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Artificial neural network based
multi-parameter inversion for the
characterization of transversely isotropic
composite lamina using velocity
measurements of Lamb waves

C. Ramadas1,2, Rahul Harshe2, Krishnan Balasubramaniam1 and

Makarand Joshi2

Abstract

Artificial neural network (ANN) based multi-parameter inversion method is proposed to characterize transversely

isotropic composite lamina using Lamb wave group velocity measurements. The ANN is first trained using numerical

simulations and known micromechanics based formulae before being deployed on experimental samples. The group

velocities obtained from the experiments were fed to the trained network. The network so trained, predicted the elastic

properties, fiber volume fraction, and density.
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Introduction

Specific strength and stiffness are the two important

driving parameters, which paved the way for extensive

usage of composite materials in load bearing structural

applications. For design and analysis of any composite

structure, an accurate and dependable knowledge of

its elastic properties is a must. Conventionally, all

data on the elastic properties of a composite structure

is obtained by resorting to destructive testing as per

ASTM test norms.2

Lamb waves25 propagate long distances in thin plate

and cylindrical structures. These waves provide infor-

mation regarding the integrity of the structure along the

line-of-sight. Hence, these waves can be used with great

efficacy, for Non-destructive Evaluation (NDE) as well

as structural health monitoring (SHM) of composite

laminated structures.20,21 Lamb waves are dispersive

i.e., their velocity depends on the product of frequency

and thickness. Depending on the relationship between

the displacement profiles and thickness, these modes

are classified into symmetric (Sn) and anti-symmetric

(An) modes.

Elastic properties of a material can be measured

using conventional destructive techniques as per

ASTM standards. Ultrasonic wave based techniques

for material characterization is undoubtedly more

utilitarian than the conventional destructive tech-

niques.13,17–19,25 In ultrasonic testing, both bulk waves

and Lamb waves can be used for evaluating the elastic

properties of a given media.

Many authors5,6,24 have heretofore, explored ways

and means for determining elastic moduli using bulk

waves. Some authors used Lamb waves for reconstruc-

tion of elastic moduli. Reference 23 described a method

for the measurement of elastic moduli of isotropic

plates using Rayleigh–Lamb waves produced by

using a pair of variable-angle contact transducers in
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pitch-catch mode. From this technique, Young’s modu-

lus and Poisson’s ratio were estimated. Reference 22

reconstructed the elastic moduli of a unidirectional com-

posite by reducing the error between theoretical and

experimental Lamb wave dispersion curves. Reference

29 attempted to reconstruct all nine unknown elastic

moduli of orthotropic plates using a single-transmitter-

multiple-receiver (STMR) compact SHM array. Phase

velocities of fundamental symmetric and anti-symmetric

Lamb waves were used in an inversion algorithm based

on genetic algorithms. Reference 14 proposed an inver-

sion scheme to invert Leaky Lamb wave (LLW) velocity

data using simplex algorithm to approximate the elastic

moduli and thickness of an adhesive layer between two

aluminium plates and the elastic moduli of a unidirec-

tional Glass Fiber Reinforced Plastic (GFRP) composite

laminate.

With the rapid developments in the field of arti-

ficial intelligence, neural network (NN) methods have

become all-pervasive in many areas of Science and

Engineering. Artificial neural network (ANN) is cur-

rently used in various fields of Engineering, without

undergoing any significant change in its basic method-

ology. ANN technique is also in use for damage detec-

tion and identification applications.15,16,30 Reference 26

carries out a study to examine the fiber volume fraction

variations of approximately 0.4 to 0.7 in composites

employing Lamb waves. The Lamb wave measure-

ments were compared with fiber volume fractions

obtained from acid digestion test.

The velocity of Lamb waves in a laminate depends on

its elastic properties and density. For a given fiber

volume fraction, the elastic properties and density of a

lamina can be estimated using established principles of

micro-mechanics and semi-empirical relations. Any

change in the fiber volume fraction alters the elastic

properties and density of the lamina. These changes

affect the Lamb wave velocities in a predictable and

quantifiable manner. An attempt was made, in this

paper, to envisage the elastic properties of a composite

lamina by studying the transmuting velocities of the fun-

damental symmetric Lamb wave (So) along and across

the direction of fibers in an ANN environment. The

ANN was trained beforehand to identify various elastic

properties for the given group velocities of So mode

along and across the direction of fibers, using data

obtained from numerical simulations. Experiments

were carried out on glass/epoxy uni-directional (UD)

laminates employing piezo patches as transmitters and

receivers. The trained ANN could predict the elastic

properties, fiber volume fraction, and density, when

experimentally measured So mode velocities were fed.

