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Abstract: In this article, we perform a computational investigation of a nanopore connected to external fluidic
reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-
sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an
electric field is applied, that is directed from the macropore towards the micropore reservoir, we observe local
nonequilibrium chaotic current oscillations. The current oscillations originate at the micro−nanopore interface
owing to the local cascade of ions – we refer to this phenomenon as the “Avalanche effects”. We mathematically
quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a
monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra
maps of the chaotic currents depict a low frequency “1/f” type dynamics for the voltage chaos and “1/f2” type
dynamics for the macropore reservoir chaos. The results presented here offer new avenues to manipulate ionic
diodes and fluidic pumps.
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I. INTRODUCTION

Nanofluidic devices have witnessed a tremendous surge in recent years [1, 2], with applications ranging from single
molecule sensing [3, 4], DNA sequencing [5–8] and water desalination [9]. However, fabricating a single nanopore
with finite precision is often a challenging task. Oftentimes, hundreds of thousands to millions of nanometer sized
pores (see Fig. 1(a)) are exposed to the microfluidic reservoir filled with saline solution [10–13]. To a large extent,
the physics of these systems can be understood by considering a single nanopore connected to microfluidic reservoirs.
Under the application of an electric field, the ionic solution is driven through the nanopore and ionic current mea-
surements are recorded as an output. Recent experiments by Miller et al. [10] and Wang et al. [11] revealed that ionic
current can be rectified when a polycarbonate track etched nanoporous membrane is integrated with an asymmetric
microfluidic reservoir geometry. These membranes were suggested as potential ionic diodes. The asymmetry between
the reservoirs was achieved by changing their cross-sectional areas. The reservoir asymmetry along with the polarity
dependent propagation of the enriched and depleted concentration polarization zones were identified as the funda-
mental mechanisms for current rectification. The primary advantage of these diodes over other ionic diodes [14, 15]
is to avoid manipulating the geometry of the nanopore or the surface chemistry of the nanopore to rectify current.
The experimental work of Wang et al. [11] also observed oscillations in the output current upon systematic increase

in the degree of asymmetry between the fluidic reservoirs and at larger bias voltages. The chaotic current oscillations
were predominantly observed when the applied electric field is directed from the macropore towards the micropore
reservoir (ON state). The exact physical mechanism behind the current oscillations in their experiments is still un-
clear. However, there are several mechanisms postulated for the nonequilibrium current fluctuations/oscillations in
nanoporous membranes. Powell et al. [16] attributed the current fluctuations to the dynamical changes in the ionic dif-
fusivity and the corresponding ionic mobility. Other mechanisms include nanopore wall surface charge fluctuations [17],
conformational changes of the pore structural constituents [18], nanobubble formation inside the nanopore [19] and
water splitting [20]. Furthermore, strong concentration polarization effects resulting in depletion of ions near the
interfaces of micro−nanopore integrated systems have resulted in instability of ionic charges and correspondingly
in electro−osmotic flow near these interfaces. These instabilities were also argued as the source of chaotic current
oscillations [21–26].
In this article, we perform numerical simulations of a single nanoporous membrane connected to asymmetric reser-

voirs of a few hundreds of nanometers to examine the experimental findings of Wang et al. [11]. The two asymmetric
reservoirs are denoted as the micropore and macropore reservoirs. When an electric field is applied from the macropore
to the micropore reservoir (ON state), we observe chaotic current oscillations. We show that the current oscillations
are due to the coupling between the electric field and the enriched concentration zone observed at the entrance of the
micro−nanopore junction. The dynamical cascading or clustering of ions – referred to as “Avalanche effects” – near
the enriched micro−nanopore junction leads to temporal changes in the electric potential, which in turn results in
unstable/chaotic currents. We demonstrate that the strong clustering of ions is due to the introduction of an asym-
metry in the fluidic reservoirs. Our observations are analogous to the financial price dynamics [27] and escape panic
dynamics [28]. The price and traffic cascadement is due to the memory effects in the system owing to a random mem-
ory force. However, in this article, the dynamic cascadement of ions presumes a deterministic long range electrostatic
force near the external microporous environment in conjunction with a nanoporous membrane. We mathematically
quantify chaos in terms of the maximum Lyapunov exponent. We observe a positive Lyapunov exponent augmenting
instability/chaos. Furthermore, we demonstrate the temporal power spectra map of the numerical chaos and draw
conclusions on the dominant source of chaos from our power spectral density analysis.

