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We study pure neutron matter in the BEC-BCS crossover regime using renormalization group
based low-momentum interactions within the Nozières-Schmitt-Rink framework. This is an attempt
to go beyond the mean field description for low-density matter. We work in the basis of so-called
Weinberg eigenvectors where the operator G0V is diagonal, which proves to be an excellent choice
that allows one to use non-local interactions in a very convenient way. We study the importance
of correlations as a function of density. We notice that there is a significant reduction of the BCS
critical temperature at low-densities as the neutron matter approaches the unitary limit.
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I. INTRODUCTION

The study of pairing correlations between nucleons is
important for both infinite matter such as neutron stars
as well as for finite nuclei, especially close to the drip
lines [1–8]. In neutron matter at low density, strong cor-
relations build up between the interacting pair of neu-
trons due to weak Pauli-blocking [2]. Evidence for such
correlations have been observed in nuclei close to the drip
lines, for example in 11Li where the two neutrons outside
the core become strongly correlated [5–8]. In addition to
playing a crucial role in halo nuclei, strong correlations
are important to explain the glitches as well as the cool-
ing rates of neutron stars [3, 4]. Typically a neutron star,
which is born at the end of a core collapse supernova,
consists of asymmetric nuclear matter, i.e. neutrons and
protons in β equilibrium with the electrons. In the in-
ner crust, protons and neutrons form clusters that are
surrounded by a superfluid neutron gas.

In this paper we study pure neutron matter and ana-
lyze the pairing correlations as a function of density. In
symmetric matter at low density, one expects a Bose-
Einstein condensate (BEC) of deuterons [9–11], but in
pure neutron matter, low density does not lead to a BEC
state, because there is no bound di-neutron state. Nev-
ertheless it results in matter being strongly correlated.
In fact, at low densities neutron matter tends almost to
a unitary gas as introduced by Bertsch [12] because of
the unusually large neutron-neutron scattering length of
≈ −18.7 fm [13]. At higher density, the pair correlations
become less important and the system can be described
within Bardeen-Cooper-Schrieffer (BCS) mean-field the-
ory. Pairing in neutron matter has been widely stud-
ied within the BCS theory (for an overview, see, e.g.,
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Chapter 8.2 of [14]), but in the strongly correlated regime
the transition temperature Tc is strongly overestimated
within this approach. In order to go beyond the mean
field approximation, we need to include pair correlations
above Tc. The Nozières-Schmitt-Rink (NSR) approach
involves the inclusion of two-particle correlations into the
density above Tc within the ladder approximation [15].
At higher density, a very similar approach by the Ros-
tock group [9, 10], building the ladder diagrams out of
quasiparticles instead of free particles, seems to be more
adequate.

In the present work, we will use renormalization group
based effective interactions (Vlow k) as the two-body input
(for a recent review, we refer the reader to [16]). Such
interactions were already employed to describe pairing
in finite nuclei and infinite matter [17–19]. They allow
for a model independent approach to the nuclear many-
body problem and one can use the residual dependence
on the renormalization scale as a tool to get an estimate
of the missing many-body physics. These interactions
are non-local. For a general potential V , the magni-
tude of the eigenvalues of the operator G0V , where G0

is the two-body Green’s function, quantifies the conver-
gence of a Born series expansion of the T matrix. If
there are sources of non-perturbative physics, these show
up in the so-called Weinberg eigenvalues of this opera-
tor [20, 21, 23]. For example, in free space a bound state
corresponds to a pole in the T matrix. The Weinberg
eigenvalue equation for the operator G0V at the binding
energy is just the Schrödinger equation for a bound state
and hence the eigenvalue equals 1. In the many-body
system, the formation of Cooper pairs is very similar to
the formation of bound states. This idea has been previ-
ously used to obtain the BCS pairing gap by looking at
the eigenvalues crossing 1 close to the Fermi surface [23].
In this paper we generalize this idea to finite tempera-
ture, which is the Thouless criterion for the onset of pair-
ing [15, 24, 25]. In addition to obtaining the transition
temperature, the basis where the operator G0V is diago-
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nal offers additional simplification for the calculation of
the correlated density.
This paper has been organized as follows. In section II

we discuss the finite-temperature generalization for the
Weinberg eigenvalue equation and use the eigenvalues to
calculate the BCS critical temperature. In section III
we obtain a formula for the correlated density within the
NSR approach. We present our results in section IV and
discuss the critical temperature as a function of density
and we discuss the implications of our results for the un-
derstanding of pairing correlations in low-density neutron
matter. In section V, we summarize and give an outlook
to improvements of the theory that should be addressed
in future studies.
To simplify the notation, we use units with ~ = c =

m = kB = 1, where ~ is the reduced Planck constant, c
is the speed of light, m is the neutron mass, and kB is
the Boltzmann constant. To convert energies from fm−2

into MeV one therefore has to multiply them by ~
2/m =

41.44MeVfm2, and to convert momenta from fm−1 into
MeV one has to use ~c = 197.3MeVfm.

