
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 1, pp. 5–36. DOI:10.46586/tosc.v2021.i1.5-36

Atom: A Stream Cipher with Double Key Filter

Subhadeep Banik1, Andrea Caforio1, Takanori Isobe2,3,4, Fukang Liu2,5,

Willi Meier6, Kosei Sakamoto2, Santanu Sarkar7

1 LASEC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
{subhadeep.banik,andrea.caforio}@epfl.ch

2 University of Hyogo, Kobe, Japan. takanori.isobe@ai.u-hyogo.ac.jp,
liufukangs@gmail.com, k.sakamoto0728@gmail.com

3 NICT, Tokyo, Japan
4 PRESTO, Japan Science and Technology Agency, Tokyo, Japan

5 East China Normal University, Shanghai, China
6 University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland.

willimeier48@gmail.com
7 Indian Institute of Technology, Madras, India. santanu@iitm.ac.in

Abstract. It has been common knowledge that for a stream cipher to be secure against
generic TMD tradeoff attacks, the size of its internal state in bits needs to be at least
twice the size of the length of its secret key. In FSE 2015, Armknecht and Mikhalev
however proposed the stream cipher Sprout with a Grain-like architecture, whose
internal state was equal in size with its secret key and yet resistant against TMD
attacks. Although Sprout had other weaknesses, it germinated a sequence of stream
cipher designs like Lizard and Plantlet with short internal states. Both these designs
have had cryptanalytic results reported against them. In this paper, we propose the
stream cipher Atom that has an internal state of 159 bits and offers a security of 128
bits. Atom uses two key filters simultaneously to thwart certain cryptanalytic attacks
that have been recently reported against keystream generators. In addition, we found
that our design is one of the smallest stream ciphers that offers this security level,
and we prove in this paper that Atom resists all the attacks that have been proposed
against stream ciphers so far in literature. On the face of it, Atom also builds on
the basic structure of the Grain family of stream ciphers. However, we try to prove
that by including the additional key filter in the architecture of Atom we can make
it immune to all cryptanalytic advances proposed against stream ciphers in recent
cryptographic literature.

Keywords: Short State Stream Cipher, Lightweight Cryptography, Grain family

1 Introduction

The technique of using Time Memory Tradeoffs to invert one-way functions was introduced
by Hellman in his seminal paper [Hel80] on the topic in 1980. This was a chosen plaintext
attack and attempted to invert the one-way function which maps the keyspace to the
ciphertext space by encrypting a chosen message using a block-cipher. The work of
Babbage [Bab95], Golic [Gol97] and Biryukov-Shamir [BS00] applied such tradeoffs to
the one-way functions that mapped the internal state space to a keystream segment of
a stream cipher. In [BS00], it was proven that for a stream cipher to be secure against
generic Time-Memory-Data (TMD) tradeoff attacks, the size of its internal state needed
to be at least twice the size of its secret key in bits. The authors mounted a table based
attack that stored functional iterates of a function that mapped the internal state of the
cipher to a keystream prefix of equal length. Since then there have been several variants of

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-09-01 Revised: 2020-11-23 Accepted: 2021-01-23 Published: 2021-03-19

6 Atom: A Stream Cipher with Double Key Filter

this attack: in [HS05] the authors used the function that mapped the string consisting of
Key and IV to the corresponding length keystream prefix to attack the A5/3 stream cipher
and [DK08] which used the function that maps the key to the corresponding keystream
prefix of same length for a fixed set of IVs. In FSE 2015, the stream cipher Sprout [AM15]
was proposed that had a Grain-like architecture [HJM07] and surprisingly an internal state
and key both of 80 bits. Yet the cipher seemed to be immune to any of the above TMD
attacks. The reason for that is that although the internal state of Sprout was of 80 bits,
the state update algorithm required a key input. And so it was impossible to construct
any function that mapped internal state to keystream without the secret key.

Sprout was however cryptanalyzed in the following papers [LN15, Ban15, EK15, ZGM17].
The most important attack from a design point of view was reported in [EK15]. The
function of the key that was used to update the state in Sprout was non-linear and so the
authors were able to construct a table using some special states for which the key input was
0 for 40 consecutive cycles: hence a function mapping state to a 40-bit keystream prefix
was possible for these special states. Using this the authors constructed a probabilistic
attack that sampled random keystream prefix until they found one that was present in
the tables. After this key recovery was possible in practical time. The attack underscored
the fact that any key function that was used for state update had to be linear. This was
exactly the approach used in later Grain-like designs like Lizard [HKM17] and Plantlet

[MAM16].

Over the years there have been attacks reported against Lizard and Plantlet too. In
[BICG17], the authors reported various distinguishing attacks against the full round version
cipher and a key recovery attack against 223 of the 256 initialization rounds of the cipher.
In [MSS+18], a TMD tradeoff attack was proposed that found the internal state of the
cipher. Very recently [BBI19] proposed a differential attack against Plantlet that finds the
key in around 270 encryptions. In [TMA19] a correlation attack was proposed on Plantlet,
albeit on a version that allowed more keystream to be extracted from a single key-IV pair
than mentioned in the specifications. There even have been attacks reported against the
Grain family: [TIM+18] reported a correlation attack against all 3 variants of the Grain
family (Grain v1, Grain 128, Grain 128a), while [ZXM18] reported a near collision attack
on Grain v1 based on recurrence of internal states with small internal difference.

Almost all stream ciphers with the Grain structure (including Grain v1 and Grain 128)
have had some weaknesses or undesirable properties reported against them. Thus from a
design point of view it is an important question whether it is possible to design stream
ciphers securely in the long run. In this paper we take up this very challenge. Our primary
goal was to see if we could improvise a circuit component that is able to prevent some
of the attacks that have been proposed in literature. A secondary goal was to minimize
the hardware footprint of the cipher, and keep it ideally less than other stream ciphers
proposed in literature that offer a similar security level. We propose the stream cipher
Atom that offers 128 bit security and has an internal state of around 159 bits (which is
less than 25% more than the secret key size). On the face of it, Atom has the same Grain
like structure adopted by Plantlet, Sprout and Lizard. However we do add a circuit-level
novelty to the cipher specification that costs only around 150 Gate-Equivalents (GE) in
hardware but guarantees immunity against all attacks proposed against small state ciphers
in the recent past. In fact, we prove its security in the context of specific attacks that have
been proposed against similar designs in literature and present implementation results
that establish its competitiveness among ciphers popular in the symmetric cryptology
community.

Note that what the additional filter essentially does, is update the internal state of
the generator with a part of the secret key that depends on the internal state itself. One
utilitarian aspect of this feature is that it prevents correlation-like attacks by misaligning
the key bits in every window. Some similar ideas of using such state-dependent update

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 7

in some sense has been previously seen in A5/1 [Can11] and RC4 [Fon11]. In A5/1, the
update routine first calculates the majority function over three specific control bits from
the three LFSRs in its internal state. Each register is clocked if and only if the control bit
of the register equals the majority bit. Also it is well known that RC4 selects elements
to swap in its internal state using the index j which is computed as (j + S[i]) mod 256.
Although the idea is similar these state dependent updates do not provide immunity
against correlation attacks in the same way that a state dependent key filter does.

1.1 Contributions and Organization of the Paper

The main contribution of the paper is small state stream cipher Atom. Although it has the
same grain like structure seen in many past designs, the novelty of Atom is an additional
key filter that is used to update the NFSR update function. The bits controlling the
additional filter is taken from the LFSR that not only increases the period of the keystream
but solves many genres of cryptanalytic advances reported against short state stream
ciphers in the past. In particular Atom has the following features:

• Security level of 128 bits.

• Immune against generic TMD tradeoff attacks, and also those against Sprout [EK15].

• Immune against correlation attacks like those against Plantlet [TMA19].

• Immune against key recovery attacks like those against Plantlet [BBI19].

• Circuit area is competitive among hardware stream ciphers that provide the same
security level.

In Section 2, we present the algebraic specifications of the cipher. In Section 3, we
argue about some design choices and why they make sense for a short state cipher. Section
4, presents a comprehensive security analysis. Section 5 presents implementation results.
Section 6 concludes the paper.

2 Specification

Atom is a stream cipher similar to the Grain family, which is composed of a linear feedback
shift register (LFSR) and a nonlinear feedback shift register (NFSR). An overview of Atom

can be referred to Figure 1. The size of the secret key k of Atom is 128 bits. Similar
to most stream ciphers, there will be an initialization phase and a keystream generation
phase in Atom.

2.1 Building Blocks

We begin the paper with a description of the building blocks of our construction. Atom

has a grain like structure with an LFSR and NFSR connected through a xor gate as
shown in Fig. 1. The length of NFSR and LFSR are 90 bits and 69 bits, respectively.
At clock t = 0, 1, . . ., denote the contents in NFSR and LFSR by Bt = (bt

0, . . . , bt
89) and

Lt = (lt
0, . . . , lt

68), respectively. The definitions of the output function, LFSR and NFSR
are specified in the following.

Output function. The output function O(Bt, Lt) of Atom is a sum of linear terms, a
quadratic bent function and another 9-variable function h. It is defined in the following
way:

O(Bt, Lt) = bt
1 ⊕ bt

5 ⊕ bt
11 ⊕ bt

22 ⊕ bt
36 ⊕ bt

53 ⊕ bt
72 ⊕ bt

80 ⊕ bt
84

8 Atom: A Stream Cipher with Double Key Filter

NFSR (90 bits) LFSR (60 bits) Counter (9 bits)

Output function

z
t

Figure 1: Overview of the construction. Note that during initialization the 69-bit LFSR is
partitioned into 60 and 9 bits with each part updated by its own update logic as shown in
this figure. During the keystream generation phase, both these parts function as a single
69-bit LFSR.

⊕lt
5lt

16 ⊕ lt
13lt

15 ⊕ lt
30lt

42 ⊕ lt
22lt

67 ⊕ h(lt
7, lt

33, lt
38, lt

50, lt
59, lt

62, bt
85, bt

41, bt
9),

where h(X) = h(x0, x1, x2, x3, x4, x5, x6, x7, x8) is defined as below.

h(X) = x0x1x2x7x8 ⊕ x0x1x2x7 ⊕ x0x1x2x8 ⊕ x0x1x2 ⊕ x0x1x3x7x8

⊕x0x1x3x7 ⊕ x0x1x4x7x8 ⊕ x0x1x4x7 ⊕ x0x1x4x8 ⊕ x0x1x4

⊕x0x1x5x7x8 ⊕ x0x1x5x7 ⊕ x0x1x6x7x8 ⊕ x0x1x6x8

⊕x0x1x7x8 ⊕ x0x1x8 ⊕ x0x2x3x7x8 ⊕ x0x2x3x7 ⊕ x0x2x3x8

⊕x0x2x3 ⊕ x0x2x4x7x8 ⊕ x0x2x4x8 ⊕ x0x2x5x7x8 ⊕ x0x2x5x7

⊕x0x2x5x8 ⊕ x0x2x5 ⊕ x0x2x6x7x8 ⊕ x0x2x6x8 ⊕ x0x2x7x8

⊕x0x2x8 ⊕ x0x3x4x7x8 ⊕ x0x3x4x7 ⊕ x0x3x5x7x8 ⊕ x0x3x5x7

⊕x0x3x6x7x8 ⊕ x0x3x6x7 ⊕ x0x3x8 ⊕ x0x3 ⊕ x0x4x5x7x8

⊕x0x4x5x7 ⊕ x0x4x6x7x8 ⊕ x0x4x6x8 ⊕ x0x4x7 ⊕ x0x4

⊕x0x5x6x7x8 ⊕ x0x5x6x7 ⊕ x0x5x7x8 ⊕ x0x5x7 ⊕ x0x6x7

⊕x0x6x8 ⊕ x0x7x8 ⊕ x1x2x3x7x8 ⊕ x1x2x4x7x8 ⊕ x1x2x4x8

⊕x1x2x5x7x8 ⊕ x1x2x6x7x8 ⊕ x1x2x6x8 ⊕ x1x2x7 ⊕ x1x2x8

⊕x1x2 ⊕ x1x3x4x7x8 ⊕ x1x3x5x7x8 ⊕ x1x3x6x7x8 ⊕ x1x3x7

⊕x1x4x5x7x8 ⊕ x1x4x5x8 ⊕ x1x4x6x7x8 ⊕ x1x4x7 ⊕ x1x4

⊕x1x5x6x7x8 ⊕ x1x5x6x7 ⊕ x1x5x7x8 ⊕ x1x5x7 ⊕ x1x5x8

⊕x1x6x7 ⊕ x1x8 ⊕ x1 ⊕ x2x3x4x7x8 ⊕ x2x3x5x7x8 ⊕ x2x3x6x7x8

⊕x2x4x5x7x8 ⊕ x2x4x5x8 ⊕ x2x4x6x7x8 ⊕ x2x4x7x8 ⊕ x2x4x8

⊕x2x5x6x7x8 ⊕ x2x5x6x8 ⊕ x2x5x8 ⊕ x2x6x7x8 ⊕ x2x6x8

⊕x2x7x8 ⊕ x2 ⊕ x3x4x5x7x8 ⊕ x3x4x5x7 ⊕ x3x4x6x7x8

⊕x3x4x6x7 ⊕ x3x5x6x7x8 ⊕ x3x5x7x8 ⊕ x3x6x7x8 ⊕ x3x6x7

⊕x3x7 ⊕ x3 ⊕ x4x5x6x7x8 ⊕ x4x5x6x8 ⊕ x4x6x7x8 ⊕ x4x6x8

⊕x4x7 ⊕ x5x7x8 ⊕ x5 ⊕ x6 ⊕ x7x8 ⊕ x7 ⊕ x8 ⊕ 1

Note that h is a (9, 5, 3, 240) function, i.e. it is of 9 variables, algebraic degree 5, its
correlation immunity is 3 and its non-linearity is 240. It has one of the highest non-
linearities among all 9 variable Boolean functions (as shown in [KY10] the highest known
non-linearity among 9 variable Boolean functions is 242). Thus the output is a sum of
linear terms, a quadratic bent function and h. Since bent functions are known to have
highest non-linearity for even variable functions, this provides us adequate protection from
correlation attacks (see Section 3.3).

