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The response of an inviscid shock to external pressure perturbations in a constant area duct is analyzed

in terms of fundamental processes like perturbation propagation and its interaction with shock. The

results of these elementary processes are formulated analytically and with a Riemann wave tracking

method to enable the prediction of shock movement for both upstream and downstream perturbations.

The predictions thus obtained are compared with the finite-volume based numerical simulations of

the Euler equations. This study shows that the shock responds nonlinearly to perturbations and the

nonlinearity has a cumulative effect. Contact surfaces generated during the interaction of normal

shock with perturbations, which was ignored in previous investigations, are shown to be important in

order to capture this cumulative nonlinearity. The nonlinearity alters the positive and negative duty

cycles, which results in a net displacement of shock after responding to one full cycle of sinusoidal

perturbation. This drift in shock location is pronounced at low supersonic Mach numbers (1.2–3) but

is also present at higher Mach numbers. Furthermore, it is demonstrated that the duty cycle variations

are higher for perturbations originating downstream of shock than those originating upstream. The

variations in frequency and amplitude are found to merely scale the response and do not introduce

any new physics. Published by AIP Publishing. https://doi.org/10.1063/1.5027903

I. INTRODUCTION

Steady supersonic flow with a normal shock, owing to

downstream boundary conditions, is a common flow feature

and occurs in supersonic intakes, nozzles, diffusers, etc. In

reality, a steady flow never exists, but is often used as an

idealization of the actual flow to simplify the analysis. The

unsteady perturbations could be due a variety of sources, most

common sources being atmospheric disturbances and those

resulting from combustion process. These perturbations, in a

few cases, can become very important and result in phenom-

ena like disgorging of inlet shock, intake buzz, etc., which

in turn may cause a drastic reduction in the performance of

the aircraft. Hence, it is important to understand the unsteady

effect due to the perturbations to gain further insight into the

phenomenon plaguing the aerospace industry and take a step

toward achieving better control of flight performance.

One of the earliest studies in this area is that of Hurrell.1

He performed an analytical study of the shock response to

downstream perturbations in both uniform and varying area

ducts. The main focus of the study was to obtain the phase lag

relation between pressure and shock movement. He showed

that the shock response is instantaneous, and in the case of a

constant area duct, there is no phase lag. The analysis used

linearized shock relations, assumed linear wave propagation,

constant shock location, and ignored the reflection of waves

at the shock boundary. This work was extended by Culick and

Rogers2 to model impedance at the shock boundary and to
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obtain acoustic field downstream of shock. They showed that

after responding to one full cycle of sinusoidal perturbation,

the shock does not return to the initial position. However, they

assumed the response to be a sinusoid in time to obtain this

result.

Sajben et al.3–5 have performed a series of experiments

to study the effect of downstream perturbations in a divergent

section and also to predict the frequencies at which sustained

shock oscillations naturally occur. Their study focused mainly

on predicting a model for impedance at normal shock boundary

so that the pressure field can be calculated based on perturba-

tions imposed downstream. As it was an experimental study, it

was not possible to isolate the effect of unsteady perturbation

from those due to flow separation and changes in geometry.

Similar complications were faced by Bur et al.,6 who have

performed an experimental investigation of shock response

to downstream perturbation in a divergent section. Direct

Numerical Simulations (DNS) by Robinet and Casalis7 and

Oh et al.8 also had the same problem.

Biedron and Adamson9 have used asymptotic methods to

obtain the shock response in a divergent duct. Their study too,

like that of Culick and Rogers,2 points toward the nonlinear

response of the shock but does not give a clear reason for its

occurrence. Also, as they considered a divergent section for

analysis, it is not possible to conclude if the observations are

due to unsteady perturbations or duct geometry.

Recent investigations include those by Moase et al.10 and

Bruce and Babinsky.11 Moase et al.10 have investigated the

shock response in nozzles and diffusers using an analytical

model to predict the shock response and impedance at the

shock boundary. They further validated their analytical model

by DNS of the same.
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Bruce and Babinsky11 have performed an experimental

study of the shock response in a constant area duct to down-

stream perturbations in a large test section area tunnel. Thus,

they could avoid the complications of geometry and minimize

the effect of viscosity and flow separation. However, in their

investigation, when the mean shock location was oscillating,

it was forced back to a desired region by manually operating

the tunnel valve, and no attempt was made to investigate this

phenomenon.