II. FINITE-TEMPERATURE EIGENVALUES

AND CRITICAL TEMPERATURE

In this study we are interested in the transition from
the normal to the paired state. The critical temperature
that determines the on-set of pairing correlations can be
obtained by the Thouless criterion, which states that if
the T matrix does not exhibit a pole, the temperature
is above the superfluid transition temperature [24, 25].
Therefore we look for the poles of the in-medium finite-
temperature T matrix. We do this using the eigenvalues
of the operator G0V , where G0 is the non-interacting
two-body Green’s function [20, 21, 23].
Let us briefly show how this works in free space. We be-

gin by considering for a given energy E a basis {|Γ(E)〉}
such that the operator G0(E)V is diagonal, i.e.,

G0(E)V |Γ(E)〉 = η(E)|Γ(E)〉, (1)

where η(E) is the eigenvalue [20, 21, 26]. The form of the
Green’s function determines the properties of the eigen-
value. In free space at zero temperature, for example,
we have G0(E) = (E − H0)

−1 = (E − K2/4 − q2)−1,
where H0 is the non-interacting hamiltonian and K and
q are the total and relative momenta of the two parti-
cles, respectively. Then the eigenvalues are complex for
positive energies (to be precise, for E > K2/4) and real
for negative energies. The eigenvalue equation (1) can be
inverted to yield the Schrödinger equation:

(

H0 +
V

η(E)

)

|Γ〉 = E|Γ〉. (2)

Therefore the eigenvalues have another interpretation: it
is the factor by which the potential should be scaled in
order to support a bound state at the given energy E. If

the potential does allow a bound state at an energy Eb,
then the corresponding eigenvalue η(Eb) equals 1.
In [21, 22], the eigenvalues were used as a diagnostic to

track the “perturbativeness” of the particle-particle lad-
ders, both in free space and in-medium, when the renor-
malization group based interactions Vlow k were used as
inputs, and [23] extended the eigenvalue framework to
study pairing at zero temperature. Since we need the
transition temperature, the first step is to generalize the
eigenvalue equation (1) to finite temperature T = 1/β.
We will use the Matsubara (imaginary time) formalism

[27], in which the non-interacting single-particle Green’s
function is given by

G
(1)
0 (k, ωn) =

1

iωn − ǫk + µ
, (3)

where ωn = (2n + 1)π/β is a fermionic Matsubara fre-
quency and ǫk is the single-particle energy. The corre-
sponding two-body Green’s function is obtained from

G
(2)
0 (K,q, ωN) = −

1

β

∑

ωn

G
(1)
0

(K

2
+ q, ωn

)

× G
(1)
0

(K

2
− q, ωN − ωn

)

(4)

where ωN = 2πN/β is a bosonic Matsubara frequency.
Using standard techniques [27] one can perform the sum
over ωn, and the retarded two-body Green’s function at
finite density and temperature for real energy ω is ob-
tained by analytic continuation, iωN → ω + iη:

G0(K,q, ω) =
1− f(ξK/2+q)− f(ξK/2−q)

ω − ξK/2+q − ξK/2−q + iη
. (5)

where f(ξ) = 1/(eβξ + 1) is the Fermi-Dirac distribution
function and ω = E − 2µ, ξk = ǫk − µ are the energies
measured from the chemical potential.
Working in momentum space in a partial wave basis,

and considering only the 1S0 channel, we can write the
generalization of the eigenvalue equation to finite tem-
perature as follows:

2

π

∫ qmax

0

dq′q′2v(q, q′)G0(K, q′, ω)Γ(q′,K, ω)

= η(K,ω)Γ(q,K, ω) , (6)

where v(q, q′) is the matrix element of the interaction in
the 1S0 channel and G0 is the angle average of G0. Note
that in equation (6) we solve for V G0 instead of G0V in
equation (1) analogous to [21, 23]. Both operators have
the same eigenvalue spectrum, but the choice V G0 is
more convenient in numerical calculations since it allows
for direct integration over singularities. In the case of a
free particle spectrum, ǫk = k2/2, the angle average can
be done analytically with the result

