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Abstract--We consider a birth-death process whose birth and death rates are suggested by a 
chain sequence. We use an elegant transformation to find the transition probabilities in a simple 
closed form. We also find an explicit expression for time-dependent mean. We find parallel results in 
discrete time. Finally, we show that the processes under investigation are transient, and hence, the 
stationary distribution does not exist. (~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper,  we consider a birth-death process on an infinite state space whose birth and death 

rates are suggested by a chain sequence. Using the interesting results of constant te rm chain 
sequences [1-3], we find expressions for the birth and death rates. 

The  problem of solving the Chapman-Kolmogorov (C-K) equations explicitly for a specific set 

of bir th and death rates has been approached in the literature in many different ways and still 
remains a topic of great interest (see, e.g., [4,5]). This problem has given rise to many intricate 

and interesting special functions and orthogonal polynomials (see, e.g., [6,7]). We use an elegant 
t ransformation,  which is simple, direct, and does not involve Laplace transforms, to find the 
transit ion probabilities in a simple closed form and the t ime-dependent mean. We also carry out 
this t ime-dependent  analysis for the same process on a discrete parameter  space. Finally, we 

show tha t  the processes under investigation are transient and hence the stat ionary distribution 
does not exist. 

Let us recall the definition and some basic results of chain sequences, see [1, Section III.5; 2; 
3] for proofs and developments. 

The authors thank the referee for useful comments and suggestions which improved the presentation of this paper. 
*Author to whom all correspondence should be addressed. 
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a oo DEFINITION. A sequence { n} ,= l  is a chain sequence if there exists a second sequence {g~}~°= 0 

such that 
(i) 0 < g 0 < l ,  0 < g n < l ,  n = l , 2 , . . . ,  

(1) 
(ii) a n = ( 1 - g n - 1 ) g n ,  n = l , 2 , . . . .  

The sequence {gn} is called a parameter sequence for {a,~}. 

If  both {gn} and {hn} are parameter  sequences for {a~}, then 

g n < h n ,  n = l , 2 , . . . ,  if and only i f g 0 < h 0 .  ( 2 )  

Every chain sequence {an} has a minimal parameter  sequence {ran} uniquely determined by the 
condition m0 = 0, and it has a maximal parameter  sequence {Mn} characterized by the fact that  

M0 > go for any other parameter  sequence {gn}. For every x, 0 _< x < Mo, there is a unique 

parameter  sequence {gn} for {an} such that  go = x. 
A simple example is the constant term sequence 1/4, 1/4, 1 / 4 , . . . ,  which is a chain sequence 

with parameters  gn = 1/2, n = 0, 1, . . . .  
The  following results of Wall [3] characterise a constant term chain sequence. 

THEOREM 1.1. A constant term sequence fl, ~, 13,... is a chain sequence if and only if 0 < 13 < 

1/4. 
1.2. For a constant term chain sequence 13, ~, 13,... the minimal parameter mn is THEOREM 

given by 

m n - 1 - 2 v ~  1 - ~ 2 ~ ( 1 ~ ~ )  r , 

r = O  

n - -  0 , 1 , 2 , . . . .  

In Theorem 2.1 we will prove that  this mn can be written as 

aUn-l (1 /a)  
n = 1 , 2 , 3 , . . . ,  m . =  ' 

where Un(.) is the Chebyshev polynomial of second kind of order n and a = 2v/-~. 

polynomials are defined recursively by 

sin((n + 1)0) n = 0, 1 ,2 , . . .  ; cos(0) = x. 
Un(x) = sin(0) ' 

These 

They  satisfy the recurrence relation 

U n ( Z )  = 2 z U n - l ( z )  - 

with U - l ( x )  = 0 and Uo(x) = 1. 
In the forthcoming sections, we analyze birth-death process whose rates are suggested by a 

minimal parameter  chain sequence. First we will analyze the continuous parameter  case. 