It can be clearly seen that most of the studies had multiple

effects (flow separation, duct geometry, and unsteady pertur-

bations) acting together. In such a scenario, it is very difficult to

decouple them and attribute the observations to a single effect.

Another important observation is that most of studies have

tried to model the shock boundary by computing reflection

and transmission coefficients at the shock boundary rather than

understanding the physics of the interaction. Though the fun-

damental physics behind various processes involved (shock-

shock interaction, nonlinear propagation of a wave) are well

known, not much attention was given toward understanding

the shock response from these fundamental processes.

The current study, to the best of our knowledge, is the

first study which concentrates only on the effect of unsteadi-

ness and details of the shock-perturbation interaction. This

work initially analyzes a single perturbation interacting with

a normal shock in a one-dimensional flow. Subsequently, a

sequence of compression and expansion waves of very small

magnitudes are made to interact with the normal shock. Fully

analytical solution, wave tracking based semi-analytical solu-

tion, and CFD simulations are used to solve the problem and

the results are compared.

A broad outline of the paper is as follows. Section II for-

mulates the problem tackled by this study and the methodology

employed. The fundamental processes mentioned in Sec. II

will be discussed in detail in Sec. III. The discussion will be

extended to a sinusoidal perturbation in Sec. IV to obtain an

analytical formulation and various features of shock motion

as predicted by this formulation will be presented. These pre-

dictions are compared against semi-analytical simulations in

Sec. V and CFD simulations in Sec. VI with discussion of

the results presented toward the end of each section. The

conclusions are presented in Sec. VII.

II. FORMULATION AND METHODOLOGY

A. Formulation

The response of shock to a sinusoidal perturbation in pres-

sure imposed at the boundary (both upstream and downstream)

is studied with air as the fluid. The perturbation originating

upstream of the shock is referred to as upstream perturbation

and that originating downstream of the shock is referred to as

downstream perturbation. The shock is assumed to be station-

ary before interacting with the perturbation and the fluid to be

inviscid, non-conducting, perfect gas, and flowing through a

constant area duct which is long enough such that the shock

always stays inside the duct during the interaction with pertur-

bation. If the imposed perturbation is imposed as a sinusoid at

the end of the duct, it will not be a sinusoid by the time it reaches

the shock and thus introduces the distance of the boundary

from the shock location as an additional parameter. To avoid

this, the perturbation is assumed to attain a sinusoid profile

when it just reaches the shock, i.e., the perturbation profile

is not a sinusoid in space when it is generated at the bound-

ary, but it evolves into a sinusoidal profile as it propagates

from the boundary to the shock location. Under this formula-

tion, the variation of shock response to various parameters is

studied.

B. Methodology

For the interaction of a shock with a general perturba-

tion profile, an explicit analytical solution of shock movement

is not known yet.12 As such, the analytical part of this study

aims to obtain the dependence of shock response on various

parameters and thus predict the qualitative characteristics of

shock movement due to a sinusoidal perturbation rather than

obtaining an explicit equation describing shock movement in

terms of the initial perturbation profile. This prediction is then

compared against a wave tracking Riemann simulation and a

CFD simulation. A sinusoidal perturbation comprises of infi-

nite number of compression and expansion waves. However,

for the purpose of computation only, a finite number of waves

are considered. These waves have a finite jump in flow param-

eters (pressure, velocity, and temperature) across them and are

modeled as moving shocks. To ensure that the perturbation

properties modeled through a series of shocks are same as those

obtained from isentropic relations, the value of temperature

corresponding to the peak value of the pressure perturbation

is computed by both these methods. It is observed that the dif-

ference in the values of temperature is observed to be less than

0.01% even when a 10% variation in pressure is modeled by a

single shock and this difference further reduces with number

of waves. In the Riemann wave tracking method, we model the

perturbations as depicted in Fig. 1(a) as a set of weak shocks

(compression and expansion) approaching the stationary shock

as depicted in Fig. 1(b) (note that a downstream perturbation

case has been depicted in the illustration, but the same con-

cept holds good for upstream perturbation also). Furthermore,

in this study, these weak shocks are referred to as “waves” to

avoid the possibility of misinterpreting the same as the sta-

tionary shock. The phase of each wave will be represented by

its initial phase, φo, by the relation φ = kx + φo. Note that,

though expansion shocks are considered, a large number of

waves are considered so that the negative entropy change due

to expansions is reduced and the second law of thermodynam-

ics is not violated grossly. Furthermore, the simulations were

repeated with a higher number of waves and the results did not

change. In Fig. 1, ω represents the frequency of perturbation

(in Hz), k is the wavenumber, P is the static pressure, P′ is the

amplitude of static pressure perturbation, T the temperature,

and u is the flow velocity (lab fixed coordinates). The subscript

“1” denotes the region upstream of shock and “2” denotes the

region downstream of shock. The same notation is followed

throughout the study.