G0(K, q, ω) =
Q(K, q)

ω + 2µ−K2/4− q2 + iη
, (7)
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FIG. 1: (color online) Finite temperature Weinberg eigenval-
ues: Largest eigenvalue as a function of center of mass en-
ergy Ecm = E −K2/4 for different temperatures T and fixed
µ = 0.5 fm−2. The left panel corresponds to a center-of-mass
momentum K = 0 fm−1, the right one to K = 1.0 fm−1.

where the angle-averaged finite-temperature Pauli-
blocking factor Q(K, q) is given by

Q(K, q) =
2T

Kq
log

(

1 + eβ[(K/2+q)2−2µ]/2

1 + eβ[(K/2−q)2−2µ]/2

)

− 1 . (8)

Pairing usually manifests itself as an instability in the
two-particle Green’s function or the T matrix [15, 23, 24].
At zero temperature, the eigenvalues for K = 0 diverge
as E → 2µ and cross 1 at energy E = 2µ ± ∆, where
∆ is the zero-temperature pairing gap [23]. Analogously,
at finite temperature, setting the momentum of the cen-
ter of mass K = 0 and the energy E = 2µ, one expects
at least one eigenvalue to cross 1 in Eq. (6). The tem-
perature corresponding to such a crossing is the critical
temperature Tc marking the on-set of the transition from
the normal phase to the paired phase.
This is illustrated in Figs. 1 and 2. In our calculations,

we use matrix elements v(q, q′) from [28] that were ob-
tained from the AV18 interaction with a smooth regulator
(F.D. regulator ǫ = 0.5) at a cutoff of Λ = 2 fm−1 unless
otherwise stated.
Fig. 1 shows the magnitude of the largest finite temper-

ature eigenvalue as a function of center of mass energy for
different values of the center of mass momentumK. Note
that for low temperatures, when K = 0, the eigenvalue
shows a singular behavior close to the Fermi surface, i.e.,
at E = 2µ, which signals the pairing instability. Increas-
ing the temperature T or the total momentum K, the
Pauli blocking factor gets smeared and the eigenvalues
are no longer singular. The largest Weinberg eigenvalue
as a function of temperature for energy E = 2µ and cen-
ter of mass momentum K = 0 is shown in Fig. 2. The
temperature at which the eigenvalue equals 1 is the criti-
cal temperature (for example, the transition temperature
for µ = 0.25 fm−2 is indicated by an arrow in the figure).
Fig. 3 shows the transition temperature Tc, determined
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FIG. 2: (color online) Finite temperature Weinberg eigenval-
ues: Largest eigenvalue for E = 2µ and K = 0 as a function of
T for different values of the chemical potential µ. The tem-
perature where the eigenvalue crosses 1 (horizontal dashed
line) corresponds to the critical temperature Tc.
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FIG. 3: (color online) Transition temperature as a function of
µ obtained from the pole in the T matrix, for different values
of the cutoff (Λ = 2, 2.5 and 3 fm−1).

from the Weinberg eigenvalues, as a function of µ for dif-
ferent cutoffs Λ between 2 and 3 fm−1. The observed cut-
off independence is probably a peculiarity of the present
approach to calculate Tc from the ladder diagrams with
a free single-particle spectrum, the only many-body ef-
fect being Pauli blocking that is not affected by the the
truncation of the model space (as long as the cutoff is
above kF ).

In the next section, we set up the correlated density
in the Weinberg eigenvector basis and this allows one
to generalize the NSR approach to non-local and non-
separable interactions.
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III. WEINBERG EIGENVALUES AND THE

NOZIÈRES-SCHMITT-RINK APPROACH

The NSR approach [15] accounts for the fact that there
can be strong pair correlations aleady above the transi-
tion temperature Tc. Although there is no bound di-
neutron, the presence of the surrounding medium induces
strong correlations and one sometimes speaks of “pre-
formed pairs” that are similar to Cooper pairs, but not
yet condensed into the K = 0 state. A very similar ap-
proach was developed by the Rostock group [9, 10], where
it was pointed out that one should think of the entire pic-
ture in terms of free and correlated quasiparticles instead
of free and correlated neutrons. Here, we will suppose
that the quasiparticle dispersion relation ǫk is, up to a
possible constant shift that can be absorbed in the chem-
ical potential, close to the free one, ǫk ≈ k2/2. The effect
of the modification of the momentum dependence of the
quasiparticle dispersion (effective mass) on the BCS gap,
calculated within the Hartree-Fock (HF) approximation
using chiral low-momentum interactions including three-
body force, was studied in [29] and it was found that this
effect is very weak at low densities (see Fig. 10 of [29]).
Within the NSR approach, the density of neutrons at

finite temperatures can be decomposed into the following
pieces:

ρ = ρfree + ρcorr. (9)

The first term, ρfree, is the density of uncorrelated neu-
trons,

ρfree = 2

∫

d3k

(2π)3
f(ξk) , (10)

where the factor of 2 accounts for the spin degeneracy.
The second term, ρcorr, is the contribution due to two
neutron scattering and is given by

ρcorr = 2

∫

d3k

(2π)3
1

β

∑

ωn

(

G
(1)
0 (k, ωn)

)2

Σ(k, ωn), (11)

The single-particle self-energy Σ (see Fig. 4) is calculated
in ladder approximation, i.e.,

Σ(k, ωn) =

∫

d3K

(2π)3
1

β

∑

ωN

G
(1)
0 (K− k, ωN − ωn)

× T
(

K,
K

2
− k,

K

2
− k, ωN

)

, (12)

with the neutron-neutron T matrix that satisfies the fol-
lowing equation:

T (K,q,q′, ωN) = V (q,q′)

+

∫

d3q′′

(2π)3
V (q,q′′)G

(2)
0 (K,q′′, ωN )V (q′′,q′)

+ · · · . (13)

Substituting Eq. (12) into Eq. (11) and using (G
(1)
0 )2 =

−∂G
(1)
0 /∂µ, we get

ρcorr = −2

∫

d3K

(2π)3
1

β

∑

ωN

∫

d3q

(2π)3
1

β

∑

ωn

(

∂

∂µ
G
(1)
0

(K

2
+ q, ωn

)

)

G
(1)
0

(K

2
− q, ωN − ωn

)

T (K,−q,−q, ωN ). (14)

Next we expand the T matrix in a partial-wave basis and
pick out the s-wave (l = 0) contribution:

T (K,−q,−q, ωN ) = 4πTl=0(K, q, q, ωN). (15)

Since we can replace q by −q in Eq. (14), the derivative

∂/∂µ can act on either of the Green’s functions G
(1)
0 and

we can therefore let it act on both if we multiply by a
factor of 1

2 . Using the definition (4), we may therefore
write

ρcorr =

∫

d3K

(2π)3
1

β

∑

ωN

∫

d3q

(2π)3

(

∂

∂µ
G
(2)
0 (K,q, ωN )

)

× Tl=0(K, q, q, ωN ) . (16)

Now we rewrite also Eq. (13) in a partial-wave basis and
insert it into Eq. (16). Since we consider only the s wave,

we may replace G
(2)
0 by its angle average G

(2)

0 . In an
analogous way as explained above, we account for the

derivative ∂/∂µ acting on all the G
(2)

0 if we multiply the
i-th term by a factor 1

i :

ρcorr =
∂

∂µ

∫

K2dK

2π2

1

β

∑

ωN

[ 2

π

∫

q2dq G
(2)

0 (q)v(q, q)

+
1

2

2

π

∫

q2dq
2

π

∫

q′2dq′G
(2)

0 (q)v(q, q′)G
(2)

0 (q′)v(q′, q)

+ · · ·
]

. (17)

For brevity, the arguments K and ωN have been dropped

in G
(2)

0 . The terms in the square brackets can be summed
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FIG. 4: Feynman Diagrams for the T matrix and the self
energy.

so that

ρcorr = −
∂

∂µ

∫

K2dK

2π2

1

β

∑

ωN

Tr log
(

1− G
(2)

0 v
)

, (18)

where the trace corresponds to the integral over q, the

product G
(2)

0 v has to be understood as a product of ma-
trices having continuous indices q, q′, and the logarithm
is a matrix logarithm defined by its power series.
Using an analytic continuation as in Eq. (5) and stan-

dard techniques to transform the frequency sum into an
integral over real energies [27], we obtain

ρcorr = −
∂

∂µ

∫

K2dK

2π2

∫

dω

π
g(ω)

× ImTr log
(

1−G0v
)

, (19)

whereG0 is the retarded two-body Green’s function given
in Eq. (7) and g(ω) = 1/(eβω − 1) is the Bose function.
Note that in spite of the pole of the Bose function the
integrand is well behaved at ω = 0 because Q(K, q) van-
ishes at K2/4+ q2 = 2µ and therefore ImG0 vanishes at
ω = 0. Since the trace is invariant under a change of the
basis, it is most convenient to calculate it in the basis
of Weinberg eigenvectors where G0v is diagonal. In this
way we get