2. B I R T H - D E A T H  P R O C E S S  W I T H  
C O N T I N U O U S  P A R A M E T E R  SPACE 

A bir th-death process is a Markov process 2d = {X(t) ,  t >_ 0}, say, in which a population 
initially of size m changes to size n after t ime t by births and deaths. We assume that  the size of 
the population can build up without any restriction. Tha t  is, our process 2d will always be taking 
values in N" -= {0, 1 . . . .  } and X(t)  denotes the population size at t ime t. We assume tha t  in an 
interval (t, t + ~t) each individual in the population has a probability An~t + o{(~t) 2} of giving 
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birth to a new individual and a probability/Zn~t + O{(~t) 2} of dying. The parameters  An and Izn 
are, respectively, called the birth rate and death rate when the population has size n, and define 

P m n ( t ) - P r { X ( t ) = n l X ( O ) = m } ,  n, m c A / ' ,  t_>0,  

the conditional probabili ty that  the population has size n at t ime t given its size was m at 

t = 0. For the sake of brevity we denote Pmn(t) by Pn(t). By considering Pn(t + ~t) in terms 

of Pn - l ( t ) ,  Pn(t), and Pn+l(t), the following set of differential-difference equations known as 

forward Chapman-Kolmogorov (C-K) equations can be obtained: 

P~(t) = -AoP0(t) + # lP l ( t ) ,  
(a) 

P" (t) = An- lPn- l ( t )  -- (An + pn)Pn(t) + Pn+lPn+l(t), 

for n 1 ,2 ,3 , . .  and whence 0 _< Pn(t) _< 1 and oc Pn(t) subject to = ., }-']~n=0 = 1, the initial condition 

Pn(0) = an,r~ (Kronecker delta) for some m E X .  Also, A0 > 0, #0 = 0, and An,#n > 0, for 

n = 1 , 2 , 3 , . . . .  Specifically, we consider a birth-death process with birth and death rates An 

and lan, satisfying the conditions 

An + #n = 1, 

.,~n_Xl2n =- ~, n = 1,2,3 . . . .  , (4) 

i .e.,  ( 1 - - / * n - 1 ) # n  = 3 ,  n = 1 , 2 , 3 , . . . ,  

with Ao = 1 and #0 = 0 so that  {#n} is the minimal parameter  sequence for the constant te rm 
chain sequence {/3, /3,~, . . .} ,  and hence, by Theorem 1.1, 0 < /3 _< 1/4 so that  An,#n > 0, 

n = 1,2, 3 , . . . .  In the following result, we find the explicit expressions for the birth and death 
rates, which are defined reeursively in (4). 

THEOREM 2.1. For the process X with birth and death rates satisfying (4), 

~ _ aU~+l (1 / a )  
2Un(1/a) ' n = 0 , 1 , 2 , . . . ,  

o~Un-l(1/ct) (5) 
# n -  2Un(1/a) ' n = 1 , 2 , 3 , . . . ,  

where Un(.) is the Chebyshev polynomial of second kind of order n and a = 2v/-~. 
o o  PROOF. Since {#n}n=0 is the minimal parameter  sequence of the constant term chain sequence 

{/3,/3, 3 , . . .  }, by Theorem 1.2 we have 

[ 1 - ~  1 -  - n = 0 , 1 , 2 ,  
# n - -  2 7 . . . .  r=0 { , + .o]}1 

1 + v / i - : - ~  I + A + A 2 + . . . + A n - 1  

where 

so tha t  

Hence, 

1 + v q - = V  
A -  

1 -  v ¢ - - : - ~ '  

1 - (  
# 1 # 2 . . . # n  1 + 

[I + A + A2 + .. . + A n] A°A1 ' "" An-1 ~'~ 1 + 

(1 -+- ~ ) n + l  ( 1 -  ~ ) n + l  

2n+l v/1 - a2 
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where a 2 = 4/3. Since Un (x) can be written as 

2 X2X/~-FZ~_ 1 x + ~ l x 2 - 1 )  - - X / x 2 - 1 )  J,  

we have 

Therefore, 

and hence, 

AoAI.. .  A~-I = ~-~Un 

A n -  aU,~+l(1/a) n = 0,1,2 . . . . .  
2Un(1/a)  ' 

aUn_1(I/a) 
n = 1 , 2 , 3 , . . . .  II 

~ n -  2 u n ( 1 / ~ )  ' 

For notational convenience, we use Un instead of Un(1/a)  throughout the analysis. 
Now we find an explicit expression for the transition probabilities when there are m ( >  0) 

individuals in the system initially. 