Now, the problem can be further broken down into the fol-

lowing set of events occurring recursively till the last wave in

the perturbation reaches the shock for downstream perturba-

tion: wave approaching the shock; interacting with the shock;

and the interaction of the downstream traveling residual wave
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FIG. 1. Schematic representation of a shock-perturbation interaction; here the perturbation is present downstream with φo = 0. (a) Actual flow field.

(b) Approximation to the flow field.

and contact surface with upstream traveling waves. Each of

these unit processes is dealt with in more detail in Sec. III.

The process for upstream perturbations is the same as down-

stream perturbations except for the last step, which is absent,

because the residual wave and contact surface generated due

to shock–wave interaction exist downstream of the shock and

propagate further downstream. Therefore, these cannot inter-

act with the waves corresponding to the perturbation existing

upstream of shock.

III. UNIT PROCESSES

A. Propagation of perturbation

It is well known that any perturbation profile gets distorted

as it propagates. To quantify this distortion, for an initially

sinusoidal perturbation, the distance (magnitude) between the

peak pressure locations of linearly and nonlinearly propa-

gated perturbations nondimensionalized by the wavelength

of the perturbation is chosen as the parameter. This param-

eter will be referred to as the nonlinearity parameter and is

denoted by ζ in further discussions. Note that by the cur-

rent definition of ζ , it can vary only between 0 and 0.25. Its

variation with various parameters is computed by 1-D wave

tracking13 and is presented in Fig. 2, where M1 represents

the mean upstream Mach number, ε = P′/Po, λ is the wave-

length of perturbation, and subscript “o” denotes the mean

value of the property of the medium into which the perturbation

propagates.

It can be seen in Fig. 2(a) that the value of ζ is 0.08 at

M1 = 2 for a downstream perturbation of ε = 0.04 suggesting

a significant departure from the linear propagation. Note that

the legend in Fig. 2 shows a case corresponding to ε = −0.01

but the value of ζ is still positive because, by definition, only

magnitude is considered for computing ζ . Many experimental

investigations were carried out in the past in the same param-

eter regime (M1 = 1.3–2 and ε = 0.01–0.04) but they were

conducted in tunnels where the test section length is only about

half the wavelength even for a 100 Hz perturbation. For these

smaller distances, the value of ζ is close to zero3,11 and the

same result is predicted by the current study [Fig. 2(b)]. This

result, ζ being close to zero, when the propagation travels a

small fraction of its wavelength, has been interpreted wrongly

to conclude that nonlinear propagation is negligible for any

distance traveled by the perturbation. Based on this observa-

tion, many analytical studies have wrongly used linear wave

propagation for their analysis.1,2

From Fig. 2, it is seen that the distortion for upstream

perturbations is small. Apart from this, one can also see that

the nonlinearity effect becomes prominent with an increase in

FIG. 2. Variation of nonlinearity parameter (ζ ) with ε and M1 for both upstream and downstream perturbations. The lines with “△” marker correspond to

upstream perturbations and the lines with no marker correspond to downstream perturbations. The legend gives the non-dimensional perturbation jump (ε).

(a) Distance travelled = λ. (b) Distance travelled = 0.1λ.
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amplitude (ε) and distance traveled. It can thus be concluded

that nonlinear propagation is a pronounced phenomenon and

is therefore considered in this analysis.