ρcorr = −
∂

∂µ

∫

K2dK

2π2

∫

dω

π
g(ω)

× Im
∑

ν

log
(

1− ην(K,ω)
)

. (20)

The expression (11) for ρcorr corresponding to the orig-
inal NSR scheme [15] does not only describe the effect of
correlations. A non-vanishing real part of the on-shell
self-energy shifts the quasiparticle energies and thereby

strongly affects the density at fixed chemical potential.
However, there is no reason to assume that the shift cal-
culated with only the two-body interaction in the 1S0

channel is realistic, and as mentioned before, this shift
should be already included in the quasiparticle dispersion
relation ǫk. One should therefore subtract the real part
of the on-shell self-energy ΣR(k, ξk) [where ΣR denotes
the retarded self-energy, related to the imaginary-time
self-energy Σ of Eq. (12) by analytic continuation] from
the self-energy in Eq. (11). This prescription was used
in symmetric matter [9–11], see appendix for more de-
tails. In the present work, we will use a slightly simplified
prescription, namely we will subtract only the energy-
independent leading term of the self-energy,

Σ1(k) =

∫

d3p

(2π)3
V
(k− p

2
,
k− p

2

)

f(ξp) . (21)

This corresponds to the HF potential, except that it is
not calculated self-consistently. The change in density
due to Σ1 is given by

ρ1 = 2

∫

d3k

(2π)3
∂f(ξk)

∂ξk
Σ1(k) . (22)

With the help of the property f(ξk)f(ξp) = g(ξk+ξp)[1−
f(ξk)− f(ξp)] and after transformation to total and rel-
ative momenta, this can be rewritten in a form with no
angular integrals as

ρ1 = −
∂

∂µ

∫

K2dK

2π2

2

π

∫

q2dq g
(K2

4
+ q2 − 2µ

)

× v(q, q)Q(K, q) , (23)

The corrected correlated density is now given by ρcorr −
ρ1.
We have seen that the use of the Weinberg eigenvec-

tor basis, where G0v is diagonal, offers a convenient way
to apply the NSR scheme to the case of a non-local and
non-separable interaction, such as the low-momentum in-
teraction Vlow k. We can now study the total density at
different temperatures above the transition temperature
and analyze the importance of correlations. We present
our results in the next section.

IV. RESULTS AND DISCUSSION

In section II we presented a method to obtain the tran-
sition temperature Tc as a function of the chemical po-
tential µ using the Weinberg eigenvalues. In BCS theory,
one assumes that there are no correlations above Tc, and
therefore one computes the transition temperature as a
function of the density ρ by using ρ = ρfree according to
Eq. (10). However, as discussed in the preceding section,
the presence of correlated pairs above Tc changes the re-
lation between µ and ρ. In Fig. 5, we show our results
for the correlated density ρcorr at the transition tempera-
ture Tc with (upper panel) and without (lower panel) the
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FIG. 5: (color online) Correlated density ρcorr at T = Tc(µ)
with (upper panel) and without (lower panel) the correction
(23) as functions of the chemical potential µ. The different
curves were obtained with Vlow k interactions corresponding
to cutoffs Λ = 2, 2.5, and 3 fm−1.

subtraction of the contribution due to the HF like shift,
Eq. (23), as functions of the chemical potential µ. We
observe that without the subtraction, ρcorr is monoton-
ically increasing, while the subtraction reduces it a lot,
especially at large µ (high density). We did the calcula-
tions for different values of the cutoff Λ between 2 and
3 fm−1, and as it was the case for Tc (cf. Fig. 3), the cut-
off dependence of ρcorr without the correction for the HF
like shift is very weak. Therefore, one can conclude that
the correlated density without the subtraction as defined
in III is well constrained by the NN phase shift analo-
gous to the transition temperature Tc. Such weak cut-off
dependence was already seen in the BCS pairing gaps
in [17]. However, we note that the corrected densities
depend on the cutoff, especially at high density. This de-
pendence can be traced back to the HF approximation of
the subtracted on-shell self energy. Only with low cutoffs
where the interaction has been sufficiently softened, will
the HF self-energy subtraction suffice, while in the case
of Λ = 3 fm−1 the correlated density ρcorr does not vanish
at large µ (i.e., high density). The cut-off dependence of
the HF contribution at high density is an indication for
missing three-body and other higher order effects.