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 9

NFSR. The definition of the update function G(Bt) used in NFSR is specified as follows.

G(Bt) = bt
0 ⊕ bt

24 ⊕ bt
49 ⊕ bt

79 ⊕ bt
84 ⊕ bt

3bt
59 ⊕ bt

10bt
12 ⊕ bt

15bt
16

⊕bt
25bt

53 ⊕ bt
35bt

42 ⊕ bt
55bt

58 ⊕ bt
60bt

74 ⊕ bt
20bt

22bt
23

⊕bt
62bt

68bt
72 ⊕ bt

77bt
80bt

81bt
83.

LFSR. The update function F (Lt) used in LFSR is defined as below: it is based on a
primitive polynomial over GF (2) and hence always ensures a period of 269 − 1.

F (Lt) = lt
0 ⊕ lt

5 ⊕ lt
12 ⊕ lt

22 ⊕ lt
28 ⊕ lt

37 ⊕ lt
45 ⊕ lt

58.

2.2 Initialization Phase

Denote the 128-bit secret key by k = (k0, . . . , k127) and the 128-bit initial value by
IV = (IV0, . . . , IV127). In addition, there will be extra 22-bit padding denoted by PD =
(PD0, . . . , PD21) = 122 (all one string). The two registers are initialized based on Equations
(1) and (2), respectively.

b0
i = IVi (0 ≤ i ≤ 89) (1)

l0
i =

IVi+90 (0 ≤ i ≤ 37)

PDi−38 (38 ≤ i ≤ 59)

0 (60 ≤ i ≤ 68)

(2)

After the two registers are initialized, the state at clock t (0 ≤ t ≤ 510) is updated as
follows:

zt = O(Bt, Lt),

cnt = lt
62||lt

63||lt
64||lt

65||lt
66||lt

67||lt
68,

bt+1
89 = G(Bt) ⊕ lt

0 ⊕ kcnt ⊕ zt,

bt+1
i = bt

i+1 (0 ≤ i ≤ 88),

lt+1
59 = F (Lt) ⊕ zt,

lt+1
i = lt

i+1 (0 ≤ i ≤ 58),

lt+1
i+60 = ((t + 1) >> (8 − i)) ∧ 1 (0 ≤ i ≤ 8).

The corresponding illustration can be found at Figure 2. Thus in the initialization
phase the LFSR is partitioned as two 60 and 9-bit registers. While the 60-bit part is
updated using the LFSR logic, the 9-bit part operates as a decimal up-counter. Since
the last 7 bits of the LFSR when interpreted as a decimal number (denoted by cnt) also
forms the index of the key bit used in the NFSR update, this ensures that all the key bits
influence the initialization function. Note that lt+1

i+60 = ((t + 1) >> (8 − i)) for i ∈ [0, 8]

simply means that in the (t + 1)th cycle the LFSR bits 60 to 68 are updated with the 8
bits of the decimal up-counter t + 1. The 60th LFSR location gets the MSB of the counter
and 68th location gets the LSB.

2.3 Keystream Generation

After the initialization phase, the state in NFSR becomes B511 = (b511
0 , · · ·, b511

89) and the
state in LFSR becomes L511 = (l511

0 , · · ·, l511
68). Note that since the last 9 LFSR bits worked

as a decimal up-counter during the initialization phase, and since the initialization phase

10 Atom: A Stream Cipher with Double Key Filter

k0 k127

selector

b0 b89 l0 l59 ⊕ l60 l68

G F

Output function

zt

⊕

Figure 2: Illustration of the initialization phase

had 511 rounds, the last 9 bits of the LFSR at the beginning of the keystream generation
phase will always be the all 1 vector. The first keystream used for plaintext encryption is
z511. At the keystream phase, the state at clock t (t ≥ 511) is updated as follows and the
keystream bit zt will be output. Note that we limit the amount of keystream extractable
from a single key-IV pair to 264 bits, which should be sufficient for most applications.

zt = O(Bt, Lt),

cnt = lt
62||lt

63||lt
64||lt

65||lt
66||lt

67||lt
68,

bt+1
89 = G(Bt) ⊕ lt

0 ⊕ kcnt ⊕ kt%128,

bt+1
i = bt

i+1 (0 ≤ i ≤ 88),

lt+1
68 = F (Lt)

lt+1
i = lt

i+1 (0 ≤ i ≤ 67).

The corresponding illustration can be found at Figure 3. The circuit level novelty that
we were referring to the previous section is actually the additional key filter kcnt that we
use. As we have seen earlier, the cnt sequence is derived from interpreting the last 7 bits of
the LFSR as a decimal number. During the initialization phase it is simply the i mod 128
sequence with i ranging from 0 to 510. However during the keystream generation phase
the cnt sequence depends on the evolution of the LFSR. Since the LFSR has a period of
269 − 1, so does the cnt sequence. This effectively garbles the order of key bits that is used
to update the NFSR. Along with the kt%128 filter, this not only guarantees a high period
of the keystream, but as we will show in the following sections, it also provides immunity
against many known cryptanalytic techniques used to attack small state stream ciphers.

3 Design Rationale: Use of Double Key Filter

Every design decision taken on a macro level has been predicated by the need to prevent
previous known attacks on short state stream ciphers. In this section we try to reason why
we took some of the steps to adopt the current algebraic structure of the cipher. Our aim
is to clearly establish what the design challenges were and how we attempted to address
them. Note that most of the attacks against Lizard leveraged on the fact that the Key-IV
mixing function was not injective. This is not the case for Atom, and so we look to prevent
other attacks reported in literature.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 11

k0 k127

selector

b0 b89 l0 l62 ⊕l68

G F

⊕

Output function

zt

kt%128

Figure 3: Illustration of the keystream generation phase

3.1 Preventing Banik’s Key-Recovery Attack Against Sprout [Ban15]

In [Ban15], it was first pointed out that there exist around 230 IVs for every key in Sprout

such that the LFSR becomes all 0 after the Key-IV mixing phase. In the keystream phase
the LFSR does not receive feedback from the output bit and hence remains in the zero
state throughout the evolution of the cipher, which made the algebraic structure of the
cipher weak. The work in [Ban15] leveraged this fact to report the following:

• Key-IV pairs were found in practical time that produced keystream bits with period
equal to 80.

• A key recovery attack was reported in the multiple IV mode. The attacker queries
keystream for a fixed secret key and multiple secret IVs and waits till an IV is queried
such that the LFSR falls into the all 0 state after the key-IV mixing. Once this
happens key recovery was shown to be very efficient, since the algebraic structure
of the cipher weakened, simple equations on the key bits could be obtained which
could be solved to find the secret key.

The zero state problem was tackled quite elegantly in the design of Plantlet. In the
key-IV mixing phase Plantlet fixes the final LFSR bit to 1, so that when the cipher finally
enters the keystream generation mode the LFSR state is never all zero on the account of
the fact that the final bit is 1. Since the Plantlet LFSR connection polynomial is primitive
and has length 61, it has a period of 261 − 1 and it never falls into the all zero state. This
effectively prevents all the above attacks. In Atom, the solution we adopt is indeed inspired
by Plantlet. During the key-IV mixing phase the last 9 bits of the LFSR effectively work
as a decimal counter. Since the number of rounds in the initialization phase is 511, the
last 9 bits of the LFSR are all 1 when we enter the keystream generation phase. The Atom

LFSR connection polynomial is also primitive guaranteeing a period of 269 − 1 and the
fact that it never falls into the all 0 trap.

In the keystream generation phase the keybit-sum to update the NFSR is kcnt ⊕ kt%128.
cnt is basically the decimal number formed by interpreting the last 7 LFSR bits as a
decimal number. Since the LFSR has a period of 269 − 1, it is to be expected that the
cnt sequence would also have the same period. Therefore it is clear that both the cnt and
t%128 sequence taken together would repeat only after lcm(269 − 1, 128) = 276 − 128 clock
cycles. This also guarantees that the Atom keystream, produced by most key-IV pairs,
has a minimum period of 276 − 128 bits (unless we have some degenerate cases like the

12 Atom: A Stream Cipher with Double Key Filter

all one/zero key for which the minimum period is given by the period of the LFSR i.e.
269 − 1).

3.2 Preventing Banik-Barooti-Isobe like Attacks Against Plantlet [BBI19]

Before we outline how our design prevents the attack outlined in [BBI19] against Plantlet,
it would be best to summarize the attack in a few words:

• The attackers observe that if two internal states of Plantlet differ by 040||042||1||018, i.e.
the 43rd LFSR bit, then they produce keystream vectors whose difference is 0 with
probability 1 in 41 clock cycles. The difference is 1 also with probability 1 in 4 other
clock cycles.

• They try to obtain two internal states with single bit difference in the 43rd LFSR
location by querying some fixed key and random IVs. The keystream extractable
with a single key-IV pair is limited to 230 bits. It was calculated that the probability
that such difference in states will occur during the course of a single key-IV query
is around 2−54.6. Hence to get the required difference at least once on average the
attackers needed to query around 254.6 different IVs.

• They inspect the keystream blocks extracted with the 254.6 IVs. They can with some
probability guess that when 2 segments of keystream blocks possess the 45 bit
difference just mentioned, they have been produced by two internal states that differ
only in the 43rd LFSR location.

• Thereafter by solving a system of polynomial equations given by the keystream bits,
the attacker can find the secret key if his guess was indeed correct, or reach some
kind of contradiction if his guess was incorrect. In the latter event, they repeat the
procedure for other keystream blocks with the given difference. The process when
repeated a finite number of times, does indeed yield the value of the secret key.

For Atom, we experimented with differences of up to hamming weight 4. The best
differential characteristic was obtained when 2 Atom states differ at the 55th LFSR location:
they are guaranteed to produce keystream that are either equal or unequal in only 18
clock cycles with probability 1. This number is quite small, compared to Plantlet where
45 keystream bits are guaranteed to be equal/unequal for a well chosen difference in the
LFSR state. The reason for this is that, in Atom because of the fact that the last 7 bits
of the LFSR provide the index of the key bit which is used to update the NFSR. Thus
any LFSR difference will after a short amount of time be fed back into the 68th LFSR
location through the LFSR taps. When this happens different key bits are used to update
the NFSR and the so a difference is propagated into the NFSR relatively quickly.

In any case, when we generate N keystream bits, the probability that there exists 2 clock
instances t1, t2 at which the internal states differs only in the 55th LFSR bit is given by
birthday bound considerations and is around p = N2 · 2−160. For N = 264, this probability
is around 2−32. The attacker would therefore need to query around V = p−1 = N−2 · 2160

IVs to get one difference state on average. The attacker then filters out all internal state
pairs for which the keystream segment does not produce the 18 bit difference pattern. The

number of such pairs is around U = V · (N)(N−1)
2 · 2−18 ≈ 2141. The attacker would have

to then solve polynomial systems arising from these 2141 state pairs. This is well above the
complexity of exhaustive search. Note that the main reason that the attack is prevented
is that the use of kcnt term used in the state update depending on the last 7 LFSR bits.
This prevents us from getting a large enough differential pattern of equal/unequal bits
that can bring down the value of U to less than 2128.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 13

3.3 Preventing Todo-Meier-Aoki like Attacks Against Plantlet [TMA19]

The attacks reported in [TMA19] are against an instance of Plantlet that allows up to
254 keystream bits per key-IV pair and are correlation attacks of a similar type reported
against the Grain family [BGM06, TIM+18]. The attack can be summarized as follows:

• The attackers try to formulate probabilistic equations of the following form:

⊕

t∈TZ

zt ⊕
⊕

t∈TK

kt ⊕
⊕

t∈TL

lt
i = ǫ (3)

where TZ , TK , TL are linear masks that denote subsets of keystream, key and LFSR
state bits that add up to form the probabilistic equations. ǫ denotes a variable such
that Pr[ǫ = 0] = 1/2 · (1 + η), where η is the correlation term whose value determines
the complexity of the attack algorithm.