THEOREM 2.2. For the process X, whose birth and death rates are given by (5), with X(O) = m, 
the transition probabilities are given by 

P . ( t )  = u~[I,~_m(,~t) - In+m+2(at)]e -*, nEAP,  

where In(.) is the modified Bessel function of the first kind of order n. 

PROOF. Define 

Q(s , t )=  E qn(t)sn, 
n~--O0 

where ( P~(t)  
~ e  t, n = O, 1 , . . . ,  

qn(t) [ O, n = - 1 , - 2 ,  . . . .  

Then the system of equations (3), after substituting for An and #n given by (5), yields 

(6) 

with Q(s, O) = Sin~Urn. 
The solution of this differential equation is easily obtained as 

~0 t Q(s,t) = Q(s,O)e {v~(8+l/8)t} - v/-~qo~e{Vg(s+l/s)(t-¢)} d~. 
8 

(7) 

I t  is known tha t  if a = 2vf~, then 

o o  

e{V/-~Cs+l/s)t} = E 8nIn(Olt)" 
n~-oo 

Using this in (7) and comparing the coefficients of s n on both sides, we get 

I=_~(~t) fo ~ qn(t) = Um V~qO(~)In+l(oL(t -- ~)) d~, nEAP.  (s) 



A Bi r th -Dea th  Process  243 

Comparing the coefficients of s -n -2  on both sides of (6) and using In(.) = I-n('), we get 

/o 0 -- In+m+2(~t) _ x/~qo(~)In+l(a(t - ~))dE. (9) 
um 

Subtracting (9) from (8), we obtain 

1 [I,_m(at) - In+m+2(at)] n 6 AZ. qn(t) = ~ 

Hence, 

-~[In-m(at) - In+m+2(at)]e -t, n E A[. I I  P.(t) 

In the following theorem, we obtain an explicit expression for mean number of units in the 

system at time t. 

THEOREM 2.3. For the process X, whose birth and death rates are given by (5), with X(O) = m, 
the mean population size at time t is given by 

aUra-1 t a (m+l )  t a ( m + l )  L t  E[X(t)] = m + t ~ Um Um UIm+l(ol(t - u))e -(t-u) du, t ~_ O. 

PROOF. By Theorem 2.2 we have 

aU,~ [In-re(at) - In+m+2(at)]e -t, n e J V ' .  P.(t) = 

Let us denote the Laplace transform of Pn(t) by tSn(S) and define 
oo 

= o 

n----0 

After considerable simplifications, we get the following expression for C(~, s): 

G((,s) - U m ~  ~ + -~Um-lg -- Um~ m B2 B 2 - 2(B + ~2a2 

r ]( ) - + Bum_,~m+l _ UI.~ m 
u m ~  a a 2 - 2 ~ B  + B 2 ~  2 ' 

where p = s + 1 and B = [p - v / ~  - a2]. We have achieved the above expression by using the 

generating function of Un('), given by 

i 

E u.(x)t" - i - 2tx - t~' 
n=O 

and the Laplace transform of In(at), given by 

Therefore, 

° 

a n V ~  - -  03 

r h ( p ) =  d ~ g = l  1 1 [(m+l)aUm_i_mUm] ( 
= Um x/p 2 - a 2 Um ~ B B 2 - 

1 IBm ~ U ] ( 2 B 2 ( B - a 2 )  ~ 
+ u m ~  h-~ + ~ m-, - um \ ( ~ - T B T ~ ) ~ )  

1 [(m+l)B mUm] a2 
U m ~  Urn-l- ( a 2 - 2 B + B 2 )  

° 2 )  
2B + a 2 
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After considerable simplifications we get 