Fortunately, at the densities where the cutoff depen-
dence from this correction is significant, the total density
is completely dominated by the free one. Therefore, the
total density is only weakly cutoff dependent. This can be
better understood from Fig. 6, where we show the ratio
ρcorr/ρfree of the correlated density at T = Tc to the free
density as a function of the chemical potential µ, again
for cutoffs Λ = 2, 2.5, and 3 fm−1. The figure also shows
the effect of the HF like subtraction. The lower curves
are the ratios calculated with the subtraction (23), while
the upper curve does not have the correction. Without
the subtraction, we can clearly see the over-all change of
the densities due to the HF like shift of the quasi-particle
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FIG. 6: Ratio of the correlated density to the free density
(ρcorr/ρfree = ρ/ρfree−1) as function of the chemical potential
µ at T = Tc(µ) with (lower curves) and without (upper curve)
the subtraction term (23). The different curves correspond
to cut-offs Λ = 2, 2.5, and 3 fm−1. We see that the cut-off
dependence is drastically lowered as compared to the upper
panel of Fig. 5 because of the dominant contribution from the
free density.

energies. Once we include the subtraction, the densities
converge towards the free ones in the limit of large µ, i.e.,
at high densities. This shows clearly that at high den-
sities the shift comes only from the first-order (HF like)
term and has nothing to do with correlated pairs. This
was expected, since at high densities, pair correlations
are weak, as one can see from the low critical tempera-
ture in Fig. 3. However, at low densities, the correlations
lead to a sizeable enhancement of the density. In other
words, if one fixes the density ρ, the correlations lead to
a reduction of the chemical potential µ. This results in a
reduction of the critical temperature Tc as a function of
ρ with respect to the BCS one.

This brings us to the main result of our study, namely
the density dependence of the transition temperature,
displayed in Fig. 7. The BCS result, obtained with
ρ(µ) = ρfree(µ), is shown as the dotted line. If we
calculate the total density according to Eq. (9), includ-
ing the correction in Eq. (23), we obtain the NSR re-
sults shown as the solid, dashed, and dashed-dotted
lines (corresponding again to the three cutoffs Λ = 2,
2.5, and 3 fm−1) We note that the BCS and NSR re-
sults agree above kF ∼ 0.8 fm−1, i.e., at densities above
0.017 fm−3 ∼ 0.1ρ0 (ρ0 = 0.17 fm−3 being the saturation
density of nuclear matter), as one could have anticipated
from the vanishing of ρcorr at high density. Notice that
within the original NSR scheme, i.e., without the sub-
traction of Eq. (23), this would not have been the case.
At lower densities, the NSR transition temperature is sig-
nificantly lower than the BCS one. Not surprisingly, the
pair correlations above Tc are most important at low den-
sities, where the neutron gas is in the BCS-BEC crossover
regime close to the unitary limit.

For comparison we show as the dashed-double dot-
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FIG. 7: (color online) Transition temperature Tc as a function

of kF = (3π2ρ)1/3. Solid, dashed, and dashed-dotted lines:
full NSR results with correction obtained with Vlow k interac-
tions corresponding to cutoffs Λ = 2, 2.5 and 3 fm−1; dotted
line: corresponding BCS results (ρ = ρfree); dashed-double
dotted line: result for a contact interaction corresponding to a
scattering length a = −18 fm within the original NSR scheme
[30].

ted line the results obtained within the NSR scheme
with a contact interaction [30]. The contact interaction
is characterized by the scattering length that is set to
a = −18 fm. By fixing the scattering length, the cou-
pling constant and the cutoff are related, and when one
takes the cutoff to infinity the coupling constant goes
to zero. Therefore there is no correction from the sub-
traction of the first-order (HF like) contribution in this
scheme. We see that the results of the full calculation
are in good agreement with the results for the contact
interaction up to kF ∼ 0.2 fm−1, i.e., only up to a tiny
density of ∼ 0.0003 fm−3 ∼ 0.002ρ0. At higher densities,
the combination of the finite range of the interaction and
Pauli blocking leads to a suppression of pairing correla-
tions.

By comparing the results obtained with different cut-
offs (solid, dashed, and dashed-dotted curves in Fig. 7),
one observes a weak cut-off dependence that arises at
high densities. This sets the scale for the missing higher-
order contributions as well the missing three and higher-
body forces. Analogous to Fig. 5, we see that the cut-off
dependence is weak as it is over-whelmed by the contri-
butions from ρfree at high densities due to Pauli block-
ing. The cut-off dependence seen here will be different
if one were to, for example, include corrections to the
quasi-particle energies. These effects become especially
important at high densities [29].