The organisation of this paper is as follows. The

Artificial Neural Network section deals with ANN and

data generation for training the network. Estimation of

elastic properties of lamina using rule of mixtures and

semi-empirical relations is presented in Lamina

Properties section. Generation of training data through

numerical modelling is described in Group Velocities of

So Mode section. Experimental work carried out on UD

laminates is delineated in Experimental Work section.

The predictions of ANN are presented in ANN

Predictions section. Results and discussion and conclu-

sions are presented in the last two sections, respectively.

Artificial neural network

ANNs are quite similar to the neurons in human

brain—both in their structure and in the methodology

of processing and restoring data. The learning mecha-

nisms too are analogous. NN consists of interconnected

processing elements called neurons operating in parallel

to a set of input signals given to each. In an ANN

model, there are essentially three parts, viz., neurons,

weighted interconnections between neurons and an

activation function that responds on the set of input

signals at neurons to produce output signals. The

NNs are trained to perform a particular function by

adjusting the values of weights between elements.

Among many different types of ANN, the feed for-

ward, multi-layered, supervised neural network with

error back propagation algorithm, generally known as

back propagation (BP)27 network, is by far the most

commonly applied ANN owing to its simplicity. The

output of the network, a, is a transferred sum of

weighted inputs, p, with added bias using the sigmoid

or a linear function. A simple three layer ANN consists

of an input layer, a hidden layer, interconnected by

modifiable weights, and an output layer. Input vector

is presented to the input layer and output of each input

unit equals the corresponding component in the vector.

Each hidden unit computes the weighted sum of its

inputs to form its net scalar neural net activation. The

neural net activation is the inner product of the input

and the weights, at the hidden unit. Each hidden unit

emits an output that is a non-linear function of its acti-

vation function. Each output unit similarly computes

its net activation based on the signals from the hidden

unit. Before an ANN can be applied, the network needs

to be trained from an existing training set comprising

pairs of input-output elements. An ANN with BP

algorithm takes a long time to learn. Therefore, several

different approaches were developed to enhance and

hasten the learning performance of BP learning

algorithm. Among them, the most popular are

Scaled conjugate gradient (SCG), Quasi-Newton, and

Levenberg-Marquardt (LM) algorithm.

In this work, So mode velocity along fibers (V//) and

across fibers (V?) were used as input vectors in the

network and the output vector consists of the five
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elastic properties, fiber volume fraction and density of

the lamina as shown in Figure 1. The range of fiber

volume fraction selected for the present study was

from 0.30 to 0.78. For a given volume fraction, the

elastic properties (lamina level) can be estimated using

expressions from Equation (1) to (5) given hereafter.

Using these elastic properties, So mode velocities

along and across fibers were calculated through numer-

ical simulations for fiber volume fraction ranging from

0.30 to 0.78 in steps of 0.04. A total number of thirteen

data sets were generated for training the network.

Lamina properties

The lamina level properties can be ascertained using

micromechanical analysis, if the properties of constitu-

ent materials, fiber and matrix, and fiber volume frac-

tion are known. Once a micromechanical model that is

in concord with the experimental results is developed,

such a model can be used for estimation of elastic

moduli, which will in turn be used in the design and

analysis of laminated composite structures. If directions

‘1’ and ‘2’ are taken as in-plane (‘1’ is along the direc-

tion of the fiber), the direction ‘3’ is out-of-plane.

Longitudinal modulus of lamina in direction ‘1’ is

E11. The following expression can be used to estimate

E11 (Refs. 1 and 9).

E11 ¼ Ef1vf þ Emvm, ð1Þ

where, E11, Ef1, and Em are Young’s moduli of lamina

along fiber direction, longitudinal direction of fibers,

and matrix respectively, nf and nm are fiber and

matrix volume fraction, respectively.