B. Shock-perturbation interaction

As any perturbation needs to be modeled as a finite number

of shocks with a small but finite jump across them (Sec. II B),

the problem of shock-perturbation interaction becomes shock-

shock (or shock-wave) interaction. This interaction has been

discussed in the book by Hamilton and Blackstock.14 A bet-

ter approach has been given in the book by Toro13 where the

interaction creates three waves in total. The 1-D exact wave

tracking (Gudonov) method used here is along the lines of the

one described in the book by Toro.13 Due to the interaction of

a perturbation wave with shock, apart from altering the shock

strength, a residual wave and a contact surface are addition-

ally generated. This is illustrated in Figs. 3(a) and 3(b). The

region between resultant shock and the residual wave after

interaction will be referred to as the “intermediate region” and

will be denoted by the subscript “i” in further discussions. A

contact surface with temperature discontinuity exists in this

intermediate region. The flow field after interaction is to be

obtained numerically. It can be shown mathematically that to

change a set of flow variables (P, u, T ) to another set, three dis-

continuities are required. In special cases, these shocks could

turn out to be Mach waves and contact surfaces with zero

temperature discontinuity. To perform a parametric study of

shock-wave (or shock/wave) interaction, a flow field consisting

of a stationary shock and a single downstream wave of strength

ε = (P3 − P2)/P2 is considered as shown in the schematic

(Fig. 3).

Figure 4 shows the variations in pressure, velocity, and

temperature due to the shock-perturbation interaction as a

function of Mach number and perturbation amplitudes. From

this figure, it can be seen that the temperature jump between

“i1” and “2” is differing from that between “i1” and “i2” by

the same order as the jump between “2” and “3”, showing that

the residual wave temperature ′T ′
i2

is almost the same as ′T ′
3
.

The residual wave causes a very small fractional change in

temperature compared to the incoming perturbation, and the

incoming perturbation is itself a small fraction of the mean

pressure. It is seen that the variation of temperature across

the contact surface is of the same order as the change in the

primary shock strength. This clearly demonstrates that the con-

tact surface is a very important flow feature (comparable to the

perturbation) and is more significant than the residual wave.

However, many analytical studies have neglected this contact

surface and residual wave in their analysis. Though only down-

stream perturbations are quantified here, the flow features can

be shown to be the same for upstream perturbation also. In the

case of an upstream perturbation, however, the interaction does

not have any effect on the remaining waves approaching the

shock unlike downstream perturbations as the residual wave

and the contact surface will travel downstream of the shock.

Hence, only downstream perturbations are considered for the

purpose of quantifying the flow features in a detailed manner.

C. Contact surface–perturbation interaction

The interaction of two shocks discussed in Sec. III B can

be considered as flow field changing from one state to another

through a series of jumps (normal shock, contact surface, and

residual wave). A similar situation exists for the interaction of

the contact surface with shock (or wave). Hence, the same pro-

cedure used for shock–wave interaction can be used to study

the contact surface–wave interaction and as expected, the inter-

action results in a shock, a residual wave, and a new contact

surface. The contact surface travels with the local flow velocity

and this will interact with the incoming upstream propagating

waves (for downstream perturbations only). For a general case

of contact surface interacting with another wave, apart from the

pressure jump, the velocity of the wave approaching the shock

is altered. To study this interaction, a flow field with a sta-

tionary normal shock and 3 downstream waves is considered.

The contact surface generated due to the interaction of the first

wave with shock is allowed to interact with the remaining two

downstream waves and the resultant flow fields are computed.

The variation of the propagation speeds of these waves due to

the interaction with the contact surface is presented in Fig. 5.

Note that the waves are numbered in the order in which they

reach the shock, εk corresponds to the jump in pressure across

the kth wave, and the subscript denotes the property corre-

sponding to the kth wave. From this figure, it can be seen that

FIG. 3. Schematic representation of shock-perturbation interaction; the shock, incident compression wave, resultant expansion wave, and contact surface are

represented by “S,” “C,” “E,” and “CS,” respectively. (a) Pressure. (b) Temperature.
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FIG. 4. Resultant flow field due to the

interaction of a stationary shock with

a downstream wave. The legend gives

the non-dimensional perturbation jump

(ε). Note that the pressure and flow

velocity are continuous across the con-

tact surface. (a) Pressure across shock.

(b) Velocity across shock. (c) Tem-

perature across shock. (d) Temperature

across contact surface.

a contact surface generated due to the interaction of a shock

and a compression wave increases the propagation speed of

the waves on interaction and the contact surface generated due

to shock interacting with expansion wave decreases the speed.

Though the plots correspond to special cases of ε2/ε1 = 1 and

ε3/ε1 = 1, similar trends were observed for other ratios as well.

Thus, it can be concluded that the increment and decrement

in speed by a contact surface is nearly the same for all the

downstream waves. The change in the strength of the contact

surface was found to be negligible due to interaction with the

upstream traveling perturbation waves.