II. THEORY

To understand the ion transport dynamics in a micro reservoir−nanopore−macro reservoir system (hereafter simply
referred to as micro−nano−macro system), we compute the axial changes in the potential (φ) and ionic concentration
(ci) using the area-averaged multi−ion transport model (AAM). A detailed derivation of the model is discussed
in our earlier work [29] and in this section we present a concise summary of the model. We consider the 2−D
Poisson−Nernst−Planck equations and assume ideal nonpolarizable electrodes, i.e., Faradaic reactions are neglected.
The medium is assumed to be isotropic with a constant dielectric permittivity, ǫ = ǫ0ǫr. ǫ0 is the permittivity of
free space and ǫr is the relative permittivity of the medium. Furthermore, assuming that ions are held rigidly in the
Steric layer [30], the contribution of Steric current to the total current is neglected. Under these assumptions, the
mass transfer of each species in the solution is given by,

∂ci
∂t

= −∇ · Γi (1)
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where Γi is the total flux of each species i in the solution,

Γi = −Di∇ci − ΩiziFci∇φ (2)

where Di, ci, and zi denote the diffusion coefficient, molar concentration, and valence of each ion, respectively. Ωi

is the ionic mobility which is related to the diffusion coefficient by the Einstein’s relation [31], Ωi =
Di

RT
. F , R, and

T represent the Faraday’s constant, ideal gas constant and absolute thermodynamic temperature, respectively. We
assume ci and φ to be uniform in the θ-direction. Integrating Eq. 1 over the (r, θ) direction and normalizing with the
cross-sectional area, A(x), the transport of each ion, i, in the axial direction can be calculated as,
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R is the radius of the pore, varying along the axial direction, representing the micropore, nanopore and macropore
radius along the axial direction. The cross-sectional area of each pore (micro, nano and macro), A(x), varies along
the axial flow direction. Since, there is no leakage of ionic current at the pore walls, the normal flux of each ion on
the pore walls is assumed to be zero,

nw · Γi|r=R = −Di
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where nw denotes the unit normal vector (pointing outwards) to the pore surface. Substituting the above condition
in Eq. 3, we obtain the Area-Averaged transport equation for the ionic species,

A(x)
∂ĉi
∂t

=
∂

∂x

(

A(x)Di

∂ĉi
∂x

)

+
∂

∂x

(

ziDiF

RT
A(x)ĉi

∂φ̂

∂x

)

(5)

f̂ = 1
A

∫ r

0

∫ 2π

0 (f(r, θ))rdθdr denotes the area−averaged quantity. The first term on the right hand side accounts for
the ionic diffusive effects, while the second term accounts for the electromigration effects inside the system.
We now consider the 2−D Poisson equation for the electric field distribution,

∇ · (ǫr∇φ) = −
ρe
ǫ0

(6)

ρe is the net space charge density of the ions defined as, ρe = F (
∑n

i=1 zici), where n is the number of ionic species in
the solution. Applying the charge conservation at the walls leads to the following electrostatic boundary condition,

n · ∇φ =
σ

ǫ
(7)

where n denotes the unit normal vector (pointing outwards) to the wall surface and σ is the surface charge density
of the walls. Invoking the assumption that φ is uniform in the θ-direction and integrating Eq. 6 over the (r, θ) and
substituting Eq. 7, we obtain the governing equation for the radially averaged electrostatic potential in the axial
direction,

∂

∂x

(

A(x)
∂φ̂

∂x

)

= −
A(x)

ǫ

(

ρ̂e +
4σs(x)

d(x)

)

(8)

σs(x) and d(x) are the fixed surface charge density and the diameter of the pore. Both these quantities vary axially to
incorporate the surface and geometrical properties of the micro, nano and macropores. The fixed wall surface charge
density distribution, σs(x), is given by:

σs(x) =











σmi, 0 ≤ x ≤ Lmi

σn, Lmi < x ≤ Lmi + Ln

σma, Lmi + Ln < x ≤ Lmi + Ln + Lma

(9)

where σmi, σn and σma denote the homogeneous charge distribution on the walls of the micro, nano and macropore,
respectively. Lmi, Ln and Lma refer to the length of the micro, nano and macropore, respectively.
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The total ionic current, I(x), through the pore is calculated by summing the individual fluxes over the cross−sectional
area, i.e.,