- - 1  m +  1 

m 1 1 
m(P) - p--~-I + ( p -  1) -----------~ ( p -  1) - ' - - ~  ~ - ( p -  1) 5 ~mUm" 

That  is, 

l m + l  

m 1 1 aura-1 (s + 1) - x/(s + 1) 2 - a2j 1 
~ ( s )  = - + 

s s 2 s 2 Um s 2 ~mUm" 

On inverting, we obtain 

a(m + 1) f~  aUra-1, a(m + 1)t ulm+l(a(t - u))e -(t-u) du. 
E [ X ( t ) ] = m + t -  Um ~ -  Um Jo 

In the next section, we analyse the discrete analogue of the above process and find explicit 
expressions for the transition probabilities and the population mean. 

3.  B I R T H - D E A T H  P R O C E S S  W I T H  

D I S C R E T E  P A R A M E T E R  S P A C E  

In this section, we consider a discrete birth-death process X = {Xn, n = 0, 1, 2 , . . .  }, say, 
whose state space is A/" and during any time slot births occur according to a Bernoulli process 
with probability of a birth being Aj and deaths occur according to geometric distribution with 
probability of a death being #j when the population has size j [8]. These assumptions are different 
from the one used in [9]. In our process An, #n are given by (5) and Xn denotes the population 
size at discrete time epoch n. Define 

P m , j ( n ) = - P r ( X n = j [ X o = m ) ,  m, j E A f ,  n = 0 , 1 , 2 . . .  

the conditional probability that  the population has size j during the time slot n given its size 
was m during the slot 0. For brevity, let Pj(n) denote Prod(n). Then these probabilities satisfy 

Po(n + 1)  = 

Pj(n + 1) = 

Pn+m(n + 1) = 

Pn+m+l(n + 1) = 

Pj(n + 1) = 

(1 - Ao)Po(n) + # lPl (n) ,  

)~j-lVj-l(n) q- (1 - Aj - #j)Pj(n) + ~j+lVj+l(n), 

j = l , 2 , . . . , n + m - 1 ,  

An+m-lPn+m-l(n) + (1 - A,~+m - #n+m)Pn+m(n), 

;~,,+mP,~+,,,(n), 

O, for n + l < [j - m[. 

(10) 

In the following theorem, we give explicit expressions for the transition probabilities obtained 
by using a similar analysis as done in Theorem 2.2. 

THEOREM 3.1. For the process X, whose birth and death rates are given by (5), with Xo = m, 
the transition probabilities are given by the following. 

For n = O, 1 ,2 , . . . ,  if n - m is even, 

{ U23 n n )] j 1 j = 0 , 1 ,  n m 
- -  ' " ' ' ' 2 

1, 

n - m  n + m  
J -  2 ' " "  2 
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and if n - m is odd, 
n )] 

n - m - 1  
2 j - 1  ' 

n - m - 1  
j = 0 , 1 , . . . , - -  1, 

2 

n - m - 1  n + m - 1  
2 2 

In the following theorem, we derive explicit expressions for the mean population when there 

are m(>_ 0) individuals in the population initially. 

THEOREM 3.2. For the process 2~, whose birth and death rates are given by (5), with Xo = m, 
the population mean is given by 

a n ( n - m - I ) ~ 2 - 1  n ( 2 k + m + l - n ) U 2 k + m - l - n ,  i f n - m i s o d d ,  

Mm(n) = •=o 
(n-m)/2-1 

B 2 n _ l U m  an  E ( n )  i f n - m i s e v e n ,  
k=O 

where B = m - n + na + na(Um+l/Um). 
PROOF. We prove the theorem for the case when n - m is odd. A similar argument will hold for 

the case when n - m is even. 