The expression for in-plane Poisson’s ratio,9 n12, is

given by the following:

�12 ¼ �f12�f þ �m�m, ð2Þ

where, nf12 and nm are Poisson’s ratio of fibers and

matrix, respectively.

Reference 28 proposed a semi-empirical approach

(SEA) to evaluate E22. This approach was based on

the fact that the stresses in the fibers and matrix are

not equal under the corresponding loading condition.

‘Stress-partitioning parameter’ (Z2) was introduced in

deriving the semi-empirical equation. The result of this

derivation28 is as follows:

1

E22

¼
1

�f þ �2�m

�f

Ef

þ
�2�m

Em

� �

: ð3Þ

If stress-partitioning parameter is taken as unity, it

leads to the inverse rule of mixtures of E22 derived from

micro-mechanics principles. It was shown in Ref. 28

that the stress-partitioning parameter Z2=0.5 was

found to yield accurate predictions of E22 based on

comparison with experimental data for the same lami-

nate [11].

Reference 10 proposed the following expression for

estimation of in-plane shear modulus (G12).

G12

Gm

¼
1þ ���f

1� ��f
, ð4aÞ

where

� ¼
Gf

�

Gm

� �

� 1

Gf

�

Gm

� �

þ �
: ð4bÞ

Here, ‘x’ is the reinforcing factor, which depends on

fiber geometry, packing geometry, and loading con-

ditions. For circular fibers in a square array, x=1

(Ref. 4). The value of x=1 for circular fibers in a

square array, provides reasonably good results.

In most composites because the fiber-packaging

arrangement is statically random in nature, the proper-

ties are nearly same in any direction perpendicular to

the fibers.9 Such materials are ‘Transversely isotropic’.

Directions perpendicular to the fibers are along ‘2’ and

‘3’ directions. In UD laminate, plane 2-3 is assumed to

be isotropic. For a transversely isotropic material, five

elastic moduli are required for defining the stiffness

matrix in entirety.9

Four in-plane elastic properties, E11, E22, n12, and

G12 are sufficient for design and analysis of thin
Figure 1. Neural network used for predicting elastic proper-

ties, fiber volume fraction, and density.
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composite structures. In case of thick, transversely iso-

tropic structures, one more elastic constant is required.

In general, the value of Poisson’s ratio in 2-3 plane, n23,

is governed by matrix. For design purpose, this value

was taken as the value of matrix.

As 2-3 plane was assumed to be isotropic, the fol-

lowing relation between E22, G23, and n23 holds good:

G23 ¼
E22

2 1þ �23ð Þ
: ð5Þ

The density of the lamina can be obtained from rule

of mixtures.9 The following expression gives the density

of the lamina:

� ¼ �f�f þ �m�m: ð6Þ

Equations (1)–(5) furnish the elastic moduli while

Equation (6) gives density of the lamina.

If fiber volume fraction is known, Equations (1)–(6)

can be used for estimation of elastic properties and

density of the lamina.

Group velocities of So mode

As the input vector for training the neural network

consists of So mode group velocities along fibers and

across fibers, these were obtained from two dimensional

numerical simulations carried out using Finite Element

code, ANSYS [3]. The constituent materials used in this

work were Chomarat 500 GSM glass fabric (8077/1F)

and proprietary epoxy resin system capable of forming

films. The properties of the constituent materials9,12 are

shown in Tables 1 and 2. The average thickness of each

ply was 0.33mm. The specifications of the model used

in numerical simulations are shown in Figure 3. It was

assumed that there are three unidirectional plies in the

laminate. The corresponding thickness of the UD lam-

inate was 0.99mm thickness and the length was chosen

as 300mm. In Finite Element (FE) model, each ply of

0.33mm thickness was modeled and its properties were

attributed. The size of the element was 0.165 mm in the

thickness direction and 0.25mm in the length direction.

There were more than 100 elements in one wavelength

of So mode at 148 kHz frequency. The element used for

analysis was higher order eight node plane element with

four corner nodes and four mid-side nodes, belonging

Figure 3. Specification of model used for FE simulations. Excitation of So mode (a) along fibers and (b) across fibers.