• The value of η depends on the linear biases of the NFSR update function and the output
function.

• In Plantlet, the keybit used in the state update function repeats every 80 clock cycles.
To apply the correlation attack to Plantlet, the attackers need

⊕

t∈TK
kt to be a

constant. Therefore the attackers build up a bank of equations at intervals of 80
cycles each. For example if the original probabilistic equation was zt ⊕ zt+2 ⊕ kt ⊕
kt+45 ⊕ kt+51 ⊕ lt

10 + lt
14 ⊕ lt

31 = ǫ, the attackers build equation banks of the form:

z0 ⊕ z2 ⊕ k0 ⊕ k45 ⊕ k51 ⊕ l0
10 + l0

14 ⊕ l0
31 = ǫ1

z80 ⊕ z82 ⊕ k0 ⊕ k45 ⊕ k51 ⊕ l80
10 + l80

14 ⊕ l80
31 = ǫ2

z160 ⊕ z162 ⊕ k0 ⊕ k45 ⊕ k51 ⊕ l160
10 + l160

14 ⊕ l160
31 = ǫ3

...
...

Note that the value of
⊕

t∈TK
kt remains constant in these equations because in

Plantlet the keybits used in the state update repeat every 80 cycles.

• Once the attacker has around N such equations and the correlation of each ǫi is η, then
for the correct value of the LFSR internal state the difference between the number
of correct and incorrect equations will be distributed according to N (Nη, Nη2) if
⊕

t∈TK
kt = 0 or N (−Nη, Nη2) if

⊕

t∈TK
kt = 1. This distribution when the LFSR

internal state is incorrect is given by N (0, Nη2), where N (µ, σ) denotes the normal
distribution with mean µ and variance σ. Note that around N = O(η2) equations
are needed to reliably distinguish the distributions N (±Nη, Nη2) and N (0, Nη2)
and mount the attack.

• The authors use a maximum likelihood decoding algorithm like the Fast Walsh Hadamard
transform (FHWT) to find the LFSR state efficiently. Thereafter the key and NFSR
state can be found by solving polynomial equations on the keystream bits (see
[BGM06]).

The reason why this attack can not be used against Atom is as follows. In Atom we
can also derive probabilistic equations as given in Equation (3). However, the key bits
used in the state update depend on both the LFSR and the time counter and as such
is not known completely to the attacker. Since the LFSR is guaranteed to begin the
keystream phase with a non zero state and that its connection polynomial is primitive
over GF (2), it will only repeat after 269 − 1 cycles. The mod 128 counter repeats only
after 128 cycles. Hence the keybits repeat only after τ = lcm(269 − 1, 128) = 276 − 128

14 Atom: A Stream Cipher with Double Key Filter

clock cycles. This greatly increases the data complexity of any correlation attack on Atom.
Since we limit the amount of keystream to 264 per key-IV pair, this type of attack seems
infeasible. Nevertheless, we heuristically searched different linear combinations to mount a
linear attack. However, we did not find any efficient linear combination of keystream bits
that has a high enough correlation with the sum of LFSR bits and keybits. We give one
such example in Appendix C.

3.3.1 When less than the full LFSR sequence repeats

So far our arguments for security have relied on the fact that the entire LFSR must take
P = 269 − 1 iterations before it repeats. However, note that if we are able to formulate
an attack that requires only a part of the LFSR sequence to repeat then it may take
less than P iterations. First of all, let us try to answer the question: when can a part
of the LFSR sequence repeat? We are primarily interested in the situation when the
sequence cnt denoted by the last 7 bits of the LFSR repeats. To simplify notations
denote by cntt = lt

62||lt
63||lt

64||lt
65||lt

66||lt
67||lt

68 to be the value of cnt at any instant t of the
keystream generation phase. We are interested in finding whether cntt+i = cntt+T +i for
i = 0, 1, . . . , r − 1, for some particular value of T > 7. In other words, we want to see if
the sequence cnt repeats for r successive iterations exactly T iterations apart. We already
know that if T = P , then the above will hold for any value of r: however, if T < P ,
then the above may hold for smaller values of r < 63. For any arbitrary value of T < P ,
cntt+i = cntt+T +i for i = 0, 1, . . . , r − 1, is system of r + 6 linear equations in the 69 LFSR
variables X = lt

0, lt
1, . . . , lt

68. In matrix notation this can be written as LT X = 0, where
LT is a (r + 6) × 69 matrix over GF(2) which of course depends on the exact value of
T . The rank of LT is at most r + 6 and so the above equation can have at least 263−r

solutions. Discarding the all zero state, and assuming that all other LFSR states occur
equally during the keystream generation, the probability that there is a repetition for r

cycles exactly T iterations apart is around 263−r
−1

269−1 ≈ 2−r−6.
Now let us get back to the example we looked at in the previous subsection. Let us say

we have a probabilistic equation of the form

Eqt :
⊕

t∈TZ

zt ⊕
⊕

t∈TK

kt ⊕
⊕

t∈TL

lt
i = ǫ.

Note that the attacker does not know the value of the internal bits lt
i of the state of Atom.

In order for the attacker to continue the correlation attack, he needs the value of the sum
of keybits

⊕

t∈TK
kt to be a constant in the system of equations to apply a method like

the FHWT to recover the LFSR state. We have already seen that if the correlation in each
probabilistic equation is η then it requires N = O(η−2) equations to successfully mount
the attack. Let us say that the attacker chooses T1, T2, . . . , TN ≡ 0 mod 128, to generate
the N equations required for the attack i.e. the equations he chooses are

⊕

t∈TZ

zt+Tj
⊕

⊕

t∈TK

kt+Tj
⊕

⊕

t∈TL

l
t+Tj

i = ǫ

for j ∈ [1, N]. Since the attacker does not know the internal state of Atom, he can not do
better than guess the Tj ’s randomly. The probability that the sum of keybits

⊕

t∈TK
kt+Tj

are constant is

• 2−(r+6)·N , if the values Tj are selected so that cntt = cntt+Tj
for all j, and

• 2−N , if the above does not hold.

In the above example r is the number of successive values of cnt used to formulate
each equation Eqt. Its value is not immediately deduced from the algebraic form of Eqt

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 15

but would depend on the internal structure of the cipher. Summing the above probability
with Bayes theorem, the above comes to around 2−(r+6)·N + (1 − 2−(r+6)·N) · 2−N ≈ 2−N .
Since the attacker is not aware of the internal state, he can do no better than collect N
randomly selected equations of the above form, and hope that the sum of keybits are
constant in these equations. The probability that he succeeds is exponentially low.

3.4 Preventing Esgin-Kara like Attacks Against Sprout [EK15]

One of the reasons Sprout was immune to the TMD Tradeoff attacks of [BS00], (despite
having state size equal to the size of the key), was that the key was used to update the
state update transitions, and so it was impossible to construct a function that mapped
state to any length of keystream prefix, without using the key. Thus the effective size of
the internal state was twice the size of the key as required. The attack against Sprout

proposed in [EK15] can be summarized as follows:

• The authors showed that in spite of all the above, there existed special states of Sprout

for which it is possible to map the state to keystream without requiring the secret
key. This is because the round key function used to update the state at time t was
of the form (k[t mod 80]) · (

∑

nt
i +

∑

lt
i), where k[i] is the i-th key bit. Now if the

expression (
∑

nt
i +

∑

lt
i) is 0 for 40 consecutive cycles then the contribution of the

key to the state update is 0, which in other words means that it is now possible
for these special states to produce keystream without requiring the key and so a
function mapping state to a 40-bit keystream segment is now possible, which does
not additionally require the secret key.

• The authors showed that it was possible to efficiently enumerate these special states and
tabulate these states along with the 40 bit keystream segment produced by them.

• In the online stage of the attack, the authors examined every available keystream
segment and look for the segment in the precomputed tables and try to extract the
state. It was shown that if done sufficient number of times, Sprout will degenerate
into a special state and the attacker can extract the corresponding state from the
table. After this the attacker solves some algebraic equations to find the secret key.

• The authors showed that both the online and offline stages of the attack had practical
time, memory and data complexities.

Ever since [EK15] was published, all subsequent stream cipher designs like Plantlet and
Lizard have been proposed with strictly linear key bit contributions to the state update
function, i.e. of the form k[t mod keysize]. We too adopt linear key addition to the state
update, but the key bit to be used is not indexed by a counter but by the last 7 bits of the
LFSR. This gives rise to some unique opportunities. To understand better, let us consider
an altered variant of Atom in which the state update function does not include the kt%128

term, i.e.

bt+1
89 = G(Bt) ⊕ lt

0 ⊕ kcnt,

lt+1
68 = F (Lt).

Note that the LFSR runs autonomously during keystream generation, and since initial-
ization lasts 511 cycles, the cipher always enters keystream phase with last 9 bits all
1. Since the connection polynomial is primitive, it is well known, that the LFSR has
a period of 269 − 1 and never enters the all zero state. Now let us say that for some t,
the last 7 bits of the LFSR is 000 0001 (in hex 01) which occurs with probability 2−7.

16 Atom: A Stream Cipher with Double Key Filter

We want that for T consecutive cycles the last 7 bits of the LFSR take the following
values 01,02,04,08,10,20,40,01. . . and so on. This way the only keybits involved in the
update of the NFSR state will be from the 7-element set K = {k1, k2, k4, k8, k16, k32, k64}.
For this to happen the following equations to hold

1. lt
62, lt

63, lt
64, lt

65, lt
66, lt

67, lt
68 = [000 0001]

2. lt+i
68 = F (Lt+i−1) = 0 for i = 1, 2, 3, 4, 5, 6 mod 7 and 1 ≤ i < T

3. lt+i
68 = F (Lt+i−1) = 1 for i = 0 mod 7 and 1 ≤ i < T .

There are a total of T + 6 conditions to fulfill and it is not difficult to see that the solution
space of the above linear system of equations has dimension 69 − (T + 6) = 63 − T . Since
the system is linear it is easily possible to enumerate all such states. Note that for all such
263−T LFSR states, we could easily define a function that maps the entire internal state +
K to a T -bit keystream segment. So our attack would be as follows:

Offline:

A: For all 290 NFSR states, 263−T LFSR states enumerated above and all 27 values of K
(total 2160−T iterations)

[1:] Compute the T bit keystream segment Z produced by it.

[2:] Store in a Table Tab[Z]= State|| 7 Keybits used to produce it.

[3:] Note that each table cell will store around 2160−2T entries (a total of 2160−T

entries are divided among 2T table cells).

B: Time complexity = 2160−T , Memory complexity = 160 · 2160−T

Online:

A: Take any keystream segment Z.

B: Extract all 2160−2T entries S from Tab[Z]

C: For all such S:

[1:] Solve for the keybits not in K.

[2:] If a solution exists then output key else try another value of S.

Let us try to find the complexity of the online phase. Note that we have stored a fraction
1/2T +6 of all internals states. Under standard randomness assumptions, the online stage
will extract the correct state in 2T +6 ·27 attempts when both the state and key are correctly
extracted. Hence the complexity of the online phase is 2T +13+160−2T = 2173−T attempts
to solve for the remainder of keybits. Assuming that finding the rest of the key bits is
efficient, taking T ≈ 60, would put the complexity of both the online and offline phase
below the complexity of exhaustive search.

Now when we include the kt mod 128 term in the update function it ensures that we can
never get a relation between the state and keystream segment that only involves a few key
bits. More precisely any function mapping into T ≤ 128 keystream bits must involve at
least 159 + T input bits of the state and key. Thus this attack is prevented.

Replacing the Decimal Counter: For the purpose of saving area, one can probably
consider replacing the decimal counter by a simpler register like an LFSR. Consider

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 17

what happens when we do this: for example, let us say we have a 9-bit primitive LFSR
d0, d1, . . . , d8, which updates as d0, d1, . . . , d8 → d1, d2, . . . , d0 ⊕ d4, or the 9-bit maximum
length NFSR d0, d1, . . . , d8 → d1, d2, . . . , 1 ⊕ d0 ⊕ d4 ⊕ ∏8

i=1 di. Let dect be the integer
formed at time t by the last 7 bits d2, d3, . . . , d8. If this register replaces the decimal
counter, then the contribution of the keybits to the update function becomes kcntt

⊕ kdect
,

in place of kcntt
⊕ kt%128. Then it is possible to have T = 60 consecutive clock cycles in

which only as less as 42 keybits are involved in the state update. This is because the
sequence dect, dect+1, . . . , dect+59 can have as low as 42 separate values for some t for both
the LFSR and the maximum length NFSR. Then we would no longer be able to argue that
“any function mapping into T ≤ 128 keystream bits must involve at least 159 + T input
bits of the state and key”. To counter this problem, we could instead use a 7 bit register
(and interpret dect to be the integer formed by the entire state of the counter). But such a
register can not count up to 511 which is the required number of initialization rounds. So
to overcome this we would need additional logic to count upto 511 which makes the total
gate count quite close to an ordinary decimal counter.