Define 
(n+m-1)/2 

Go(s, n) = Z P2j+l (n)s 2j+'. 
j = 0  

Substi tuting for P2j+I from the previous theorem and doing some algebraic calculations we get 

Go(s, n)  --= D n - m ~ -  1 U21+ls2J+ 1 _ ~ n - rn - 1 U21+ls21 +1 
\ 2 +J  j - 1  ' j=0  2 

where D = 13n/2/Um. Let n - m = 2k + 1, then 

Ik~-~m{ 2 k + m + l )  
Go(s, n) = D \ k + j + 1 U2j+ls2J+l - 

I, 5=0 

E 2k+ U2j+ls2j+l 
j=o k - j - 1  ] 

2 k + m + l  2k + m + 1 e2 j+282j+l  _ ~--~ (~2j+282J+ 1 
_ D Im k + j + l  

sin 0 I, j=o /=0 

where Im{x} stands for the imaginary part  of x, 1 / a  = cos0, and O = e ~°. After considerable 

simplifications, we get 

Go(s,n) = s-~n0 Im ~-2ms-2m-1 (1 + s 

_ __D i m l ~ ( 2 k + m + l )  l}{o2(Z_k)S2(l_k)_1+(O2(Z_k)s2(l-k)-l)-l}_ 
sin 0 ( l=0 l s 

Therefore, 

dGo 
Mm(n) = - ~ s  8=1 

_ D { ( - 2 k -  1 ) ( s in (m+ 1)0) (2cos0) 2k+m+l 
sin 0 

+ 2(2k + m + 1) sin((m + 2)0) (2 cos 0) 2k+m } 

sin0 ~,l=o 7 (l - k ) ( s i n (2 ( / -  k)O) . 
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Using Un(cosS) = sin(n + 1)8/sinO, we get o{ m } 
Mm(n) = ~ ( - 2 k  - 1) Urn + 2(2k + m + 1) Um+l 

Subs t i tu t ing  2k = n - m - 1, we get, for n - m odd, 

an Cn-m-W2-1 (~.) 
Mm(n) = B - 2n---~m Z (2j + m + 1 - n)U2j+m-l-n. | 

j = 0  

4. T R A N S I E N T  P R O C E S S E S  

In  this section, we will show tha t  the  processes s tudied in the  last  two sections are t ransient .  

THEOREM 4.1. The processes X and X under consideration are transient. 

PROOF. We in t roduce the  following notations:  

OO OO OO 1 n 

A=Z c--Z 
n = 0  AnTFn ' AnTrn n = 0  n = 0  i=O 

T h e  process will be  nonexplosive if and only if C = oo, in which case there  is a unique bir th-  

dea th  process wi th  the  given t ransi t ion rates. This  process is recurrent  if and only if A = co, 

and  then  posit ive recurrent  if and only if B < oo. More details abou t  these quant i t ies  can be 

had f rom [10]. In  our  case, the  rates  An are bounded  above, and since the  series C represents  
the  expec ted  passage t ime  of the  process from 0 to  oo, it follows t h a t  C = oo. Therefore ,  we 

conclude t h a t  the  process is nonexplosive. 

For 0 < fl _< 1/4, 
Go 

where 

B = y ~ r n ,  
n----0 

AoA1 . . .  An-1 U2 (using (5)). 71" n - -  
~ 1 ~ 2 . . . / ~ n  

I t  follows t h a t  7rn --* c~, hence B = c~ and posit ive recurrent  is impossible.  In par t icular ,  for 

fl = 1/4  we have ~ = 1 and 
O0 

B = Z ( n  + l)2 = oo. 
n = 0  

Now, 

~-~°° 1 = 2 f i  1 (using (5)) A 
"-" ~"~" ~ .  o V"U"+' n-~O = 

o o  4 ~ - ' , A n  ~ 1 
- -  a2 ~ U2 ~ (since An _< 1, V n). 

n=O n + l  -- U 2 + l  

I t  follows t h a t  A < oo, so null-recurrence is also impossible.  In par t icular ,  for fl = 1/4  we have 
c~ = 1 and  

oo 1 
A < 

?-- (n + 2)2' 
n - ~ 0  

hence A < oo. Hence, the  processes X and 2d are t ransient .  Therefore,  the  s t a t iona ry  dis t r ibut ion 
does not  exist. | 
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