Figure 2. Convergence of ANN.

Table 1. Chomarat 500 GSM glass fiber properties

Ef1 in

GPa

Ef2 in

GPa

Gf12 in

GPa

Gf23 in

GPa �f12

�f in

kg/m3

72.53 72.53 30.14 30.14 0.22 2540

Table 2. Epoxy

Em in GPa Gm in GPa �m �m in kg/m3

2.8 1.0 0.34 1170
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to serendipity family. Each node has two translatory

Degree-of-Freedom (DoF) in ‘x’ and ‘z’ directions. It

was assumed that plane strain conditions prevail. The

excitation frequency and number cycles were 148 kHz

tone-burst and three, respectively. Time marching was

carried out using Newmark’s time integration scheme

(ANSYS) [3]. The time increment and total capturing

time used in the simulations were 20.27 ns and 90 �s,

respectively.

The location and direction of excitation were x=0

and in-plane, respectively, as shown in Figure 3. There

were two reception points in each direction. At all

reception points, A-scans for in-plane displacement

time history were plotted as shown in Figure 4. A

video envelope, which is a smooth curve passes over

all the peaks of the signal, was fitted over each signal.

This video envelope looks like a rectified signal. The

peak of the video envelop represents the arrival time

of that wave group at that reception point. Knowing

the distance between the two reception points and the

difference in arrival times of a wave group (Time-of-

Flight (ToF)) at these two reception points, the group

velocity can be calculated as the ratio between the dis-

tance and ToF.

Experimental work

Fabrication of specimen

A Glass/epoxy cross-ply laminate of 0.99mm thickness

with [03] lay up was prepared using resin film infusion

(RFI) technique. A resin film was sandwiched between

two fabric layers. Such sandwiches were placed one

above the other till the desired thickness was reached.

Sufficient bleeder was used to absorb any excess resin

released during curing. A vacuum bag was placed on

the top and sealed with a sealant tape. A thermocouple

was placed on the top of the job to continuously

monitor the temperature during curing. The job was

heated at a rate of 2�C/min up to 80�C, soaked for

30min followed by heating up to 120�C, and re-soaking

for 60min. After completion of heating cycle, the job

was allowed to cool to room temperature. The edges

were trimmed and the final dimensions of laminate were

300 � 300 � 0.99mm.

Experimental set up

The schematic of experimental set up shown in Figure 4

consists of a signal generator, A/D card (PXI), power

amplifier and a desk top computer. In this system, pie-

zoelectric lead zirconate titanate (PZT) (�14.5mm,

thickness: 1.25mm) patches were used. As the diameter

of PZT was chosen as 14.5mm, the frequency of exci-

tation estimated from diameter-frequency product was

148 kHz. At this frequency, So mode falls in non-dis-

persive region. The excitation given to patches was

three cycle tone burst with Hanning window at a cen-

tral frequency of 148 kHz. As the wave velocities are

required along and across fiber directions, three patches

in each direction were bonded as shown in Figure 5.

There were one transmitter and two receivers placed in

each direction. The ‘‘Receiver 1’’ position was marked

at the center of the laminate. The locations of transmit-

ter and ‘‘Receiver 2’’ were at a distance of 75mm on

either side of the ‘‘Receiver 1’’ as shown in Figure 5.

But after bonding, the actual distances between the

PZTs were found to be slightly more than 75mm. In

group velocity computations, the actual distance

between the patches was taken.

A-scans from experiments. A-scans obtained from

‘‘Receiver 1’’ and ‘‘Receiver 2’’ along and across the

fiber direction are shown in Figure 6 and 7,

Figure 5. PZT patches bonded on glass/epoxy UD laminate.Figure 4. Schmatic of experimental set up.
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respectively. The first wave group in each A-scan rep-

resents So mode. On each A-scan, a video envelope was

fitted. The peak of this envelope represents the arrival

time of that wave group at the receiver. Since the dis-

tance between the two receivers and the difference in

arrival times were known, group velocity was computed

as the ratio between the two.

Such A-scan were obtained for the other two lami-

nates also. The group velocities, V// and V?, of So
modes in all three laminates are shown in Table 3.