Finally, in order to discuss the connection between low-
density neutron matter and the BCS-BEC crossover, we
show in Fig. 8 the same results as in Fig. 7, but plotted in
a different way. In the case of a contact interaction, the
crossover is characterized by the dimensionless parame-
ter 1/(kFa): for 1/(kFa) ≪ −1, the system is in the BCS

-3 -2 -1 0
1/(k

F
 a)

0

0.05

0.1

0.15

0.2

0.25

T
c/E

F

NSR + correction
BCS
contact interaction

FIG. 8: (color online) Same results as shown in Fig. 7, but
Tc is scaled by the Fermi energy EF = k2

F /2 and shown as
function of the dimensionless BEC-BCS crossover parameter
1/(kF a).

regime; for |1/(kFa)| . 1, the system is in the crossover
regime, 1/(kFa) = 0 corresponding to the unitary limit;
and for 1/(kFa) ≫ 1, the system forms a BEC of bound
dimers. While in experiments with ultracold atoms the
whole crossover can be studied by varying a [31, 32], only
the region of negative 1/(kFa) is accessible in neutron
matter by varying kF . In Fig. 8 we show the dimen-
sionless ratio Tc/EF , (EF being the Fermi energy) in
neutron matter within NSR (solid line) and BCS (dotted
line) as well as the result for a contact interaction with
a = −18 fm within the NSR approach (dashed-double
dotted line), as functions of 1/(kFa). As we already ob-
served in Fig. 7, the NSR results for the neutron-neutron
and contact interactions are in good agreement at very
low densities [1/(kFa) . −0.8], while at 1/(kFa) & −0.1
the finite range of the neutron-neutron interaction leads
to a strong suppression of pairing correlations so that
the system returns to the BCS regime. The point where
neutron matter is closest to the unitary Fermi gas is
1/(kFa) ∼ −0.2, corresponding to a very small density
of ∼ 0.0007 fm−3 ∼ 0.004ρ0.

On a quantitative level, there still remain strong uncer-
tainties. Although we find at low densities a significant
reduction of Tc with respect to the BCS result, other
many-body effects may lead to additional suppression of
Tc. For instance, the inclusion of the HF quasiparticle ef-
fective mass, m∗ < m, reduces the density of states and
therefore the critical temperature. In this case, also the
cutoff-independence of the results would be lost. Such
effects were studied, e.g., in [29], and they are impor-
tant at higher density, but not in the cross-over region
on which we are focusing here. Screening of the interac-
tion by the medium, which is not included in the present
calculation either, can also result in a dramatic suppres-
sion of pairing [33]. That corrections beyond NSR have
to play a role can be seen, for instance, in the case of the
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contact interaction in the unitary limit (a → ∞). In this
case, the NSR scheme predicts a critical temperature of
Tc/EF = 0.23 [30], which is strongly reduced compared
with the corresponding BCS result of Tc = 0.49EF , but
still higher than the experimental value Tc = 0.167EF

measured in an ultracold gas of trapped 6Li atoms [34].
These numbers suggest that, in the case of a contact in-
teraction near the unitary limit, the NSR scheme is able
to describe the essential effect. However, it is possible
that in neutron matter, where the interaction is much
more complex than in ultracold atoms, screening correc-
tions might be more important. This question needs fur-
ther investigations.

V. SUMMARY AND OUTLOOK

In this paper, we study the effect of correlations above
the superfluid transition temperature in neutron matter
in the BEC-BCS crossover regime within the Nozières-
Schmitt-Rink scheme. We use as input the renormal-
ization group based low-momentum effective interaction
Vlow k. In order to deal with the non-local interaction, we
use the Weinberg basis, where the operator G0V is diag-
onal. Our results show that the transition temperature
is lower than the BCS result at low densities, while at
high densities we get back the BCS result. At very low
densities, our results are in reasonable agreement with
those obtained with a contact interaction.

Our main goal is to demonstrate the importance of
beyond BCS physics in neutron matter in the crossover
regime, and our study is far from being exhaustive. For
instance, we use a free particle spectrum and correct
for the constant shift of quasi-particle energies using
the static Hartree-Fock approximation. We also neglect
three-body forces for the sake of simplicity.

It would certainly be interesting to incorporate a three-
body force or at least a density dependent two-body
force, although one expects such effects to be important
at higher densities [29] where the BCS results hold. A
calculation including the three-body force would be far
more involved. For example, if one includes a density de-
pendent two-body force, the interaction will have to be
evaluated self-consistently as the correlations are built
into the total density. Similarly, a subtraction of the
full on-shell self-energy within the ladder approximation
would reduce the cut-off dependence seen in Figs. 5, 6
and 7, but such a calculation is beyond the scope of the
current work, although it is worth-while investigating in
future.