Note that including the kt%128 term in the update function also automatically prevents
the attack of [ZGM17]. The attack in [ZGM17] was an extension of [EK15], in the sense
that the authors used an additional property of the output Boolean function called k-
normality to simplify the construction of special states. A function is called k-normal if it
is constant on a k-dimensional subspace of its input bits. Using this property, the attack
further refines the definition of special states to mean those for which the output function
is evaluated in the k-dimensional space for a given number of rounds, which are again
listed in tables. Using this technique the TMD tradeoff attack they propose is around 210

times faster than [EK15]. Again, since Atom does not use non-linear mixing, this attack is
not applicable.

4 Security Evaluation

4.1 TMD Tradeoff Attacks

TMD tradeoff attacks aim to invert a one way function f at a single point in the range of
function. The attack is probabilistic and the attacker may need access to multiple points in
the range of f . For stream ciphers, the one way function is typically the map between the
internal state and the prefix of the keystream bits produced by the internal state. We have
already seen in the previous section that any function mapping into T ≤ 128 keystream
bits must involve at least 159 + T input bits of the state and key. In this context, let us
look at some of the common TMD Tradeoff attacks reported against stream ciphers:

Biryukov-Shamir Attack [BS00]: Given that N is the cardinality of the set of internal
states, the attacker chooses m, t, D so that mt2 = N and t ≥ D, where D will be the
data complexity required for the attack. The attacker builds t

D
tables of size m × t

in the following manner: he randomly chooses m initial states. For each initial state,
he forms a chain of length t by iteratively applying the stream cipher function f
and using the keystream as the state for the next point. For each table some unique
reordering of the bits after applying the function f is used so that the tables do
not store the same set of states. For the attacker to be able to do this he must be
able to formulate the stream cipher function in such a manner that it maps equal
length input and output bit vectors. The only choice the attacker has is to choose
T = 159 + 128 = 287, which enables him to formulate the function f as mapping the
key and state to the first 287 keystream bits produced by the generator.

In the process, mt · t
D

= N
D

of the state space is covered by all the chains. This also
happens to be the offline complexity Toffline of this stage. Also only the start and

18 Atom: A Stream Cipher with Double Key Filter

endpoints of each chain are stored in tables, and so M = m · t
D

bits of memory is
used.

In the online phase, the attacker has access to D segments of keystream. For
each target keystream segment y, he applies f on y upto t times checks if y is
present as an endpoint in any table. If yes, he goes back to the starting point and
retrieves the state just before y in the chain. The total time complexity is thus
Tonline = D · t · t

D
= t2. This gives us the tradeoff curve TonlineM2D2 = N2, with

the limitation that Tonline ≥ D2. For Atom, N = 2287 and there is no point in the
tradeoff curve for which Tonline and Toffline are both less than 2128.

Using Sampling Resistance of Atom: The main idea of sampling is to find an efficient
way to generate and enumerate “special” cipher states, for which the first few
keystream bits generated by the cipher is a fixed string. If this happens for a run of
x bits, the sampling resistance of the cipher is defined to be R = 2−x. This leads to
improved trade-off attacks when the value of x is significant.

For Atom, the taps are extremely densely packed. The sampling resistance is quite
large and around 2−5. Observe the following set of equations in the generator:

bt
22 = zt ⊕ bt

1 ⊕ bt
5 ⊕ bt

11 ⊕ bt
36 ⊕ bt

53 ⊕ bt
72 ⊕ bt

80 ⊕ bt
84

⊕ lt
5lt

16 ⊕ lt
13lt

15 ⊕ lt
30lt

42 ⊕ lt
22lt

67 ⊕ h(lt
7, lt

33, lt
38, lt

50, lt
59, lt

62, bt
85, bt

41, bt
9)

bt
23 = zt+1 ⊕ bt

2 ⊕ bt
6 ⊕ bt

12 ⊕ bt
37 ⊕ bt

54 ⊕ bt
73 ⊕ bt

81 ⊕ bt
85

⊕ lt
6lt

17 ⊕ lt
14lt

16 ⊕ lt
31lt

43 ⊕ lt
23lt

68 ⊕ h(lt
8, lt

34, lt
39, lt

51, lt
60, lt

63, bt
86, bt

42, bt
10)

...

bt
26 = zt+4 ⊕ bt

5 ⊕ bt
9 ⊕ bt

15 ⊕ bt
40 ⊕ bt

57 ⊕ bt
76 ⊕ bt

84 ⊕ bt
88

⊕ lt
9lt

20 ⊕ lt
17lt

19 ⊕ lt
34lt

46 ⊕ lt
26lt

71 ⊕ h(lt
11, lt

37, lt
42, lt

54, lt
64, lt

66, bt
89, bt

45, bt
13)

This means that given the value of 282 particular state and key bits of Atom and the
first 5 keystream bits produced from that state, another 5 internal state bits may be
deduced efficiently. The equation for bt

27 involves bt
90 which already contains the bt

25

term.

This helps us define a function f : {0, 1}282 → {0, 1}282. We fix a specific 5
bit string say 15. For any 282-bit string x we expand it to a 287-bit string by
interpreting it as a partial state of Atom and calculating the remaining 5 bits
bt

22, bt
23, . . . , bt

26 by assuming that zt, zt+1, . . . , zt+4 = 15. Generate the remaining 282
bits y = zt+5, zt+6, . . . , zt+286 by clocking the Atom generator with the full state. We
define f(x) = y. Using this technique, in the online stage we wait till we observe the
15 vector in the keystream sequence. If so we try to invert f using the subsequent
282 bits of the keystream.

It can be shown that the tradeoff curve resulting thereof is TonlineM2(RD)2 = (RN)2,
with the condition (RD)2 ≤ T . Again there is no point in the tradeoff curve for
which Tonline and Toffline are both less than 2128.

Hong-Sarkar Attack [HS05]: This attack is exactly same as [BS00], except that the
definition of the underlying one way function is now changed. In this attack f maps
the string consisting of the Key and IV to an equal length keystream bits. Thus if K
and V refer to the size of the Key space and IV space respectively, then N = KV ,
and we will have the new tradeoff curve TonlineM2D2 = K2V 2 with the limitation
that Tonline ≥ D2. This attack becomes applicable if V ≪ K, as in the case of the
A5/3 cipher (in which the size of the secret key in 64 bits, and the size of the IV is
22 bits). In our case K = V , and N = KV = 2256, and again there is no point in
the tradeoff curve for which Tonline and Toffline are both less than 2128.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 19

Dunkelman-Keller Attack [DK08]: The Dunkelman-Keller TMD attack is a multiple IV
attack, i.e. the attacker obtains keystreams from multiple IVs and the same Key in
order to perform the attack. The definition of the underlying one way function f is
slightly different from the Hong-Sarkar attack. Given a fixed IV, the function f maps
the secret key to the keystream sequence of equal length. The attacker chooses V

D

random IVs. For each IV he constructs t tables as before, by iterative application of
the function f from m random starting points, with mt2 = K. Again only the start
and end points are stored and so for each IV the storage required is Msingle = mt,
and the total storage is therefore Msingle · V

D
, and the total offline complexity is

Toffline = K · V
D

.

In the online phase, the attacker waits until he receives keystream for one of the V
D

IVs he had made tables for. This happens in roughly D IV resynchronizations. Once
he gets such keystream from such an IV, he retrieves the t tables he had constructed
for the particular IV and tries to find the inverse image of the keystream string in
each of the tables. Therefore the online complexity is given by Tonline = D + t2 =

D + K2

M2

single

= D + K2V 2

M2D2 with the constraints Tonline ≥ D, V ≥ D. In the case of

Atom, KV = 2256 and again this attack is not feasible.

A note about amortization of Toffline: So far, our security argument has heavily relied
on the fact that the total cost of any attack in terms of computational complexity,
including the time spent on building offline tables can not be smaller than the
complexity of exhaustive search. However, it is possible to amortize the complexity of
Toffline over many cryptanalysis attempts. For example consider the tradeoff curve
for Atom for the Biryukov-Shamir Attack: TonlineM2D2 = N2, with Tonline ≥ D2

and Toffline = N
D

. A point on this curve is M = 2166, D = 260, Toffline = 2227 with
Tonline = 2122. Note in this point we have brought down the online complexity of the
attack below exhaustive search, though the offline complexity is many times more.
Note that the complexity of offline tables etc is a one-time cost. So the same tables
can be used to attack the cipher multiple times. Consider the situation when we try
to recover the key for 2100 independently generated keystreams. The total complexity
for this using the TMD approach is 2100 · Tonline + Toffline ≈ 2227 < 2100 · 2128. This
is less than the time complexity of 2100 exhaustive searches, and in a sense we have
managed to amortize/average out the higher complexity of Toffline over multiple
attacks. This is exactly the approach attempted in some papers [Bjo08, HK05].
The cryptographical community seems divided over this issue: while some papers
see amortization of the offline complexity as a legitimate attack approach, whereas
[BS00], for example, consider the time taken to mount one attack representative of
the true security level of the design (in fact the “state size should equal at least twice
the size of key” argument was posited in [BS00] when considering a single attack).
In this paper, we argue the security of our design in the context of a single attack.

4.2 Differential Attack

Differential cryptanalysis was first introduced to analyze the block ciphers DES and Feal
and the hash function N-Hash by Biham and Shamir [BS90, BS91]. Since then, it has
been applied to many symmetric cryptographic primitives, not limited to block ciphers. To
evaluate the resistance against differential attacks for block ciphers, one way is to obtain
the lower bound of the number of active S-boxes, which is a nonlinear operation. For
Atom, there are two nonlinear components of NFSR and output function h, which include
AND operations as nonlinear operation. Therefore, instead of an active S-box, we search
the lower bound of the number of sum of active AND and h(X), which means having at
least 1 active bit as input. In our evaluation, since the maximum differential probability

20 Atom: A Stream Cipher with Double Key Filter

of AND is 2−1 and h(X) consists of AND and XOR, we count the maximum differential
probability of h(X) as 2−1. Hence, it is sufficient to guarantee the security against the
differential attack if there are 128 sum of active AND and h(X). We present this security
evaluation with a MILP-based method [MWGP11], which is well known as the efficient
search method to obtain the lower bound of the number of sum of active AND and h(X)
(active S-boxes). Our evaluation uses the Gurobi optimizer [Inc15] as a MILP solver, and
searches all bit-wise differential characteristics.

Note that our evaluation assumes that each active AND is independent in a differential
characteristic. Thus, it might include invalid differential characteristics. However, since
our search can cover all valid ones at the same time, we believe that our evaluation is
sufficient for obtaining lower bounds of the number of active AND.

Table 1: The lower bound of the sum of AND and h(X) in the related IV setting.

of rounds 40 45 50 60
of sum of active AND and h(X) 18 24 30 43

Table 1 shows the minimum number of the sum of active AND and h(X) for 40, 45, 50,
60 clocks at the initialization phase in the related IV setting. In our evaluation, we can
search it for up to 60 clocks with a computer equipped with 48 cores and 256 GB RAM.
Form this result, Atom achieves 128 sum of active AND and h(X) for more than 180 clocks.
Thus, we expect that the full rounds of Atom can resist differential cryptanalysis.

4.3 Conditional Differential Cryptanalysis

Conditional differential cryptanalysis was first introduced in [BB93]. The technique
allows for improved key recovery and distinguishing attacks against a group of ciphers
such as Trivium, KATAN, Grain-v1 and Grain-128. For example, the authors of [KMN11]
demonstrated a 961-round distinguisher for Trivium for a large class of weak keys. Attacks
against reduced round variants of the Grain family were reported in [KMN10, Ban16].

In its core, conditional differential cryptanalysis is a refinement of ordinary differential
attacks where the longevity of differential trails is extended by imposing some conditions
on public parameters such as initialization vectors. Denote by x = (x1, . . . , xn) ∈ {0, 1}n

an n-bit initialization vector and let ∆x = (∆x1, . . . , ∆xn) ∈ {0, 1}n be an IV difference
such that x + ∆x = (x1 + ∆x1, . . . , xn + ∆xn). Furthermore, let ti(k, x) be the newly
generated state bit in round i based on some secret key k and the public parameters x.
The IV difference ∆x propagates to ti(k, x) whenever

∆ti(k, x) + ti(k, x + ∆x) = 1.