Matrix burn-off test as per ASTM standard (ASTM

D2584) was carried out on samples cut from all the

laminates. This test gives fiber volume fraction, void

fraction as well as the density. The values of these

parameters obtained for all the laminates are shown

in Table 4.

Artificial neural network predictions

Each data set used for training ANN consists of an

input vector and a corresponding output vector.

There were two neurons in the input vector and seven

linear neurons in the output vector. Sigmoid neurons

were used in the hidden layers.16 The variables in input

vector were So mode velocities along and across the

direction of fibers. The variables in output vector

were five elastic moduli, the fiber volume fraction,

and density. Training of ANN is referred to as the

determination of weights in the model using training

data. To train the network, SCG and LM algorithm7

which are the standard functions available in Neural

Network Toolbox of MATLAB [8], were used. The

efficacy of trained network for mapping between the

input and output depends on training data.

The convergence criterion of NN was mean square

error (MSE), which minimises the averaged square

error between the network output and the target

value mentioned in the training data. The chosen con-

vergence criterion (MSE) in this work was 1 � 10–20.

Figure 2 shows the convergence plot of ANN.

The group velocities of So mode along and across

fibers obtained from experiments were fed in trained

neural network. The prediction made by the network

is shown in Table 4. As the fiber volume fractions of all

three laminates were known from matrix burn-off test,

the elastic properties and density were calculated using

Equations (1)–(6). The properties thus obtained are

shown in Table 5. Dynamic elastic property analyzer

Figure 7. A-scans from experiments, taken at (a) ‘‘Receiver 1’’

and (b) ‘‘Receiver 2’’ across fiber direction.

Figure 6. A-scans from experiments, taken at (a) ‘‘Receiver 1’’

and (b) ‘‘Receiver 2’’ along fiber direction.

Table 4. Fiber volume fraction, density, and void fraction from

matrix burn-off method

Laminate

Fiber volume

fraction

Density

in kg/m3 Void

1 0.62 2014.3 1.9 %

2 0.51 1865.0 0.8%

3 0.44 1762.5 1.2 %

Table 3. Lamb modes velocities in three laminates from

experiments

Laminate V// V?

1 4787.8 2508.0

2 4593.0 2358.4

3 4477.9 2123.4
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(DEPA), which works on the principle of impulse

excitation technique, was also used to predict the

Young’s moduli along and across fiber directions, as

per ASTM standards. Table 6 lists the predictions

from DEPA.

Results and discussion

In the present study, an attempt has been made to esti-

mate the five elastic moduli, the density and the fiber

volume fraction in a UD laminate using Lamb waves in

ANN environment. The required data for training

ANN was generated through numerical simulations

carried out using Finite Element Method (FEM). The

parameters in the input vector of this neural network

were selected in such a way that they change with elastic

properties. It should also be ensured that the parame-

ters in the input vector are measurable experimentally.

Based on the aforementioned criterion, the selected

parameters in the input vector were So mode group

velocities along and across the direction of fibres. The

other potential choices for selection as parameters in

the input vector are group velocities of the fundamental

anti-symmetric Lamb wave (Ao) or combination of So
and Ao modes.

For experimental validation, PZT patches were

deployed as transmitter and receivers to capture signals

along and across the direction of fibres in all the three

laminates, which were fabricated using RFI process.

From the captured signals, group velocities of So
mode were computed. These velocities were fed in the

trained network. Table 5 shows the predictions made

by the network for all the three laminates. Shear

modulus, G23, was obtained by assuming Poisson’s

ratio in 2-3 plane as equal to matrix Poisson’s ratio,

which is 0.34. As fiber volume fractions of all three

laminates were known (from burn-off test), the elastic

properties and density were also estimated using

Equations (1)–(6). These values are found to be in

good agreement with ANN predictions as shown in

Table 5. Micromechanics and semi-empirical models,

which are in good agreement with the experimental

results, were selected for estimation of the elastic prop-

erties from fiber volume fraction. Elastic properties pre-

dicted by ANN are in good agreement with those

obtained from Equations (1)–(6) (viz. micromechanics

and semi-empirical models) and from the above-men-

tioned experiments. DEPA was used to measure the

properties wherever possible. In all three laminates,

Young’s moduli along and across fiber direction were

measured using DEPA. The elastic properties obtained

from DEPA were found be in good agreement with

ANN predictions as listed in Tables 5 and 6. Matrix

burn-off test as per ASTMD2584 was carried out on all

four laminates and the properties obtained from this

test are shown in Table 5. The void fraction in all

four laminates was found to be less than 2%. The den-

sity and fiber volume fraction obtained from matrix

burn-off test were also found to be in good agreement

with ANN predictions.