I(x) = FA(x)

n
∑

i

ziΓi (10)

where Γi = −Di
∂ĉi
∂x

− ziFDi

RT
ĉi

∂φ̂
∂x

is the total area−averaged flux of each ionic species, with the diffusive component
(first term on the right-hand side) resulting from the concentration gradient, and the migration component (second
term on the right-hand side) is due to the electric field interaction with the ionic concentration.
The closure of the problem requires boundary conditions. We consider the macropore (see Fig 1(b)) as the source

and a constant electric potential (φDC) is specified as the boundary condition at the end of the macropore reservoir.
The micropore is considered as the drain and is grounded. The concentration of both the ions at the ends of the
micro/macropore is assumed to be equal to the bulk ionic concentration, c0. The solvers for the AAM model are
developed and implemented using the finite volume method in OpenFOAM (Open Field Operation and Manipulation)
version 1.6 [32]. The electromigration terms in the AAM model are discretized using the second−order bounded NVD
schemes [33] to avoid artificial oscillations and to ensure that the solution is bounded. All the Laplacian terms are
discretized using the second−order central differencing scheme. Second−order implicit time differencing scheme [32]
is used to discretize the variables in time. A finer mesh is introduced at the entrance and exit of the nanopore to
resolve the features of the thin electrical double layer near the interfaces.

III. SIMULATION DETAILS

We consider a cylindrical nanopore of length Ln = 6µm, and diameter dn = 10nm. The nanopore is connected to
a micropore of length Lmi = 6µm, diameter dmi = 50nm, and a macropore of length, Lma = 2µm. The macropore
diameter (dma) is systematically varied from 50nm to 1µm. For the smallest macropore diameter considered, the ratio
of macro to micropore reservoir diameter (R = dma/dmi) is 1 (symmetric reservoirs) and for the largest macropore
diameter considered, we ensure a 20 fold difference between the two reservoir diameters (asymmetric reservoirs). We
would like to note that though the reservoir diameters are in the range of nanometers, we designate them as micro
and macropore to distinguish the reservoir geometry. The voltage is systematically varied from 5V to 100V and is
always directed from the macropore towards the micropore. Phosphate buffer of constant concentration (0.39mM
of NaH2PO4 and 0.61mM of Na2HPO4) is used in all the simulations. The simulated temperature is T = 300K.
The diffusivities of Na+, H2PO−

4 and HPO2−
4 are 1.33 × 10−9m2/s, 0.879 × 10−9m2/s, and 0.439 × 10−9m2/s,

respectively. The dielectric constant of the aqueous solution is assumed to be, ǫr = 80 [34]. The nanopore is modeled
with a homogeneous negative surface charge density, σn = −3mC/m2, which is the typical surface charge density of a
poly-carbonate track etched (PCTE) membrane, when an electrolyte concentration of 1 mM is used [35]. We assume
that the surface charge density on the walls of the micropore and macropore reservoirs are zero, (σmi = σma = 0), as
they are far away from the nanopore to have an influence on the ion transport.

IV. RESULTS AND DISCUSSION

A. Current-time dynamics

A schematic illustration of the micro−nano−macropore simulation set−up is shown in Fig. 1(b). We calculate
the conductive currents at 4 different locations, namely in the bulk micropore reservoir, Bmicro at x = 1µm, at the
micro/nanopore junction, NJ , x = 6.5µm (which is 0.5µm from the entrance of the micro/nanopore), center of the
nanopore, NP , x = 9µm, and at the bulk macropore reservoir, Bmacro, x = 13.5µm (see Fig. 1(b)). Fig. 2(a) shows
that the micro−nano−macropore system exhibits a non−Ohmic current−voltage characteristic. The magnitude of
the output current, |〈I〉| is calculated at the center of the nanopore, (NP region) and is averaged over 4ms time
interval after the current reaches a steady-state. For this calculation, the ratio of macropore to micropore diameter is
4. Recent experimental studies by Kim et al. [22] and Yossifon et al. [23, 24] have also observed similar non−Ohmic
current−voltage characteristics in a micro−nanopore integrated system. In our earlier work [29, 36], we have shown
that the non−Ohmic current characteristics are due to the concentration polarization effects developed near the
micro−nanojunctions. The current−voltage characteristics shown in Fig. 2(a) reveal the average transport properties
of the pore. In order to understand the dynamic characteristics of the current, we analyze the current-time signals.
The slowest relaxation mechanism in the system is the diffusion process, whose characteristic time is (L2

nano/2Dion),
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where Lnano = 6µm is the length of the nanopore and Dion corresponds to D(HPO
2−

4
) as it has the smallest diffusion

coefficient, D(HPO
2−

4
) = 0.439 × 10−9m2/s. Thus, the ions inside the nanoporous membrane require approximately