In order to attain a simple high-round differential trail the attacker can impose conditions
on the public parameters to prevent the propagation of the differential into the state in
certain rounds. More specifically, these conditions are categorized into two types:

• Type 1: Conditions that only involve IV variables, i.e., w1(x) ∈ {0, 1}.

• Type 2: Conditions that involve both IV and key variables, i.e., w2(x, k) ∈ {0, 1}.
w2 should be of the form w(x, k) = f(x)+g(k), where the function f(x) only depends
on the IV bits and and the function g(k) only depends on the key bits.

For correctly chosen conditions that prevent the propagation of the differential an adversary
hopes to find a biased keystream bit in some round. Then by leveraging this distinguisher
the attacker partitions the IV space into 2N subsets (where N is the total number of type
2 conditions) one for each type 2 condition. A bias should then occur for the one subset
for which g(k) is correctly guessed.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 21

The derivation of these conditions can be achieved through computer algebra systems.
Evidently, the algebraic expressions of a large number of rounds can be explicitly evaluated
when the state update function of the cipher is simple. For example, in Trivium it is
effortlessly possible to compute the algebraic equations for more than 200 rounds. This
does not hold true for Atom, in fact, due to the complex nature of its state update function,
it is not possible to compute the equations of than a dozen rounds, which naturally limits
the applicability of conditional differential attacks.

We searched for single-bit differentials heuristically. The best single-bit input differential
trail in Atom is found when a difference is introduced in bit IV67. We proceed by stopping
its propagation into subsequent rounds with the following conditions:

t = 5 : IV73 = 0

t = 6 : IV81 = 0

t = 7 : IV11 = 0

t = 8 : IV64 = 0

t = 11 : IV70 = 0

t = 13 : IV39 = 1

t = 14 : IV22 = 0, IV56 = 1, IV112 = 0,

f1(IV \ {IV0}) + IV0 + k0 = 1,

f2(IV \ {IV8}) + IV8 + k1 + k2 + k4 + k5 + k10 = 1.

Here f1, f2 are polynomials on both key and IV bits. At this point, the propagation of
the differential is prevented during the first 15 rounds. Two of the conditions are of type 2,
however the polynomials f1 and f2 are infeasible to enumerate unless more IV variables
are set to zero, i.e.,

IVi = 0, i ∈ [10, 38] ∪ [46, 55] ∪ [57, 66] ∪ [68, 89] ∪ [100, 127]

This means that in total 98 IV bits have to bit set to either 0 or 1, which leaves 30 free
variables. After this f1, f2 become polynomials defined only on the IV bits. We note that
IV0 only occurs linearly in f1, the same is true for IV8 in f2. As we have two type 2
conditions we partition the IV variables into 22 = 4 sets TU of the form

TU = {IV ∈ {0, 1}128 | IVi = 0, i ∈ [10, 38] ∪ [46, 55] ∪ [57, 66] ∪ [68, 89] ∪ [100, 127],

IV39 = 1, IV56 = 1,

IV0 = f1 + k0, IV8 = f2 + k1 + k4 + k5 + k10},

where U = [k0, k1 + k2 + k4 + k5 + k10]. These conditions then produce a detectable bias
in the keystream bit of round 36 for the IV set TU where U has been guessed correctly.
We give the full polynomials f1 and f2 in Appendix D.

Note a bias may linger longer in the cipher state. For example a difference in IV bit
IV18 produces a difference in b6

12 under the conditions

IV17 = 0, IV19 = 0.

This conditional differential trail exhibits a bias in state bits b117
0 and l117

0 , i.e., in round 117.
However, it is not clear how such a biased state bit can be exploited given the complicated
nature of the keystream function. Consequently, we believe that Atom resists conditional
differential attacks with a large security margin.

4.4 Integral/Cube Attacks

The integral attack was first proposed by Daemen et al. as a dedicated attack against
the block cipher Square [DKR97], and then it was formalized to the integral property by

22 Atom: A Stream Cipher with Double Key Filter

Knudsen and Wagner [KW02] (the saturation attack of Lucks [Luc01] also belongs to this
family of attacks). We define the four states for a set of 2n n-bit cell: A: if ∀i, j i 6= j ⇔
xi 6= xj , C: if ∀i, j i 6= j ⇔ xi = xj , B:

⊕2n
−1

i xi, and U: Other. In our evaluation, we
search the integral distinguisher on clock-reduced Atom. To find the integral distinguisher,
we explore the propagation of the division property proposed by Todo [Tod15], which
can search the integral distinguisher in more detail than the integral property, with an
MILP-based search method proposed by Xiang et al. [XZBL16], which can efficiently
explore the propagation of the bit-based division property. When we search the integral
distinguisher, we give IV having A, which denotes that all bits in IV are active, as the
division property at the input and then we check whether the output of the keystream bit
is balanced after r clocks or not. As a result, we found the integral distinguisher after 67
clocks and we could not find the integral distinguisher after 68 clocks. Thus, we expect
that Atom can resist against the integral attack. In addition, the division property was
introduced to evaluate cube attacks [DS09], i.e. it evaluates the set of key bits J involved
in the superpoly given a certain cube I [TIHM17]. Therefore, this result shows that the
full rounds of Atom has a sufficient security level against cube attacks.

4.5 Algebraic/Guess-and-Determine Attacks

The output functions in Atom were chosen to be sufficiently complicated to prevent advances
due to algebraic attacks. In [BGJ08], an algebraic attack was proposed against Grain-like
ciphers in which the NFSR variables add only linearly to the expression for the keystream
bit. For example it was shown that if a modified version of the Grain v1 cipher was
conceived in such a way that it contained only the non-linear register from which the
keystream was obtained only by linearly adding specific bits of the inner state, then each
updated NFSR bit would be a linear function of initial state of NFSR bits. For example if
v0, v1, v2, . . . , vn−1 is the initial state of the NFSR such that each updated bit is calculated
as vn+t = G(vn+t−1, vn+t−2, . . . , vt) and each keystream bit zt = L(vn+t−1, vn+t−2, . . . , vt),
where G, L are non-linear and linear boolean functions respectively on n bits, then updated
bit vn+t can be written as

vn+t = G(vn+t−1, vn+t−2, . . . , vt) = Lin (v0, v1, . . . , vn−1, z0, z1, . . . , zt), ∀t (4)

Here Lin is another linear function. The above is not difficult to show and requires
simple mathematical induction based arguments: if t0 is the smallest integer for which
the expression for zt0

contains the term vn, then from the linearity of zt0
, we can see that

vn can be written as a linear expression in v0, v1, · · · , vn−1 and zt0
. The argument carries

forward in a similar manner for any subsequent value of t = t0 + 1, t0 + 2, . . . etc. Now we
can multiply Equation (4) on both sides by H which is the annihilator of G to get equations
of lower algebraic degree. The authors of [BGJ08] showed that for the modified of Grain
v1, one could generate degree 4 equations using the annihilator of the non-linear update
function. The system could then be linearized and solved using Gaussian elimination using
249 operations.

Consider what happens when we have a Grain-like structure in which the attacker
somehow gets to know the entire LFSR state. If the output equation for the keystream bit
only contains terms from the NFSR which are linearly added along with non-linear terms
from the LFSR, then due to the fact that the LFSR is completely known, the expression
for the keystream bit becomes a purely linear expression in the initial NFSR state variables
and we arrive at a situation that is similar to the one described in the previous paragraph.
For Atom, we made sure that the expression for the kesytream bit contains higher degree
terms with NFSR bits. Hence the attack of [BGJ08] does not apply to Atom.

In [BBI19, MAM16, Ban15] algebraic attacks via the method of SAT solvers are
proposed against Sprout and Plantlet. The idea is to formulate equations relating the key

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 23

Table 2: Experimental data for algebraic attack. The Effective Complexity has been
computed in terms of number of encryptions. Threshold runtime is the maximum time
any equation solver can theoretically take for the total effective complexity to be below
exhaustive search.

NFSR bits Runtime (secs) Effective Threshold
guessed Average Maximum Minimum Complexity Runtime (secs)

65 398.509 1022.764 137.549 2145.0 3.016
70 16.149 51.855 0.636 2145.4 0.094
75 0.700 1.344 0.400 2145.9 0.003
80 0.449 0.832 0.340 2150.2 9.204 ·10−5

and the internal state variables to the keystream bits and forward the resulting equation
bank to a suitable solver. This approach is in itself slightly problematic against Atom

since a part of the LFSR directly decides which key bit is used to update the NFSR. If
the LFSR is variable or unknown, the attacker would find it difficult to enumerate any
equation bank as he wouldn’t know which key bit was used in the state update. Hence to
use this approach the attacker has to guess correctly the entire LFSR state in order to
proceed with the attack (this imposes a multiplicative complexity 260 to begin with, since
the attacker knows that the last 9 bits of the LFSR at the beginning of the keystream
phase is always 1). After this, we tried to follow a similar approach as in the above papers
and present an equation bank to the solver. On a machine running with an Intel(R)
Core(TM) i5-7200U CPU @ 2.50GHz and 12 GB RAM, we could not solve the equations
in reasonable time unless we additionally guessed correctly the values of NFSR bits too.
In Table 2 we list the average runtimes taken by the solver to find a solution, against the
number of NFSR bits guessed. The averages were calculated for 100 random instances of
Atom keystream. The bits were guessed from the most significant end of the NFSR, so
that they would remain in the NFSR longer during the evolution of the state and help
simplify the algebraic complexity of the equations.

The solver failed to return any solution in reasonable time for less than 65 guesses. It
can be seen that for 65 guesses of NFSR bits, we already have a complexity of 260+65 = 2125

to account for the guesses. Finally, we estimated the amount of time needed to perform one
Atom encryption. Since there is no straightforward way to compute the number of steps
taken by the solver to solve a given polynomial system, there is no good way of comparing
the computational costs of solving an equation and performing one encryption. Due to this
fact, many papers [ZLFL14, MAM16, BBI19] in the past have measured the physical time
to perform the above tasks to make a comparison. In [MAM16], in order to estimate the
computational complexity of guess and determine attacks, the authors had measured the
time of performing one encryption and concluded that it was possible to perform around
210 encryptions per second on their system. Using this fact and after experimentally
finding the average physical time required to solve a particular set of equations, they had
concluded that guess and determine attacks on Plantlet did not perform better than a
brute force attack. We adopt a similar method to estimate the bounds we present in this
paper.

As argued in [EK15, Ban15, BBI19] one Atom encryption should be equal to the average
number of rounds required to be executed per trial with a guessed value of the key (in a
brute force search). This comes to 511 initialization rounds and 4 rounds in the keystream
generation phase. We have given a proof of this in Appendix A (at the end of this paper).
We calculated the average time required to execute one encryption (i.e. 511 initialization
and 4 keystream rounds) on the same setup for 10000 randomly generated test vectors. We
found that the average time required to compute one encryption is around 0.377 ms, which
amounts to E ≈ 2652.5 encryptions per second. The total complexity (in terms of number

24 Atom: A Stream Cipher with Double Key Filter

of encryptions) may be estimated as 260+g · E · T , where T is roughly the average number
of time taken to solve an equation, and g is the number of NFSR bits guessed. The results
are tabulated in Table 2. In can be seen that Atom is secure against algebraic/guess and
determine attacks.

For a hardware oriented cipher, exhaustive search should ideally be measured by
the efficiency of a hardware implementation. However in most previous papers such as
[ZLFL14, MAM16, BBI19], attacks are software oriented and the cost in encryptions has
been calculated on the basis of the software attack. An exhaustive search in hardware can
run as fast as the underlying technology allows it to. For example in Table 3 we can see
that Atom can produce a maximum throughput of 490.5 Mbps on a circuit constructed
with STM 90nm standard cells, 800 Mbps on Nangate 45 nm, and over 1 Gbps on TSMC
28 nm standard cells. This corresponds to E = 6.06 · 105, 1.55 · 106, 2.09 · 106 encryptions
per second on the 3 respective platforms. For example if exhaustive search were to be run
on a custom made ASIC chip constructed with TSMC 28 nm transistors, using our circuit,
we would be able to verify 2.09 · 106 keys per second. However to estimate the cost of
algebraic attack fairly, we need to run our equation solver in hardware on the same chip.
At the moment we do not have access to such a solver: while software based SAT solvers
are easily available, we do not know if there exists such a custom circuit on hardware.
Hence our benchmarking is done on software solvers.