In a laminate, the fiber volume fraction may also

change from point to point. In such cases, matrix

burn-off test gives a local value of fiber volume fraction.

When a Lamb wave propagates from a transmitter to a

receiver, any variation in fiber volume fraction in its

path of propagation influences the group velocity of

this mode. As the wave propagates through regions of

differing fiber volume fractions, the predictions made

by ANN were based on the average group velocity of

Lamb wave. In general, in the design and analysis of

composite structures, the elastic properties based on

average fiber volume fraction are used. To estimate

average fiber volume fraction using ASTM burn-off

Table 5. Elastic properties predicted by ANN and estimated using Equations (1)–(6)

Property

Laminate–1 Laminate–2 Laminate–3

ANN Equation (1)–(6) ANN Equation (1)–(6) ANN Equation (1)–(6)

vf 0.60 — 0.52 — 0.44 —

E1 (Gpa) 44.5 46.0 38.9 38.4 33.9 32.8

E2 (Gpa) 10.1 10.6 8.8 8.0 7.3 6.6

G12 (GPa) 3.8 3.8 3.1 2.8 2.6 2.4

G23 (GPa) 3.9 3.9 3.2 3.0 2.7 2.5

v12 0.29 0.27 0.29 0.28 0.32 0.29

�m (kg/m3) 1989.1 2019.4 1878.5 1868.7 1781.5 1759.1

Table 6. Young’s moduli from DEPA

Laminate–1 Laminate–2 Laminate–3

E11 in GPa 44.7 36.7 33.1

E22 in GPa 11.5 9.8 7.8
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test, many samples cut at various locations in the lam-

inate are to be tested. In the present technique, the

average fiber volume fraction can be obtained from a

single experiment.

Determination of lamina properties from ASTM

standards is very tedious, because, each property

requires an individual test. The present technique

based on Lamb wave velocities and ANN reduces

experimentation a lot.

In this study, the network was trained to give seven

parameters, viz. the five elastic moduli, the density and

the fiber volume fraction. This can also be modified as

following.

Group velocities of So mode along and across the

direction of fibers depend on elastic properties. Elastic

properties in turn depend on fiber volume fraction. The

network can be trained for an input vector consisting of

V// and V? and an output vector consisting of the fiber

volume fraction. Once the fiber volume fraction is

obtained from the neural network, Equations (1)–(5)

can be used for estimating the elastic moduli and

Equation (6) for estimation of density.

In this study, the thickness of laminate and fre-

quency of excitation were 0.99mm and 148 kHz,

respectively. The frequency-thickness product was

equal to 146.52 kHz.mm In a given media, velocities

of Lamb waves depend on frequency-thickness prod-

uct. Lamb waves velocities remain constant as long as

frequency-thickness product does not change. While

generating data for training the network, a particular

thickness of UD laminate and central excitation fre-

quency were selected. That means the network is

trained for a particular frequency-thickness product.

This trained network can be used to characterize a

UD laminate of different thickness, but, fabricated

from same constituent materials (fiber and matrix). In

such a case, the central frequency of excitation of Lamb

wave should be selected such that the frequency-thick-

ness product is equal to the value for which the network

is trained. If frequency-thickness product is changed,

then the whole network has to be trained once again,

since the group velocities change.

Conclusions

Use of Lamb waves and ANN for composite lamina

characterisation was attempted. Experiments were car-

ried out using PZT patches on three laminates. The pre-

dictionsmade byANNare in good agreement with those

obtained from DEPA and matrix burn-off test. The

experimentation involved in this method based on

Lamb waves is simple compared to ASTM, DEPA, and

matrix burn-off method. The elastic properties obtained

through this technique are averaged properties over a

certain area through which Lamb waves propagated.
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