41ms to relax and reach a steady-state. To characterize the long time dynamics of the system, we run the simulations,
for each voltage case, at least till 48ms with a sampling frequency of 100MHz to ensure that the current oscillates
about a steady mean.
Fig. 2(b) shows current−time dynamics from 46ms − 48ms for an applied voltage of 5V , corresponding to the

quasi−equilibrium regime, and for 100V , corresponding to the highly non−equilibrium regime. The current trace was
obtained at the center of the nanopore structure (shown as region NP in Fig. 1(b)). We observe weak oscillations in
the current trace for the low voltage, while there is a high degree of oscillations in the current signal for the 100V case.
To quantify the differences between the two signals, Fig. 2(c) shows the current histogram. We notice a peak in the
histogram at 15.36pA, with a spread of 0.2pA for the quasi−equilibrium voltage of 5V , while the 100V case results
in a spread of 3 − 4pA in the current histogram (see Fig. 2(c)). To mathematically quantify the non−equilibrium
current oscillations, we calculate the growth rate given by the maximum Lyapunov exponent (λ∗) for each voltage.
The mathematical details on the implementation of λ∗ are discussed in the appendix. λ∗ is normalized as we consider
the time scale in the units of time index of measurements and not the real time units. We use TISEAN software
package [37] to calculate λ∗. Fig. 2(d) reveals a positive Lyapunov exponent for all the voltages considered. A positive
Lyapunov exponent indicates a positive growth rate indicating unstable current dynamics inside the nanopore system.
λ∗ is 0.003 ± 0.001 for 5V and it increases monotonically with voltage, reaching a value of 0.055 ± 0.006 at 100V .
We postulate the monotonic increase in λ∗ to the monotonic increase in the standard deviation of the current signal
(ISD) with voltage (see inset of Fig. 2(a)). The exact correlation between ISD and λ∗ is still unclear and is subject
of subsequent study.
Next, we examined the effect of asymmetry of reservoirs, characterized by R(= dma/dmi), on the output current

for an applied bias of 5V . To vary R, we increase the macropore reservoir diameter keeping the micropore reservoir
diameter and nanopore diameter fixed. Fig. 3(a) shows that the magnitude of the average output current varies non-
monotonically with R and reaches a maximum at R = 4. The output current, |〈I〉| is calculated at the center of the
nanopore, (NP region, see Fig. 1(b)) and is averaged over 4ms time interval after the current reached the steady-state.
This result is indeed interesting as one would expect a monotonic increase in current, I, with cross−sectional area.
However, our calculations show that the concentration of ions inside the nanopore vary non-monotonically with R
affecting the current characteristics. A maximum concentration of Na+ ions inside the nanopore was observed for
R = 4 where the current was found to be maximum. Fig. 3(b) shows the current−time dynamics, for R = 2 and
R = 20 for an applied bias of 5V . For R = 20, we observe a high degree of current oscillations of the order of 0.8pA,
while weak oscillations of the order of 0.025pA were observed for R = 2 (see Fig. 3(c)). The high degree of current
oscillations for large R is quite surprising as a low bias voltage of 5V is applied in this case. To understand these
results, we again calculated the maximum Lyapunov exponent. Fig. 3(d) reveals a positive Lyapunov exponent for all
R. λ∗ is 0.0024 for R = 2 and it monotonically increases with R, reaching 0.02± 0.004 at R = 20. We again postulate
the monotonic increase in the maximum Lyapunov exponent to the monotonic increase in the standard deviation of
the current ISD with R (see inset of Fig. 3(a)). This analysis helps us to conclude that the asymmetric nature of
the fluidic reservoirs plays a vital role compared to the applied voltage in observing large current oscillations in the
nanopore systems.
Before highlighting the mechanism behind the current oscillations observed in our study, we briefly discuss different

sources of current oscillations postulated in the literature. Powell et al. [16] correlated the dynamical changes in the
ion diffusion coefficient and its corresponding ionic mobility to be the source of current oscillations. In another study,
the dynamical change of the surface charge density on the pore walls due to constant protonation and deprotonation
reactions [38] was suggested to be the source of current oscillations. In this study, we used a constant surface charge
density and a time−independent diffusion coefficient for all the ions. Hence, we rule out these postulations for the
source of current oscillations observed in our study.