IV. ANALYTICAL STUDY

A. Formulation

Consider a sinusoidal perturbation approaching the sta-

tionary shock discretized into a finite number of waves/shocks

as shown in Fig. 1(b). It is seen in Sec. III that each wave

propagates at a different speed, alters the relative velocity

of the next wave in the shock fixed coordinate system, and

the relative velocity is further altered by the contact surface.

These velocity changes are just dependent on jump in pres-

sure across the waves and independent of the distance between

FIG. 5. Variation of various velocities

due to interaction of a contact surface

with a downstream wave for ε2/ε1 = 1

and ε3/ε1 = 1. Each line represents

a value of ε1. Solid line (—): −0.06,

dotted line (· · · ): −0.02, dashed-dotted

line (–·–·–): 0.02, and dashed line

(- - -): 0.06. The downstream waves are

numbered in the order they reach the

shock.
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them. However, these changes in velocity alter the relative dis-

tance between waves and accumulate with time. Of the three

phenomena mentioned, nonlinear propagation, shock move-

ment, and contact surface interactions, only shock movement

does not alter the distance between waves and is therefore only

a local nonlinearity, whereas other two effects are cumulative

nonlinearities. Please note that as the effect of the residual

wave is small, it is neglected for the analysis. Also note that

though the schematic (Fig. 1) depicts a special case of down-

stream perturbation, the analysis presented next will hold good

for any upstream and downstream perturbations.

Let the perturbation be discretized into n waves with the

first wave reaching the shock at time t = 0, labeled as “1,”

and the velocity at which each wave approaches the shock be

denoted by u. Note that all the velocities are stated in a ground

fixed coordinate system. Let the time at which the ith wave

reaches the shock be denoted by t(φi), ∆t(φi) be the additional

time required by the ith wave to reach the shock after the

(i − 1)th wave reached the shock, and ∆x(φi) be the relative

position of the (i − 1)th wave with respect to the ith wave at

time t(φi). Let the velocity of shock after interaction with the

ith wave be us(φi). Assume the discretization of the sinusoidal

perturbation to be such that the waves are uniformly spaced

at time t = 0 with the spacing denoted by ∆xo [i.e., relative

position of the (i − 1)th wave with respect to the ith wave

at t = 0] and the phase (kx + φo) of each wave be denoted

by φi. The mean propagation velocity of all the waves in the

perturbation is uo and the propagation velocity of any indi-

vidual wave is u(φi). Note that displacements and velocities

in the upstream direction are assumed to be positive for this

section only. Writing the expression for ∆t(φi) in the shock

fixed coordinate system, we get

∆t(φi) =
∆x(φi)

uavg(φi) − us(φi−1)
(1)

and

t(φi) =

i
∑

j=1

∆t(φj). (2)

Note that in the case of upstream perturbations, the signs of

both the numerator and denominator will change naturally and

the formulation holds good. As the value of∆x(φi) and ua3g(φi)

depend on various phenomena, to account for the contribution

of each effect, they can be decomposed as

∆x(φi) = ∆xo + ∆xn(φi−1) + ∆xc(φi−1), (3)

uavg(φi) = uo + un(φi) + uc(φi−1) + ǫ , (4)

where ∆xn(φi−1) is the change in the relative distance between

the (i − 1)th and ith wave with respect to the ith wave due

to nonlinearity in perturbation propagation till time t(φi−1),

∆xc(φi−1) is the change in the relative distance between the

(i − 1)th and ith wave with respect to the ith wave due to their

interaction with the last (i− 2) contact surfaces, un(φi) is (u(φi)

− uo) at t = 0, uc(φi−1) is the change in the propagation velocity

of the ith wave due to interaction with (i − 2) contact surfaces

(i.e., u(φi)|t=t(φi−1) − u(φi)|t=0), and ǫ is the difference in the

average velocity of the ith wave due to the interaction with the

(i − 1)th contact surface.