4.6 Banik’s Distinguishing Attack Against Sprout [Ban15]

Atom is secure against generic Time Memory Data (TMD) Tradeoff attacks as presented in
[BS00], for the same reason that Sprout, Plantlet, Lizard are secure. The reason is that it is
not possible to construct a one way function that maps the internal state to any keystream
vector that does not additionally require the secret key. Furthermore the key update
component in the state update function is completely linear, this ensures that table based
special state attacks of [EK15] do not apply to all post-Sprout constructions. An interesting
distinguishing attack against Sprout using slid keystreams was presented in [Ban15] that
also applies to Plantlet, Lizard which was further generalized in [HKMZ18]. We will present
the attack in context of Atom. Consider any random initial state SR ∈ {0, 1}159. Since
the state update function in both the keystream generation and key-IV initialization is
bijective and efficiently invertible, we can apply both the Init−1 and Update−1 algorithms
on it. Given the secret key, the former would reverse the entire key-IV initialization on
any random string of 159 bits, and the latter inverts one round of the state update during
keystream generation. A state SR is a valid initial state after key-IV initialization, if a)
its last 9 bits in decimal representation equals 511 and b) if Init−1(SR) has the 22 bit
constant used to initialize Atom in bit positions 128 to 149. Thus the probability that
a random SR is a valid initial state is around 2−22−9 = 2−31. Similarly the probability
that SR is a valid tth state after initialization is also 2−31 (S = [Update−1]t(SR) and
Init−1(S) must satisfy the required conditions). Hence the probability that for any given
key SR is both the 0th and tth post-initialization state for 2 different IVs is around 2−62.
From randomness considerations we can therefore conclude that on average for every key
there exists 2159−62 = 297 IV pairs IV1, IV2 that satisfy such a condition. If t is such that
the order and sequence of keybits that is used in the state update following the 0th and
tth clocks are the same, then it is clear that the IV pair IV1, IV2 produce t-bit shifted
keystream for the given key. So our distinguisher is as follows:

• Generate around 2t keystream bits Z1||Z2 for the unknown Key K and some randomly
generated Initial Vector IV (where Z1 and Z2 are t-bit vectors each).

• Store the keystream bits in some appropriate data structure such as a hash table keyed
with both Z1 and Z2 (to help easy detection of collisions),

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 25

• Continue the above steps with more randomly generated IVs IV till we obtain two
Initial Vectors for K that generate t-bit shifted keystream.

Imagine the space of Initial Vectors as an undirected Graph G = (W, E), where
W = {0, 1}128 is the Vertex set which contains all the possible 128 bit Initial vector values
as nodes. An edge (IV1, IV2) ∈ E if and only if (K, IV1) and (K, IV2) produce t-bit shifted
keystream sequence. From the above discussion, it is clear that the cardinality of E is
expected to be 297. When we run the Distinguisher algorithm for N different Initial
Vectors, we effectively add

(

N
2

)

edges to the coverage and a match occurs when one of

these edges is actually a member of the Edge-set E. Since there are potentially
(

2128

2

)

edges in the IV space, by the Birthday bound, a match will occur when the product of
(

N
2

)

and the cardinality of E which is around 297 is equal to
(

2128

2

)

. From this equation

solving for N , we get N ≈ 279.5 =
√

2159 which is square root of the cardinality of the
state space. This gives a bound for the time and memory complexity of the Distinguisher.
The time complexity is around

√
2159 encryptions, and the memory required is of the order

of 2t ·
√

2159 bits.
This keystream distinguisher also works for Atom, but we claim that this can not be

converted to a key recovery attack. Consider what happens when the attacker finds two
IVs V1, V2 that produces 128-bit shifted keystream for some secret key K. This implies that
there exists a state SR which is the 0th and 128th post-initialization state after initialization
with key-IV pairs (K, V1) and (K, V2) respectively. This implies the following two things

1. SR and [Update−1]128(SR) are such that the last 9 LFSR bits of both these states is
the 9 bit string 19.

2. Init−1SR and Init−1◦[Update−1]128(SR) are such that the last 31 LFSR bits of both
these states is the 31-bit constant used to initialize Atom.

Of these, the latter is not of much use cryptographically, since Init−1 is an algebraically
complex function, most probably of degree close to (128 + 159). However, Update−1 is a
linear function on the LFSR part of the state. The statement “last 9 bits of SR equals
1” implies that the SR can be denoted as the symbolic variable string ℓ0, ℓ1, . . . , ℓ59, 19

over GF(2). The statement “last 9 bits of (Update−1)128(SR) equals 1” is a set of 9 linear
equations over the 60 variables ℓi. The kernel of this system has dimension 51, which
implies that there are 251 possible values that the LFSR part of SR can have.

Hereafter, the attacker may use the equation solving approach used in the previous
subsection to solve for the NFSR state and the key. The only difference is that the attacker
now has fewer number of LFSR states to try out (251 is this attack compared to 260 in
the pure guess and determine attack in the previous subsection). This implies that the
total complexity required for this approach is faster than the attack complexities listed
in Table 2 by a factor of 29, plus an additive complexity of 279.5 required to find the
shifted keystreams. This is still worse than exhaustive search and requires memory of
2t · 279.5 ≈ 287.5 bits.

5 Hardware Evaluation

We implemented all the ciphers using the standard cell libraries based on the STM 90nm,
Nangate 45nm and TSMC 28 nm logic processes1. The following design flow was adhered
to. All the designs were initially implemented in VHDL and the functional verification was
done using Mentor Graphics ModelSim SE software. The designs were then synthesized
using the Synopsys Design Compiler for the Standard Cell libraries of the three logic
processes mentioned above. The switching activity file was then generated by performing a

1All source codes are publicly available in https://github.com/qantik/atom.

26 Atom: A Stream Cipher with Double Key Filter

Atom (1503 GE)

State Register - 838 GE

Output Function - 200 GE

NFSR Update - 33 GE

Key Filters -303 GE

Control logic - 128 GE

55.7%

13.4%
2.2%

20.2%

8.5%

Figure 4: Breakdown of the area of individual components for the STM 90 nm process
using the compile_ultra -no_autoungroup synthesis directive.

timing simulation on the synthesized netlist using the Synopsys VCS Software. The power
was then estimated with the Synopsys Power Compiler by using the switching activity file.
In Table 3, we compare our implementation results with current state of the art hardware
stream ciphers providing 80-bit security Grain v1, Trivium, Sprout, Plantlet, Lizard and
the 128-bit stream cipher Grain-128. For completeness, we also include AES-CTR in
our benchmarks. There are numerous hardware implementations of AES presented in
literature: from fully unrolled which performs encryption in one clock cycle, to round based
which takes 10 clock cycles per encryption to various serialized circuits which although
smaller in hardware size, utilize much more clock cycles for the same purpose. We choose
the byte-serial AES implementation presented in [BCB20] which takes around 176 clock
cycles to encrypt one plaintext and so when used in counter mode, this circuit can encrypt
128 bits every 176 clock cycles (this is better than the 216/246 cycle implementations of
[BBR16, BBR19]). This is close to the 1 bit/cycle implementations of the other stream
ciphers we have listed in Table 3.

As an instructive example, in Figure 4, we present a break-up of the area shares taken
by the various components of the circuit in the design of Atom using the standard cell
library of the STM 90nm logic process. As can be seen, a major part of the circuit area
(around 56%) is occupied just by the registers. The two key filters occupy 303 GE in total,
which means that the additional innovation cost us around 150 GE. As can be seen our
design is quite competitive in performance as compared with Grain 128.

A high level diagram of the circuit is present in Figure 5. As can be seen Init represents
the signal which is high only during the initialization phase. The LFSR is indeed partitioned
in to two sections of 60 and 9 bits each. We also have a dedicated decimal counter that
updates the last 9 bits of the LFSR during initialization which is discontinued as soon
as the initialization phase is completed. The key filters are arranged so that the kt%128

component is added to the NFSR update only after the initialization phase is completed.

A note about throughput: If any application requires higher throughput relative to
hardware area, Table 3 shows that this can be achieved with Grain or Trivium. Hence
for some speeds, these ciphers offer a much better area/performance tradeoff. Also note
that, for Grain/Trivium it is possible to compute a lot of bits in parallel relatively easily,
because these designs deliberately leave last few bits in the registers untapped. While these
designs can afford to do this, because their register sizes are 2-3 times the key size, for
small-state designs this is undesirable, for following reasons: (1) It decreases the sampling
resistance of the cipher and so a TMD-tradeoff attack via BSW sampling may become
feasible, (2) prevent situations like [Ban15, Section 5.2] in which if part of the LFSR with
some probability is zero for few clock cycles, the keystream can be expressed as a function
of a much smaller part of the internal state, and (3) another reason why parallelizing

2We implemented AES in the counter mode of operation in a byte-serial way equipped with a 32-bit

counter.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 27

Table 3: Hardware measurements of Atom and other lightweight stream cipher con-
structions. For this comparison all listed algorithms have been implemented using three
different cell library processes, i.e., STM 90 nm, NanGate 45 nm and TSMC 28 nm. All
constructions were synthesized using the compile_ultra directive.

State/Key Size Area Latency Throughput TP/Area Power Energy
(µm2) (GE) (ns) (Mbit/s) (106 Mbit/s·m2) (µW, 100 MHz) (pJ/bit)

STM 90 nm
Grain-v1 [HJM07] 160/80 4300.40 979.52 1.65 606.06 0.141 372.7 3.78
Trivium [Can06] 288/80 6597.57 1502.7 1.83 546.45 0.083 607.7 6.21
Sprout [AM15] 80/80 2990.96 681.25 1.87 534.76 0.179 234.8 2.37
Plantlet [MAM16] 101/80 3436.58 782.70 1.87 534.76 0.156 276.4 2.79
Lizard [HKM17] 121/120 5490.19 1250.5 2.58 387.63 0.071 358.2 3.65
Grain-128 [HJMM06] 256/128 6397.91 1457.2 2.22 450.45 0.070 562.9 5.75
Kreyvium [CCF+18] 288/128 12970.3 2954.2 2.04 490.21 0.038 1019 10.60
Trivium-MB [MB07] 288/128 7085.00 1613.7 2.06 485.44 0.069 614.5 6.29
Trivia [CCHN15] 384/128 8964.09 2041.7 2.06 485.44 0.054 803.5 8.29
AES-CTR 2 288/128 9191.35 2093.5 6.16 118.06 0.013 1099.0 15.10
Atom 159/128 6543.89 1490.5 3.20 312.51 0.047 490.5 5.02

NanGate 45 nm
Grain-v1 160/80 1161.93 1456.02 0.63 1587.38 1.367 342.5 3.50
Trivium 288/80 1857.58 2327.79 0.51 1960.78 1.056 548.3 5.68
Sprout 80/80 768.740 963.331 0.62 1612.90 2.098 227.0 2.30
Plantlet 101/80 873.277 1094.32 0.76 1315.79 1.507 242.0 2.46
Lizard 121/120 1326.00 1661.65 0.81 1234.57 0.931 386.9 3.97
Grain-128 256/128 1685.64 2112.33 0.87 1149.43 0.682 453.5 4.68
Kreyvium 288/128 3441.55 4312.66 0.76 1315.79 0.382 824.9 8.80
Trivium-MB 288/128 1947.91 2440.99 0.51 1960.78 1.007 128.8 1.33
Trivia 384/128 2482.58 3111.00 0.73 1369.86 0.552 725.1 7.60
AES-CTR 288/128 2340.28 2932.68 2.05 354.767 0.152 729.5 10.00
Atom 159/128 1613.29 2021.67 1.25 800.000 0.496 431.8 4.45

TSMC 28 nm
Grain-v1 160/80 493.53 1353.99 0.81 1234.57 2.502 101 1.04
Trivium 288/80 730.74 2004.66 0.61 1639.34 2.243 163 1.68
Sprout 80/80 333.27 914.325 0.50 2000.00 6.001 60.8 0.62
Plantlet 101/80 384.18 1053.99 0.54 1851.85 4.820 72.1 0.73
Lizard 121/120 596.93 1637.67 0.92 1086.96 1.821 86.9 0.89
Grain-128 256/128 736.77 2021.32 0.57 1754.39 2.381 155 1.60
Kreyvium 288/128 1455.6 3993.33 0.62 1612.90 1.108 284 3.02
Trivium-MB 288/128 806.03 2211.33 0.65 1538.46 1.909 168 1.74
Trivia 384/128 1004.8 2756.65 0.66 1515.15 1.508 200 2.08
AES-CTR 288/128 1054.3 2892.35 1.62 448.93 0.526 254 3.49
Atom 159/128 720.61 1976.98 0.93 1075.27 1.492 121 1.25

is counterproductive in Atom/ciphers with key-filter, is that for any x-times parallelized
implementation, we will need 2x keybits to update the state, which requires 2x key-filters.
Since each filter is a 128-to-1 multiplexer, this increases the area of the design multiple
folds.

