear in L; respec-
tively in Eq. (7), can be easily evaluated using: p(0) = mw?2/6,

(A2)

p'(0) = —(;r/2)[sG(S)]s=0 = —7 /2 where G(s) is the Gauss sum
G(s) =4 exp[— (1 /4)s2n%] with well known small s expansion,
G(s) ~s~1 —1/2 4 0(s?). Similarly one can find leading term in
p”(s) as well. Putting everything together, we eventually recover
q'(0) = m2/6 and q”(0) = —m, which give the values of ¢y, ¢y
quoted in the text.

Appendix B. Average pressure and equation of state

An important observation can also be made regarding average
pressure of the gas. Pressure on the i-th face can be defined as
BP; = (L;j/V)dInZ/dL; since V/L; = A,; is the transverse area
of the face. If one defines the correction to average pressure by
P=(1/3) Zi Pij = Pcorr + Pr, where BPr = N/V is the flat space
expression, then one can easily show that

41 1
ﬁPcorr = § V <scorr - Eﬂucorr> (B-l)
As mentioned above, Sz = %ﬂUE. Hence, what the above expres-
sion says is that, the average pressure is contributed by those parts
of Scorr and Ucorr Which do not satisfy S = (1/2)BU. Using the
above result, one can write down the correction to equation of
state of the gas:

BPV A\?
~ =15 > Risi(12cy + 27 87) (B.2)
i=1,3

Note that the final pressure does depend on geometric features of
the box. In fact, it might be possible to interpret the second term
in the round brackets on RHS as additional pressure due to tidal
forces acting on the box. Quantum mechanics adds to this the c;
piece (note that A25; ~ O(h') while 4257 ~ 0(R?)).
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