As ǫ represents the effect due to a single contact surface,

it is negligible compared to contribution of (i − 2) waves rep-

resented by uc(φi−1) and is neglected for further analysis. Sub-

stituting Eqs. (3) and (4) into Eq. (1), non-dimensionalizing

lengths by ∆xo and velocities by uo in Eq. (1), performing

a binomial expansion on the denominator of the resulting

expression and retaining terms till O(ε), we get

∆t(φi) = ∆to
[

1 + δxn(φi−1) + δxc(φi−1) − δun(φi)

− δuc(φi) + δus(φi−1)
]

, (5)

where∆to =∆xo/uo is the∆t(φ) for any wave in a linearly prop-

agating perturbation and δ β represents the non-dimensional

version of the variable β. Of the five terms in Eq. (5), only the

velocity terms are purely functions of phase and can be ana-

lyzed by considering flow fields similar to those considered in

Secs. III B and III C. However, as the displacement terms are

cumulative nonlinearities, such an approach is not possible,

but a functional dependence of these terms on δu terms can be

obtained to proceed further with the discussion.

B. Distortion due to nonlinear propagation

The total distance altered between two consecutive waves

due to nonlinear propagation is

δxn =
u(φi−1) − u(φi)

∆xo

[tinitial + ts], (6)

where tinitial is the time taken by the (i − 1)th wave to reach the

shock position (xs) at t = 0 and ts is the additional time required

to reach the shock from xs(t = 0). As mentioned earlier, δxn

is a non-dimensional variation in the distance between the

(i − 1)th and ith wave due to the nonlinearity in their respective

propagation speeds. It is to be noted that in writing the above

expression, the observation that the contact surface alters the

velocity of all the upstream traveling waves by nearly the

same amount is utilized. Thus, the term (u(φi−1) − u(φi)) can

be assumed constant in time. Substituting Eq. (5) in Eq. (2),

we get

t(φi) = T̂ (φi)[1 + δ] = i∆to(1 + δ), (7)

where T̂ (φi) is the time taken by the ith wave to reach x(φ1)|t=0

in the case of a linearly propagating wave in the absence of

shock (i.e., pseudo-shock in Sec. IV D) and δ is the resultant

of O(ε) terms. Substituting Eq. (7) in Eq. (6), rewriting tem-

poral terms, and expanding all the individual terms in to O(ε),

we get

δxn ≈

[

(1 + δun(φi−1)) − (1 + δun(φi))

1 + δun(φi−1)

]

(i − 1)

×

[

1 + δus(1 + δ)

1 + δu′(φi−1)

]

, (8)

where δu′(φi−1) is a O(ε) term representing the expansion of

ua3g(φi−1) about u(φi−1). The derivation of this expression is

given in the Appendix. Simplifying Eq. (8) using the binomial

expansion to the O(ε) term, we obtain

δxn(φi−1) ≈ [δun(φi−1) − δun(φi)](i − 1) ∝ max{δun(φj)},

j ∈ 1, 2, . . . , n.
(9)

From this expression, we see that δxn is proportional to δun and

is independent of the displacement of shock due to perturbation
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suggesting that it is a higher order effect though the shock

velocity (δus) is of O(ε).

C. Distortion due to contact surface interaction

During the time the contact surface takes to travel between

two waves, the difference between the propagation speeds

results in contraction/stretching of the distance between the

two waves. This effect is computed as follows:

δxc(φi−1) =

i−2
∑

j=1

∆uc(φj)∆t(φj)
1

∆xo

, (10)

where δt(φj) is the time taken by the jth contact surface to

travel from the (i − 1)th wave to ith wave and ∆uc(φj) is the

change in velocity due to the interaction with the jth contact

surface. In the contact surface fixed coordinate system, the

term ∆t(φj) can be approximated as

∆t(φj) ≈
∆xj(φi)

cj(φi)
, (11)

where ∆xj(φi) is the distance between the (i − 1)th and ith

wave after the interaction of the jth contact surface with the

(i − 1)th wave and cj(φi) is the local speed of sound between

these waves. Substituting this expression in Eq. (10) and

retaining terms till O(ε), we get

δxc(φi−1) ≈

i−2
∑

j=1

∆uc(φj)

uo

uo

co

= (1 −M2)δuc(φi−1). (12)

D. Predictions

Consider the case of a downstream sinusoidal pressure

perturbation with φo = 0 traveling in a uniform flow (i.e., shock

is absent) toward a stationary surface with zero jump in flow

properties across it (this surface will be referred to as “pseudo-

shock” in further discussions). Applying Eq. (5) to this flow

field, we get

∆t(φi) = ∆to[1 + δxn(φi−1) − δun(φi)]. (13)

We know that for two consecutive compression waves,

δxn < 0, whereas δxn > 0 for two consecutive expansion waves

and δun > 0 for the entire positive half cycle of perturbation.