Finally, other many-body effects like particle-hole cor-
relations (screening) [33] are also important. In the
low-density limit, these effects are known to reduce the
critical temperature by a factor of 1/(4e)1/3 ≈ 0.45
(Gor’kov-Melik-Barkhudarov correction [35]). Therefore,
they should be included in future studies.
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Appendix: Justification of the subtraction

In this appendix we wish to explain in more detail
the necessity of subtracting the mean-field shift from
the self-energy when calculating the correlated density.
As pointed out in section III, a problem of the original
NSR approach [15] is that the self-energy, including its
energy-independent part leading to a mean-field-like shift
of the single-particle energies, is treated only perturba-
tively. But the shift of the single-particle energies results
in a strong correction of the density which has nothing
to do with pair correlations and which in a more consis-
tent calculation would be absorbed to a large extent in a
corrected chemical potential.
In the NSR approach, the self-energy Σ is calculated

with free propagators G
(1)
0 given by Eq. (3). However,

in a more complete calculation, one should use (self-
consistent) dressed Green’s functions

G(1)(k, ωn) =
1

iωn − ξk − Σ(k, ωn)
(A.1)

throughout the calculation of Σ. Since this is very diffi-
cult, one should at least approximate the dressed Green’s
functions by quasiparticle ones

G̃
(1)
0 (k, ωn) =

1

iωn − ξ̃k
(A.2)

where the quasiparticle energy ξ̃k includes the shift due
to the real part of the self-energy and is determined self-
consistently as the solution of

ξ̃k = ξk +ReΣR(k, ξ̃k) . (A.3)

Applying the BCS approximation within this quasipar-
ticle picture, the critical temperature Tc is determined

from the pole in the T matrix, calculated with G̃
(1)
0 in-

stead of G
(1)
0 , and the density ρ from Eq. (10) with

ξ̃k instead of ξk. The main effect of replacing par-
ticles by quasiparticles comes from the effective mass
[m∗ = kF /(dξ̃k/dk)k=kF

], since it changes the density
of states, while a momentum-independent shift of the
single-particle energies has no effect at all on the relation
between Tc and ρ since it can be absorbed in an effective
chemical potential µ∗.
Let us now go beyond the BCS approximation. In the

approach developed in Ref. [36] in the context of solid-



9

state physics and applied to nuclear matter in Refs. [9–
11], only the correlation contribution, i.e., the energy-
dependent part of the self-energy, is treated perturba-
tively. Then the approximation for the corrected single-
particle Green’s function reads

G(1)(k, ωn) = G̃
(1)
0 (k, ωn)

+
(

G̃
(1)
0 (k, ωn)

)2 (

Σ(k, ωn)− ReΣR(k, ξ̃k)
)

. (A.4)

Note that ReΣR(k, ξ̃k) has to be subtracted from

Σ(k, ωn) since it is already contained in G̃
(1)
0 . The den-

sity is now obtained by summing G(1)(k, ωn) over ωn and
integrating over k, which gives an equation for ρcorr anal-
ogous to Eq. (11) but with a subtraction term.
To arrive at the subtraction we use in section III,

two additional approximations are made. First, we as-
sume that the single-particle spectrum ξ̃k can be approx-
imated by ξ̃k ≈ ǫk−µ∗, i.e., we neglect the effective mass
and other more complicated momentum dependences of

ReΣR(k, ξ̃k). As it was shown in [29] (where ξ̃k was cal-
culated in the HF approximation), these effects are not
important in the low-density region we focus on. Note
that now the quantity called µ in sections II-IV is not the
real chemical potential but the effective one, µ∗, which
includes the mean-field shift.

Second, we replace ReΣR(k, ξ̃k) in the subtraction
term by the first-order (HF) term Σ1(k), Eq. (21). The
reason for this is a purely practical one. While in the case
of a separable potential the correlated density with sub-
traction can be reduced to a simple expression containing
only the in-medium scattering phase shift [9–11, 36], we
did not succeed to derive an analogous formula in the
case of our non-separable interaction. The direct calcu-
lation of the on-shell self-energy ΣR(k, ξ̃k), however, is
numerically quite involved. This approximation to re-
place ReΣR(k, ξ̃k) by Σ1(k) is not valid for large cut-offs
and this is the main reason for the cutoff dependence of
our results with subtraction.
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