B. Dynamic cascading of ions

In order to investigate the mechanism, we calculated the ionic concentration distribution along the entire
micro−nano−macropore system. For a symmetric reservoir, (R = 1), under the action of an applied voltage
from the source reservoir to the drain reservoir (see Fig. 4(a)), the co−ions (anions in this case) are repelled from
the source−nanopore interface and are attracted towards the anode. In order to maintain electro-neutrality, the
cations are also repelled at this interface. Hence an ion depletion zone is created at the source−nanopore interface.
Further, the co−ions are repelled from both the cathode and from the nanopore (as the pore is negatively charged)
and they get accumulated near the drain−nanopore interface. In order to maintain electro-neutrality, the cations
(counter−ions) also get accumulated at this interface. Thus the ions are polarized near both the interfaces. For a
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symmetric reservoir case, the cascading/enrichment of ions is relatively weak. However, when the size of the reservoirs
is asymmetric, we observe a high clustering of ions in the ion enrichment zone. We call this region as the “Avalanche
zone” (see Fig. 4(b)).

Fig. 4(c) shows the sodium ion concentration distribution for the symmetric reservoir system. In the case of
a symmetric reservoir for 1mM bulk concentration, applied voltage of 5V , and for R = 1, we observe around
15 fold enrichment near the drain micro−nanopore interface. Furthermore, the long time dynamics reveal weak
oscillations of ionic concentration distribution under the low bias voltage, near the enriched drain micro−nanopore
interface. However, for an asymmetric reservoir, when we introduce a 20 fold difference in the reservoir diameter
(R = 20), we observe 30 times enrichment of ionic concentration near the drain micro−nanopore interface resulting
in large concentration gradients and clustering of ions as shown in Fig. 4(d). The interaction of electric field with
the high concentration gradients disrupts the ion flow inside the nanopore resulting in dynamical changes in the ion
concentration inside the pore as shown in Fig. 4(d). Furthermore, we observe spatially inhomogeneous distribution of
sodium ions near the micro−nanopore interface (see inset of Fig. 4(d)). Fig. 4(e) shows the sodium ion concentration
distribution for a low bias voltage of 5V and for R = 4. In this scenario, we observe 43 times enrichment of ionic
concentration near the drain-nanopore interface compared to the bulk reservoir. Also, the enrichment of ions is 1.4
times higher than R = 20. This suggests that concentration distribution inside the nanopore varies non-monotonically
with R resulting in non-monotonic current dependence with R as discussed before. Further, the depletion of ions for
R = 20 is relatively weaker than for R = 4 for the same applied voltage. The degree of oscillation of ions near the
enriched interface is weaker for R = 4 (see inset of Fig. 4(e)) compared to the R = 20 case, resulting in higher current
oscillations in the latter. Furthermore, our simulations reveal that the oscillations in the enriched zone becomes
stronger on the application of high bias voltage of 100V for R = 4 (see inset of Fig. 4(f)). This is because, the
high electric field strongly interacts with the enriched concentration gradients disrupting the ion dynamics near the
interface. We observe 80 fold enrichment of ions near the drain-nanopore interface for an applied voltage of 100V .

Current oscillations in nanoporous membranes have been observed before by other researchers [21–26]. In many of
these works, the chaotic current oscillations have been attributed to convective instability, which arises due to the
irregular movement of ionic charges and hydrodynamic flow [21, 22]. Depletion of ions near one of the interfaces of
an ion selective membrane with symmetric reservoirs results in a finite net space charge density and non-uniform
electric field near the interface. The strong electric field combined with the net space charge density results in a non-
equilibrium electroosmotic flow. Under the action of a large applied bias, the electroosmotic flow becomes unstable
resulting in chaotic flow dynamics [21, 22]. In our work, we do not include the hydrodynamic term as we had identified
from our earlier work that the contribution of electroosmotic flow is small in the calculation of the total electric current
in micro−nanopore integrated systems [29, 36]. Hence, convective instability due to hydrodynamic flow is absent in
our model and is not the reason for chaotic current oscillations.

Another kind of convective instability that has been shown in ion-selective systems is electro-convective instabil-
ity [23–26]. This instability also occurs due to the depletion of ions developed at one of the interfaces of an ion-selective
membrane. The depletion region results in high concentration gradients. Under a large bias, the electro-neutrality
in the depletion region breaks resulting in a net space charge density region. On further increase in the applied
voltage, the space charge density in the depletion region becomes unstable, resulting in chaotic oscillations of elec-
tric current [23–26]. In our work, the depletion region is very weak as it occurs at the nano-macropore reservoir
and the macropore reservoir diameter is large. We observe a very small net space charge density, with no instabil-
ity, at the nano-macropore interface even under the action of a large applied bias. Thus, our results indicate that
electro-convective instability due to depletion of ions is not the origin of chaotic current oscillation in asymmetric
micro-nano-macropore systems.