6 Conclusion

In this paper we present the stream cipher Atom with internal state only around 25%
larger than the secret key. Since all such attempts in the past had some cryptanalytic
advances reported against them, our aim was to see if there were any high level architectural
modifications that could make such designs immune against common cryptanalytic methods.
As a result we adopted a Grain-like structure with an additional key filter that seems
to protect against most cryptanalytic advances reported against small state ciphers. We
performed an extensive review of the design with detailed hardware implementations in 2
standard cell libraries to support our findings.

Acknowledgments

The authors would like to thank Yann Rotella and the anonymous ToSC reviewers for their
valuable comments and suggestions. Subhadeep Banik is supported by the Swiss National

28 Atom: A Stream Cipher with Double Key Filter

⊕

⊕

Zf

Zf

Zf

Output

Output Logic

Decimal Ctr

LFSR (60+9)

NFSR (90)

LFSR (last 7 bits)

CTR

K1

K2

Key

⊕ ⊕

K1 K2
Update Logic

NFSR
Update Logic

LFSR

Key Filter Logic

Init

Init

Init

Figure 5: High level Circuit Diagram. Note that the logic required to load the IV and
constant pad on to the registers is not explicitly shown.

Science Foundation (SNSF) through the Ambizione Grant PZ00P2_179921. Takanori Isobe
is supported by JST, PRESTO Grant Number JPMJPR2031, Grant-in-Aid for Scientific
Research (B)(KAKENHI 19H02141) and JSPS bilateral Program with DST (JPJSBP
120197735). Kosei Sakamoto is supported by Grant-in-Aid for JSPS Fellows (KAKENHI
20J23526) for Japan Society for the Promotion of Science.

References

[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers
with Shorter Internal States. In Fast Software Encryption - 22nd International

Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected

Papers, pages 451–470, 2015.

[Bab95] S. H. Babbage. Improved “exhaustive search” attacks on stream ciphers. In
European Convention on Security and Detection, 1995., pages 161–166, 1995.

[Ban15] Subhadeep Banik. Some Results on Sprout. In Progress in Cryptology -

INDOCRYPT 2015 - 16th International Conference on Cryptology in India,

Bangalore, India, December 6-9, 2015, Proceedings, pages 124–139, 2015.

[Ban16] Subhadeep Banik. Conditional differential cryptanalysis of 105 round grain
v1. Cryptogr. Commun., 8(1):113–137, 2016.

[BB93] Ishai Ben-Aroya and Eli Biham. Differential Cryptanalysis of Lucifer. In
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings,
pages 187–199, 1993.

[BBI19] Subhadeep Banik, Khashayar Barooti, and Takanori Isobe. Cryptanalysis of
Plantlet. IACR Trans. Symmetric Cryptol., 2019(3):103–120, 2019.

[BBR16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-
aes: A compact implementation of the AES encryption/decryption core. In
Progress in Cryptology - INDOCRYPT 2016 - 17th International Conference

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 29

on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings,
pages 173–190, 2016.

[BBR19] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Compact
circuits for combined AES encryption/decryption. J. Cryptogr. Eng., 9(1):69–
83, 2019.

[BCB20] Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency Sym-
biosis: Towards Improved Serial Encryption Circuits. IACR Cryptol. ePrint

Arch., 2020:608, 2020.

[BGJ08] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation
Attacks against Linearly Filtered Non Linear Feedback Shift Registers. In
Selected Areas in Cryptography, 15th International Workshop, SAC 2008,

Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers,
pages 184–198, 2008.

[BGM06] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of
Grain. In Fast Software Encryption, 13th International Workshop, FSE 2006,

Graz, Austria, March 15-17, 2006, Revised Selected Papers, pages 15–29, 2006.

[BICG17] Subhadeep Banik, Takanori Isobe, Tingting Cui, and Jian Guo. Some crypt-
analytic results on Lizard. IACR Trans. Symmetric Cryptol., 2017(4):82–98,
2017.

[Bjo08] Tor E. Bjorstad. Cryptanalysis of Grain using Time/Memory/Date Tradeoffs.
eSTREAM, ECRYPT Stream Cipher Project, Report 2008/012, 2008. https:

//www.ecrypt.eu.org/stream/papersdir/2008/012.pdf.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Advances in Cryptology - CRYPTO ’90, 10th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,

Proceedings, pages 2–21, 1990.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-Hash. In
Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and

Application of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991,

Proceedings, pages 1–16, 1991.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Advances in Cryptology - ASIACRYPT 2000, 6th

International Conference on the Theory and Application of Cryptology and

Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, pages
1–13, 2000.

[Can06] Christophe De Cannière. Trivium: A Stream Cipher Construction Inspired by
Block Cipher Design Principles. In Sokratis K. Katsikas, Javier López, Michael
Backes, Stefanos Gritzalis, and Bart Preneel, editors, Information Security,

9th International Conference, ISC 2006, Samos Island, Greece, August 30 -

September 2, 2006, Proceedings, volume 4176 of Lecture Notes in Computer

Science, pages 171–186. Springer, 2006.

[Can11] Anne Canteaut. A5/1. In Henk C. A. van Tilborg and Sushil Jajodia, editors,
Encyclopedia of Cryptography and Security, pages 1–2. Springer US, Boston,
MA, 2011.

30 Atom: A Stream Cipher with Double Key Filter

[CCF+18] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream Ciphers: A
Practical Solution for Efficient Homomorphic-Ciphertext Compression. J.

Cryptol., 31(3):885–916, 2018.

[CCHN15] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. TriviA: A Fast and Secure Authenticated Encryption Scheme. In
Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and

Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,

France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in

Computer Science, pages 330–353. Springer, 2015.

[DK08] Orr Dunkelman and Nathan Keller. Treatment of the initial value in
Time-Memory-Data Tradeoff attacks on stream ciphers. Inf. Process. Lett.,
107(5):133–137, 2008.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher
Square. In Fast Software Encryption, 4th International Workshop, FSE ’97,

Haifa, Israel, January 20-22, 1997, Proceedings, pages 149–165, 1997.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages
278–299, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[EK15] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout
with TMD Tradeoff Attacks. In Selected Areas in Cryptography - SAC 2015 -

22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,

Revised Selected Papers, pages 67–85, 2015.

[Fon11] Caroline Fontaine. RC4. In Henk C. A. van Tilborg and Sushil Jajodia,
editors, Encyclopedia of Cryptography and Security, pages 1031–1032. Springer
US, Boston, MA, 2011.

[Gol97] Jovan Dj. Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Advances in

Cryptology - EUROCRYPT ’97, International Conference on the Theory and

Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,

1997, Proceeding, pages 239–255, 1997.

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.

Theory, 26(4):401–406, 1980.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. Int. J. Wirel. Mob. Comput., 2(1):86–93, 2007.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
Stream Cipher Proposal: Grain-128. In Proceedings 2006 IEEE International

Symposium on Information Theory, ISIT 2006, The Westin Seattle, Seattle,

Washington, USA, July 9-14, 2006, pages 1614–1618. IEEE, 2006.

[HK05] Jin Hong and Woo-Hwan Kim. TMD-Tradeoff and State Entropy Loss Con-
siderations of Streamcipher MICKEY. In Subhamoy Maitra, C. E. Veni Mad-
havan, and Ramarathnam Venkatesan, editors, Progress in Cryptology - IN-

DOCRYPT 2005, pages 169–182, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A Lightweight
Stream Cipher for Power-constrained Devices. IACR Trans. Symmetric Cryp-

tol., 2017(1):45–79, 2017.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 31

[HKMZ18] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Design
and analysis of small-state Grain-like stream ciphers. Cryptogr. Commun.,
10(5):803–834, 2018.

[HS05] Jin Hong and Palash Sarkar. New Applications of Time Memory Data
Tradeoffs. In Advances in Cryptology - ASIACRYPT 2005, 11th International

Conference on the Theory and Application of Cryptology and Information

Security, Chennai, India, December 4-8, 2005, Proceedings, pages 353–372,
2005.

[Inc15] Gurobi Optimization Inc. Gurobi Optimizer 6.5. Official webpage, http:

//www.gurobi.com/, 2015.

[KMN10] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Dif-
ferential Cryptanalysis of NLFSR-Based Cryptosystems. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International

Conference on the Theory and Application of Cryptology and Information

Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture

Notes in Computer Science, pages 130–145. Springer, 2010.

[KMN11] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differ-
ential Cryptanalysis of Trivium and KATAN. In Ali Miri and Serge Vaudenay,
editors, Selected Areas in Cryptography - 18th International Workshop, SAC

2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers,
volume 7118 of Lecture Notes in Computer Science, pages 200–212. Springer,
2011.

[KW02] Lars R. Knudsen and David A. Wagner. Integral Cryptanalysis. In Fast

Software Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium,

February 4-6, 2002, Revised Papers, pages 112–127, 2002.

[KY10] Selçuk Kavut and Melek Diker Yücel. 9-variable Boolean functions with
nonlinearity 242 in the generalized rotation symmetric class. Inf. Comput.,
208(4):341–350, 2010.

[LN15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages
663–682, 2015.

[Luc01] Stefan Lucks. The Saturation Attack - A Bait for Twofish. In Fast Software

Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April

2-4, 2001, Revised Papers, pages 1–15, 2001.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Trans. Symmetric Cryptol.,
2016(2):52–79, 2016.

[MB07] Alexander Maximov and Alex Biryukov. Two Trivial Attacks on Trivium. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas

in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada,

August 16-17, 2007, Revised Selected Papers, volume 4876 of Lecture Notes in

Computer Science, pages 36–55. Springer, 2007.

[MSS+18] Subhamoy Maitra, Nishant Sinha, Akhilesh Siddhanti, Ravi Anand, and
Sugata Gangopadhyay. A TMDTO Attack Against Lizard. IEEE Trans.

Computers, 67(5):733–739, 2018.

32 Atom: A Stream Cipher with Double Key Filter

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Programming. In Informa-

tion Security and Cryptology - 7th International Conference, Inscrypt 2011,

Beijing, China, November 30 - December 3, 2011. Revised Selected Papers,
volume 7537 of LNCS, pages 57–76, 2011.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube Attacks
on Non-Blackbox Polynomials Based on Division Property. In Advances in

Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-

ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,
pages 250–279, 2017.

[TIM+18] Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang.
Fast Correlation Attack Revisited - Cryptanalysis on Full Grain-128a, Grain-
128, and Grain-v1. In Advances in Cryptology - CRYPTO 2018 - 38th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,

2018, Proceedings, Part II, pages 129–159, 2018.

[TMA19] Yosuke Todo, Willi Meier, and Kazumaro Aoki. On the Data Limitation of
Small-State Stream Ciphers: Correlation Attacks on Fruit-80 and Plantlet. In
Selected Areas in Cryptography - SAC 2019 - 26th International Conference,

Waterloo, ON, Canada, August 12-16, 2019, Revised Selected Papers, pages
365–392, 2019.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Sofia,

Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 287–314, 2015.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
Method to Searching Integral Distinguishers Based on Division Property for 6
Lightweight Block Ciphers. In Advances in Cryptology - ASIACRYPT 2016 -

22nd International Conference on the Theory and Application of Cryptology

and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,

Part I, pages 648–678, 2016.

[ZGM17] Bin Zhang, Xinxin Gong, and Willi Meier. Fast Correlation Attacks on
Grain-like Small State Stream Ciphers. IACR Trans. Symmetric Cryptol.,
2017(4):58–81, 2017.

[ZLFL14] Bin Zhang, Zhenqi Li, Dengguo Feng, and Dongdai Lin. Near Collision
Attack on the Grain v1 Stream Cipher. In Shiho Moriai, editor, Fast Soft-

ware Encryption, pages 518–538, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[ZXM18] Bin Zhang, Chao Xu, and Willi Meier. Fast Near Collision Attack on the
Grain v1 Stream Cipher. In Advances in Cryptology - EUROCRYPT 2018

- 37th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,

Part II, pages 771–802, 2018.

