Header menu link for other important links
Biological performance of metal metalloid (TiCuZrPd:B) TFMG fabricated by pulsed laser deposition
S.T. Rajan, M. Das, P.S. Kumar, , B. Subramanian
Published in
Volume: 202
The aim of our study is to investigate the effect of boron with different ratios in Ti-Cu-Pd-Zr metallic glass (MG) matrix (Ti-Cu-Pd-Zr:B) fabricated by Pulsed Laser Deposition (PLD) for biomedical implants. The Ti based Thin Film Metallic Glasses (TFMGs) in combination with boron (in different atomic %) was assessed in attaining the combined properties, like outstanding corrosion resistant properties and good biocompatibility in this work. The disordered structure and amorphous nature of the Ti-Cu-Pd-Zr:B thin films systems were achieved by the PLD process and affirmed by XRD and transmission electron microscopy. The boron incorporation in the TFMG has been elucidated by XPS analysis. The boron containing films displays distribution of boron protuberances interleaved in the amorphous matrix was stated from SEM analysis. It is found that increase in atomic percentage of boron contents in TFMG results in the improvement in glass transition temperatures. The electrochemical parameters suggest better corrosion resistance and capabilities of passivity when boron percentage was increased in the film thereby preventing adverse biological reactions. TFMGs exhibited excellent hemocompatibility by preventing the platelet activation. MTT assay manifests increase in cell concentration with culture period on the TFMGs for the MC3T3-E1 preosteoblasts cells. Cell morphology was also studied which confirmed the viable state of the cells on the TFMG surfaces. The combination of such distinctive properties marks these TFMG systems as prospective aspirants for biomedical implants. © 2021
About the journal
JournalColloids and Surfaces B: Biointerfaces