In asymmetric micro-nano-macropore systems, we observe an instability of charges near the drain micro-nanojunction
where the ions are enriched. This charge instability owing to the clustering of ions, propagates into the nanopore
and disrupts the charge distribution inside the nanopore. This observation is significant in the field of ion-selective
membranes, as oftentimes the enriched region is considered inconsequential in predicting the dynamics of ionic current.
Wang et al. [11] experimentally observed current oscillations in nanoporous membranes integrated to asymmetric
fluidic reservoirs. The origin of the current oscillations was postulated to be electro-convective instability in the de-
pleted macropore. However, concrete evidence of this mechanism was not postulated due to the lack of experimental
data. We believe the present article reveals the actual mechanism of current oscillations in such asymmetric reservoir
systems. We also note that the instabilities in current are local in nature, i.e., the oscillations are strong in the vicinity
of the enriched micro−nanopore interface (see Fig. 5(b)) and to an extent inside the nanopore (see Fig. 5(c)). Away
from the micro−nano interface, near the bulk micropore region, the oscillations die out (see Fig. 5(a)). Also, in the
bulk macropore region, the current has steady-state characteristics (see Fig. 5(d)), owing to the absence of clustering
of ions at these regions. The electric potential at each time instant can be related to the concentration by Eq. 8. We
observe an unstable point in the electric potential distribution near the drain micro−nanopore interface as shown in
Fig. 6(a). Fig. 6(b) shows the oscillating behavior of the unstable potential near the drain micro−nanopore interface
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(at x = 6200nm). A combination of dynamic clustering of ions near the drain micro−nanopore interface and the
presence of unstable potential regions at this interface results in unstable current oscillations.

C. Power spectral density (PSD)

The current oscillations are examined by computing the power spectral density (SI) in the frequency range between
0 to 50MHz. The power spectral density is computed using the Welch method [39]. We considered 6ms current trace
(ensuring that the current oscillates about a steady mean) to calculate the spectra. The current signal is divided
into longest possible sections to obtain close to but not to exceed 8 segments, with 50% overlap. Each section is
windowed with a Hamming window. The signal is sampled with a sampling frequency (fs) of 100MHz. The modified
periodograms are averaged to obtain the spectral estimate for a frequency range [0 − fs/2]. Fig. 7(a) shows power
spectra of chaotic current trace for 100V and for R = 4. The power spectra reveals a power−law dependence, 1/fα

scaling in the low frequency range between 100kHz to 10MHz. The exponent α is found to be close to 1 for the
100V current signal. The inset of the figure reveals SI for a lower voltage of 70V and for R = 4. The power spectra is
similar to the 100V results and the spectra scales close to 1/f in the same frequency range. Fig. 7(b) shows the power
spectra of the simulated current−time signal for a macropore diameter of 1µm (R = 20). The power spectra for this
chaotic current signal scales as 1/fα with α close to 2, in the low frequency range between 10kHz to 1MHz. The
inset of the figure reveals the spectral estimate for a macropore diameter of 0.5µm (R = 10). The power spectra is
similar to the 1µm case. A low bias voltage of φDC = 5V is applied in these simulations. These results indicate that
power spectral density analysis can help identify voltage dominant choas or reservoir asymmetry dominant chaos.

V. CONCLUSIONS

In this work we performed a detailed numerical study of a nanopore connected to fluidic reservoirs of asymmetric
geometries. The micro-nano-macropore system exhibits local non−equilibrium chaotic motion of ions under the action
of an applied electric field. Chaotic currents arise due to the dynamic clustering of ions, resulting in the creation of
an avalanche zone, near the drain micro-nanopore interface. Power spectral density analysis of current oscillations
indicate 1/f type dynamics for the voltage dominant chaos and 1/f2 type dynamics for the reservoir asymmetry
dominated chaos. The current chaos is also quantified by calculating the Lyapunov exponent of the growth rate of
current dynamics. Our results indicate that reservoir asymmetry plays a pivotal role, compared to the magnitude of
the applied voltage, in determining current oscillations and chaos in nanoporous systems. The results presented here
can help improve the design of ionic diodes and electroosmotic pumps using asymmetric reservoir−nanopore systems.
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Appendix A: Algorithm to Determine the Maximum Lyapunov Exponent

The maximum Lyapunov exponent is used to determine the stability and growth of the current signal. The maximum
Lyapunov exponent is calculated using 4 steps. These steps are outlined below.