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 33

A Number of rounds equaling one Atom encryption [EK15,
BBI19]

To do an exhaustive search, first an initialization phase has to be run for 511 rounds,
and then generate 128 -bits of keystream to do a unique match. However, since each
keystream bit generated matches the correct one with probability 1

2 , 2128 keys are tried for
1 clock and roughly half of them are eliminated, 2127 for 2 clocks and half of the remaining
keys are eliminated, and so on. This means that in the process of brute force search, the
probability that for any random key, (i + 1) Atom keystream phase rounds need to be run,
is 1

2i . Hence, the expected number of Atom keystream rounds per trial is

127
∑

i=0

(i + 1)2128−i

2128
=

127
∑

i=0

(i + 1)
1

2i
≈ 4

B Test vectors

1. Key = 0000 0000 0000 0000 0000 0000 0000 0000

IV = 0000 0000 0000 0000 0000 0000 0000 0000

Z = 8ddb 7baf 22c4 ce3a b3bc 350f aa13 552b

2. Key = aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa

IV = 5555 5555 5555 5555 5555 5555 5555 5555

Z = 0906 c183 66a8 0c65 8f8b 2c8b 6c61 f978

3. Key = bcd6 0b1e 3af4 a91d 5d52 8342 18e8 9d7f

IV = 0000 0000 0000 0000 0000 0000 0000 0000

Z = ba1c 3e51 eaad 415a ca7b 41f2 cf79 a017

4. Key = e933 7ce2 2191 2ea7 e481 b3d9 a630 564e

IV = 6e16 4e17 fc18 487f bbbf 01af b42f 4545

Z = 3d16 c749 2881 d2c5 8547 0bd0 e1ef 50f1

5. Key = cd71 8f56 a392 6747 6758 7feb 4906 a5d4

IV = ba3c 55a8 d8e2 7e97 7534 b17d 7bf5 40c5

Z = d0d2 370e e7d6 9587 67c5 56cf 7b85 b11e

6. Key = e90e 92e6 fc7c caeb ff72 3369 1cc2 0350

IV = 8118 9ff9 ca94 999c faaa a700 e9b3 a82c

Z = 8d41 b026 3e6b cf60 56b7 f3a3 54fa c80c

C Search for Linear Masks

Let us give one example of the search that we undertook to mount a correlation attack.
First define θ90+t = bt+1

89 ⊕G(Bt)⊕ lt
0 ⊕kcnt ⊕kt%128 which is identically equal to 0. As per

the terminology introduced in [TMA19], we try to find linear masks TZ and Tθ such that

34 Atom: A Stream Cipher with Double Key Filter

the resulting expression for the sum of keystream bits is the simplest and likely to yield
high correlation between sum of keystream, keybits and LFSR bits. After exhaustively
looking through the search space we found TZ = {1, 3, 8} and Tθ = {1, 4, 5, 7, 8}. Now we
have

zt⊕zt+3⊕zt+8 = zt⊕zt+3⊕zt+8⊕θ91+t⊕θ94+t+⊕θ95+t⊕θ97+t⊕θ98+t = F (Bt, Lt)⊕G(K),

where F is a function of the NFSR state Bt and LFSR state Lt and G is a function of key
bits K. The function F (Bt, Lt) contains 428 monomials over 107 variables. We write F as
a sum of four functions F1, F2, F3 and F4 such that number of variables of each function is
less than 37.

F1 = F1(bt
4, bt

7, bt
8, bt

10, bt
11, bt

13, bt
32, bt

33, bt
56, bt

59, bt
60, bt

61, bt
62, bt

63, bt
64, bt

65,

bt
66, bt

67, bt
68, bt

69, bt
70, bt

72, bt
73, bt

75, bt
76, bt

77, bt
78, bt

79, bt
80, bt

81, bt
82, bt

84),

F2 = lt
4 ⊕ lt

8lt
19 ⊕ lt

8 ⊕ lt
21lt

23 ⊕ lt
30lt

42 ⊕ lt
30lt

75 ⊕ bt
18bt

20 ⊕ bt
19bt

20 ⊕ bt
19 ⊕ bt

20bt
21

⊕bt
21bt

23bt
24 ⊕ bt

22bt
23 ⊕ bt

22 ⊕ bt
23bt

24 ⊕ bt
24bt

26bt
27 ⊕ bt

25bt
27bt

28 ⊕ bt
26bt

54

⊕bt
27bt

29bt
30 ⊕ bt

28bt
30bt

31 ⊕ bt
28 ⊕ bt

29bt
57 ⊕ bt

29 ⊕ bt
30bt

58 ⊕ bt
30 ⊕ bt

31

⊕bt
54 ⊕ bt

57,

F3 = lt
1 ⊕ lt

5lt
16 ⊕ lt

5 ⊕ lt
16lt

18 ⊕ bt
36bt

43 ⊕ bt
36 ⊕ bt

39bt
46 ⊕ bt

39 ⊕ bt
40bt

47 ⊕ bt
43bt

50

⊕bt
50 ⊕ bt

86 ⊕ bt
17bt

19 ⊕ bt
81bt

84bt
85bt

87 ⊕ bt
82bt

85bt
86bt

88 ⊕ bt
84bt

87bt
88bt+1

89 ,

F4 = F4(lt
7, lt

10, lt
13, lt

15, lt
22, lt

24, lt
25, lt

33, lt
36, lt

38, lt
41, lt

45, lt
46, lt

50, lt
53, lt

58, lt
59, lt

62, lt
65,

lt
67, lt

70, bt
9, bt

12, bt
14, bt

15, bt
16, bt

17, bt
41, bt

42, bt
44, bt

49, bt
85, bt

87, bt
88, bt

89,

bt+2
89 , bt+4

89)

The expressions for F1, F4 are omitted for space constraints. However the function F
is completely balanced no matter how the values of the involved LFSR bits are guessed in
the expression. Since bt

19 is the only common variable in the expressions F2, F3, to verify
that F is balanced we checked that Pr(F2 = 0|bt

19 = 0) = Pr(F2 = 0|bt
19 = 1) = 0.5 and

Pr(F3 = 0|bt
19 = 0) = Pr(F3 = 0|bt

19 = 1) = 0.5. There may exist, but it is highly unlikely,
that there exists other linear masks which lead to correlation attack in time faster than
exhaustive search.

D Conditional Differential Polynomials

For the sake of brevity, we denote by x0, x1, . . . , x127 the IV bits, i.e., x0, x1, . . . , x127
.
=

IV0, IV1, . . . , IV127.

f1 = x1x42x43x44x45 + x1x42x43x44 + x1x42x43 + x1x42x44x45x99

+ x1x42x44x99 + x1x42x45 + x1x42x99 + x1x42 + x1x43x44x45x98

+ x1x43x44x98 + x1x43x98 + x1x44x45x98x99 + x1x44x45

+ x1x44x98x99 + x1x44 + x1x45x98 + x1x98x99 + x1x98

+ x2x43x44x45 + x2x43x44 + x2x43 + x2x44x45x99

+ x2x44x99 + x2x45 + x2x99 + x2 + x3x44x45 + x3x44 + x3 + x4x45

+ x4 + x5x42x43x44x45 + x5x42x43x44 + x5x42x43

+ x5x42x44x45x99 + x5x42x44x99 + x5x42x45 + x5x42x99

+ x5x42 + x5x43x44x45x98 + x5x43x44x98 + x5x43x98

+ x5x44x45x98x99 + x5x44x45 + x5x44x98x99 + x5x44

Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei
Sakamoto, Santanu Sarkar 35

+ x5x45x98 + x5x98x99 + x5x98 + x5 + x6x43x44x45

+ x6x43x44 + x6x43 + x6x44x45x99 + x6x44x99 + x6x45

+ x6x99 + x7x44x45 + x7x44 + x7 + x8x45 + x8

+ x9x41x42x43x44x45x97 + x9x41x42x43x44x97 + x9x41x42x43x97

+ x9x41x42x44x45x97x99 + x9x41x42x44x97x99 + x9x41x42x45x97

+ x9x41x42x97x99 + x9x41x42x97 + x9x41x43x44x45x97x98

+ x9x41x43x44x97x98 + x9x41x43x97x98 + x9x41x44x45x97x98x99

+ x9x41x44x45x97 + x9x41x44x97x98x99 + x9x41x44x97 + x9x41x45x97x98

+ x9x41x97x98x99 + x9x41x97x98 + x9 + x40

+ x41x42x43x44x45x97 + x41x42x43x44x45 + x41x42x43x44x97 + x41x42x43x44

+ x41x42x43x97 + x41x42x43 + x41x42x44x45x97x99 + x41x42x44x45x99

+ x41x42x44x97x99 + x41x42x44x99 + x41x42x45x97

+ x41x42x45 + x41x42x97x99 + x41x42x97 + x41x42x99

+ x41x42 + x41x43x44x45x97x98 + x41x43x44x45x98

+ x41x43x44x97x98 + x41x43x44x98 + x41x43x97x98

+ x41x43x98 + x41x44x45x97x98x99 + x41x44x45x97

+ x41x44x45x98x99 + x41x44x45 + x41x44x97x98x99

+ x41x44x97 + x41x44x98x99 + x41x44 + x41x45x97x98 + x41x45x98

+ x41x97x98x99 + x41x97x98 + x41x98x99 + x41x98

+ x41 + x42x43x44x45x90 + x42x43x44x45x95

+ x42x43x44x45x97 + x42x43x44x45x98 + x42x43x44x45 + x42x43x44x90

+ x42x43x44x95 + x42x43x44x97 + x42x43x44x98

+ x42x43x44 + x42x43x90 + x42x43x95 + x42x43x97

+ x42x43x98 + x42x43 + x42x44x45x90x99x42x44x45x95x99 + x42x44x45x97x99

+ x42x44x45x98x99 + x42x44x45x99 + x42x44x90x99

+ x42x44x95x99 + x42x44x97x99 + x42x44x98x99 + x42x44x99

+ x42x45x90 + x42x45x95 + x42x45x97 + x42x45x98

+ x42x45 + x42x90x99 + x42x90 + x42x95x99 + x42x95

+ x42x97x99 + x42x97 + x42x98x99 + x42x98 + x42x99 + x42

+ x43x44x45x90x98 + x43x44x45x91 + x43x44x45x95x98

+ x43x44x45x96 + x43x44x45x97x98 + x43x44x45x98

+ x43x44x45x99 + x43x44x90x98 + x43x44x91

+ x43x44x95x98 + x43x44x96 + x43x44x97x98 + x43x44x98

+ x43x44x99 + x43x90x98 + x43x91 + x43x95x98 + x43x96

+ x43x97x98 + x43x98 + x43x99 + x44x45x90x98x99 + x44x45x90

+ x44x45x91x99 + x44x45x92 + x44x45x95x98x99

+ x44x45x95 + x44x45x96x99 + x44x45x97x98x99 + x44x45x98x99

+ x44x90x98x99 + x44x90 + x44x91x99 + x44x92 + x44x95x98x99

+ x44x95 + x44x96x99 + x44x97x98x99 + x44x98x99 + x45x90x98

+ x45x91 + x45x93 + x45x95x98 + x45x96 + x45x97x98 + x45

+ x90x98x99 + x90x98 + x91x99 + x91 + x92 + x93 + x94 + x95x98x99

+ x95x98 + x96x99 + x96 + x97x98x99 + x97x98 + x97 + x98x99 + x99.

36 Atom: A Stream Cipher with Double Key Filter

f2 = x1x42x43x44 + x1x42x44x99 + x1x43x44x98 + x1x44x98x99 + x1x44

+ x1 + x2x43x44 + x2x44x99 + x2 + x3x44 + x5x42x43x44 + x5x42x44x99

+ x5x43x44x98 + x5x44x98x99 + x5x44 + x5 + x6x43x44 + x6x44x99 + x7x44 + x7

+ x9x41x42x43x44x97 + x9x41x42x44x97x99 + x9x41x43x44x97x98

+ x9x41x44x97x98x99 + x9x41x44x97 + x9 + x41x42x43x44x97 + x41x42x43x44

+ x41x42x44x97x99 + x41x42x44x99 + x41x43x44x97x98 + x41x43x44x98

+ x41x44x97x98x99 + x41x44x97 + x41x44x98x99 + x41x44 + x42x43x44x90

+ x42x43x44x95 + x42x43x44x97 + x42x43x44x98 + x42x43x44 + x42x44x90x99

+ x42x44x95x99 + x42x44x97x99 + x42x44x98x99 + x42x44x99 + x42

+ x43x44x90x98 + x43x44x91 + x43x44x95x98 + x43x44x96

+ x43x44x97x98 + x43x44x98 + x43x44x99 + x44x90x98x99 + x44x90 + x44x91x99

+ x44x92 + x44x95x98x99 + x44x95 + x44x96x99 + x44x97x98x99 + x44x98x99

+ x44 + x45 + x93 + x97.

	Introduction
	Contributions and Organization of the Paper

	Specification
	Building Blocks
	Initialization Phase
	Keystream Generation

	Design Rationale: Use of Double Key Filter
	Preventing Banik's Key-Recovery Attack Against Sproutban
	Preventing Banik-Barooti-Isobe like Attacks Against Plantlet pl
	Preventing Todo-Meier-Aoki like Attacks Against Plantletlc
	Preventing Esgin-Kara like Attacks Against Sproutek

	Security Evaluation
	TMD Tradeoff Attacks
	Differential Attack
	Conditional Differential Cryptanalysis
	Integral/Cube Attacks
	Algebraic/Guess-and-Determine Attacks
	Banik's Distinguishing Attack Against Sproutban

	Hardware Evaluation
	Conclusion
	Number of rounds equaling one Atom encryption ek,pl
	Test vectors
	Search for Linear Masks
	Conditional Differential Polynomials