Step 1: Construction of ~In

Given n scalar time series data of the current, In, we convert the scalar data into state vectors by the method of

delays. ~In is given by,

~In =
(

I0, I1, I2, ..., In−(m−1)τ , ..., In
)

. (A1)

where the dimension m and time delay τ are unknowns. It needs to be ensured that the current time signal In, has n
time signal steps with n > (m− 1)τ and m 6= 0, 1. Taken’s embedding theorem [37] states that an optimal choice of

m and τ , would ensure that the geometrical object formed by the vector ~In, is equivalent to the original current time
signal, In. The above argument is guaranteed if m is larger than twice the correlation dimension, D [40], the number
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of active degrees of freedom. However, when we start to analyze the current time signal data, we do not know D, m,
or τ . We calculate all the three variables in the next steps.
Step 2: Mutual Information analysis to determine time delay, τ

To determine the optimal time delay τ , we employ the time delayed mutual information analysis developed by
Fraser and Swinney [41]. To this end, we construct a 2D array H [i][j], where h1[i] refers to the current time data
in the ith interval, h2[j] refers to the current time data in the jth interval, with i = 1, 2, 3...n and j = i − τ . H [i][j]
refers to the current time data at the (i, j)th interval. The mutual information S is given by

S(τ) = −
∑

ij

pij(τ)ln
pij(τ)

pipj
(A2)

where pi is the probability to find h1[i] data signal in the ith interval, pj is the probability to find h2[j] data signal
in the jth interval, pij is the joint probability that the H [i][j] data signal falls into the (i, j)th interval. The mutual
information S is calculated for different choices of τ . The first minima of the mutual information, S(τ) results in the
value of τ . However, when there is no minima in the mutual information, τ is taken to be 1. There is no mathematical
proof associated with this statement. The mutual information, S and time delay, τ are obtained using the TISEAN
software package [37].
Step 3: Embedding dimension, m

The embedding dimension, m, is determined in terms of the correlation dimension, D [42]. To calculate the
correlation dimension, we compute the correlation sum,

C(ǫ) =
1

Npairs

n
∑

j=m

∑

k<j−w

Θ(ǫ − |Ij − Ik|) (A3)

Npairs = (n−m+ 1)(n−m−w + 1)/2 is the number of pairs of points covered by the sum. Θ is the Heaviside step
function. ǫ is the smallest distance between two current time data points and we choose different values of ǫ. In the
limit of an infinite amount of data (n → ∞), and for small ǫ, we can expect C to scale like a power law, C(ǫ) ∝ ǫD

and we can define the correlation dimension D by,

d(n, ǫ) =
∂ln(C(ǫ, n))

∂lnǫ
(A4)

D(ǫ,m) = limǫ→0limn→∞d(n, ǫ) (A5)

To determine, D, we check for the convergence of D for different values of m. w is typically chosen to be w << n.
To provide some insight into typical values of D, the correlation dimension is determined to be D = 2.96 ± 0.05
for an applied voltage of 100V and an asymmetric reservoir ratio of R = 4. In determining, D, ǫ was chosen to be
between 3.17e−14 and 5.17e−13. The convergence of the correlation dimension was ensured for different values of m
(m = 20 − 40). The embedding dimension m is typically greater than twice the correlation dimension, m = 2D + 1.
Hence, the embedding dimension, m for the current time series data is greater than 7. The optimal values of τ and

m are used to construct ~In. Once ~In is known the maximum Lyapunov exponent is determined, which is discussed
next.

Step 4: Maximum Lyapunov exponent, λ∗

The notion of determining the Lyapunov exponents depends upon the dimensionality of the system. In this study,

we only focus on determining the maximum Lyapunov exponent, λ∗ from the current time series data. Let ~In1
and

~In2
be two current measurements at simulation time t0 with distance ||~In1

− ~In2
|| = δ0 << 1. Let δ∆t be the distance

some time ∆t ahead between the two trajectories which are emerging from these points,

δ∆t = ||~In1+∆t − ~In2+∆t|| (A6)

Then λ∗ is given by δ∆t ≈ δ0e
λ∗∆t; δ∆t << 1 and ∆t >> 1. When λ∗ is positive, we observe an exponential divergence

of current time series data, resulting in dynamic instability or chaos. To calculate the maximum Lyapunov exponent,

λ∗, we choose a point in the vector, ~In0
of the time series data and select all neighbors in the vector, ~In0

, within a
distance of ǫ, pertaining to the data sampling time. We compute the average over the distance of all neighbors to the
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reference point in the vector, ~In0
, as a function of relative time. Let the average distance, U(~In0

) = ||In0
− ~In1

|| be

considered at time t0 and the average distance U(~In0+∆t) = ||In0+∆t − ~In1+∆t|| be considered at time ∆t. Now, the
maximum Lyapunov exponent, λ∗ over the time span ∆t is computed;

λ∗ =
1

∆t

n
∑

n0=1

ln

(

1

|U(~In0
)|
|U(~In0+∆t)|

)

(A7)

A positive λ∗ indicates an exponential divergence of the current signal, resulting in a dynamic instability and chaos.
λ∗ is normalized as we consider the time scale in the units of time index of measurements and not the real time units.
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(a)

(b)

FIG. 1. (a) Schematic illustration of multiple nanopores interacting with asymmetric fluidic reservoirs (b) Simulation set−up
of a single micro−nano−macropore system. The electric field is applied from macropore to micropore reservoir. Ionic current is
calculated at four different regions, namely at bulk micropore reservoir (Bmicro, x = 1µm from the origin), nanopore junction
(NJ) at a distance of 0.5µm from the micro/nanopore entrance, center of the nanopore (NP , x = 9µm from the origin) and
bulk macropore reservoir (Bmacro, x = 13.5µm).
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FIG. 2. Variation of the output current (in magnitude) at the center of the nanopore with (a) applied voltage (current is
averaged over 4ms time interval for each voltage); inset shows the variation of the standard deviation of the current over the
time interval considered for each voltage (b) time (data shown for the last 2ms) and (c) its corresponding histogram for 5V
(solid blue line) and 100V (solid red line), respectively. (d)Variation of the maximum Lyapunov exponent with applied voltage.
The ratio of macropore to micropore reservoir diameter is 4 in Fig. 2(a) to Fig. 2(d).
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FIG. 3. Variation of the output current (in magnitude) with (a) macropore to micropore radius (R = dma/dmi), current is
averaged over 4ms time interval for each R); inset shows the variation of the standard deviation of the current, over the time
interval considered for each R (b) time (data shown for the last 1ms) and (c) its corresponding histogram for R = 2 (solid blue
line) and R = 20 (solid red line), respectively. (d)Variation of the maximum Lyapunov exponent with R. The applied voltage
is 5V and the micropore reservoir diameter is 0.05µm in Fig. 3(a) to Fig. 3(d).
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FIG. 4. Avalanche effect mechanism for (a) a symmetric reservoir (R = 1), ions are enriched near the drain micro−nanopore
interface and an ion depletion zone is developed near the source micro−nanopore interface. (b) an asymmetric reservoir
(R > 1), cluster of ions accumulate near the micro−nanopore interface, an “Avalanche zone” is created, and a relatively weak
ion depletion zone is developed near the nano−macropore interface. Concentration distribution of sodium ions (counter−ions)
along the micropore−nanopore−macropore reservoir system for (c) 5V and R = 1, inset reveals distribution of an ion enriched
zone, (d) 5V and R = 20, inset reveals dynamic clustering of ions near micro−nanopore interface (e) 5V and R = 4, inset
reveals weak oscillation of ions near the enriched zone and (f) 100V and R = 4, inset reveals strong enrichment of ions and an
inhomogeneous distribution of ions near the enriched micro−nanopore interface.
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FIG. 5. Current−time dynamics at (a) bulk micropore (x = 1µm) (b) nano-junction (x = 6.5µm) (c) center of nanopore (x =
9µm) (d) bulk macropore (x = 13.5µm). The macropore reservoir diameter is 0.2µm, micropore reservoir diameter is 0.05µm.
Ratio of macropore to micropore reservoir is 4. The applied voltage is 100V .
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FIG. 6. Variation of potential (a) along the micro−nano−macropore system. The inset reveals the unstable potential distri-
bution near the enriched micro−nanopore interface (b)with time near the enriched micro−nanopore interface. The macropore
reservoir diameter is 1µm, micropore reservoir diameter is 0.05µm. Ratio of macropore to micropore reservoir is 20. The
applied voltage is 5V .
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FIG. 7. Power spectral density (PSD) analysis for (a) an applied voltage of 100V , inset shows PSD for 70V , R = 4 is used for
both the applied voltages (b) a macropore diameter of 1µm, inset reveals PSD for a macropore diameter of 0.5µm.The applied
voltage is 5V .