However, the time at which the wave corresponding to φ = π

reaches the pseudo-shock is 0.5T̄ , where T̄ is the time period

of the perturbation. For this to be possible, the net effect of

∆xn over the positive half cycle should match that of ∆un.

For the case of downstream perturbation with a shock, the

analysis is not as straightforward as in the case of pseudo-shock

as all the terms in Eq. (5) are to be considered. As there are

no explicit analytical expressions for these terms, the relative

quantitative effects of these terms are obtained numerically.

Consider a flow field with a stationary shock and two down-

stream waves. The interaction of the first wave with the shock

and the interaction of the resulting contact surface with the

other wave is studied. Thus, the various δu terms are com-

puted and the results are given in Fig. 6. Using Eqs. (9) and

(12), the dependence of δx on M1 and ε can be obtained.

Using these results, the resultant shock response can be

predicted. In the absence of the nonlinearities discussed in

Sec. III, the response is known to be a sinusoid in time. As

an exact solution is not possible for the case which includes

the nonlinearities; the analysis will only predict the data at

4 points (φ = 0.5π, π, 1.5π, and 2π) and thus construct the

shock response by tweaking the sinusoidal response accord-

ingly. The response to downstream perturbations is discussed

FIG. 6. Variation of various terms in Eq. (5). Each line represents a value of ε. Solid line (—): −0.06, dotted line (· · · ): −0.02, dashed-dotted line (–·–·–): 0.02,

and dashed line (- - -): 0.06. (a) δun. (b) δuc. (c) δus. (d) Variation of the resultant of δu terms.
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in Subsection IV E and it is followed by Subsection IV F on

upstream perturbations.

E. Downstream perturbations

Consider the case of a downstream perturbation with

φo = 0 approaching a stationary shock at low M1. As seen in

Fig. 6, at low M1, the effect of the contact surface is negligible

and therefore Eq. (5) can be approximated to

∆t(φi) = ∆to[1 + δxn(φi−1) − δun(φi) + δus(φi−1)]. (14)

For 0 < φ < 0.5π, we know that δus > 0, δun > 0, and

δxn < 0. Therefore, ∆t|pseudo shock < ∆t < ∆to and thus we

have T̂ (0.5π) < t(0.5π) < 0.25T̄ . For φ = π, as nonlinear

propagation terms cancel each other over a half cycle,

t(φ = π) = 0.5T̄ +

φj=π
∑

j=1

δus(φj−1)∆to. (15)

As δus > 0 for all 0 < φ < π, t(φ = π) > T̂ (φ = π) = 0.5T̄ .

Extending similar arguments and analysis to the negative

half cycle (φ ∈ (π, 2π)), we get 0.75T̄ < T̂ (1.5π) < t(1.5π).

We know that us is purely a function of P′ and P′ is sinu-

soidal in phase. Hence, us(φ) = −us(φ + π) and thus we get

t(2π) = T̂ (2π) = T̄ . Therefore, as the shock responds for

a longer time to the positive half cycle, the shock moves

upstream for a longer duration than downstream. Therefore, in

response to the full cycle, the shock gets displaced upstream.

1. Effect of M1

At high upstream Mach numbers, as seen in Fig. 6, the

effect of the contact surface becomes important and, hence, all

the terms in Eq. (5) are to be considered. It can be seen that

the difference between the δun and δus terms asymptotes to

a constant value of 0.035 (approx.) for large Mach numbers.

On the other hand, the δuc term is of the order of 0.04 at high

Mach numbers and is very low at low Mach numbers. Hence,

the contact surface is an indispensable flow feature to capture

the shock response correctly. Figure 6(d) shows that as the

Mach number increases, the net effect of δu terms decreases

in magnitude but the sign remains same. This residual compo-

nent of δu terms is, however, offset by δxc. From Eq. (9), it can

be seen that the magnitude of δxn decreases with M1, while the

δxc increases asymptotically in M1 [Eq. (12)]. Therefore, the

net departure from the sinusoidal response decreases, and the

response (say pressure just downstream of shock) as a function

of time will tend toward a sinusoidal profile at high Mach num-

bers. The nonlinear propagation and shock movement effects

are varying only in the range of M < 3 and above this, there is

only a fixed effect. Thus in the range of M > 3, the effect of

the contact surface could not be ignored as it determines the

magnitude and direction of shock drift.

2. Dependence on starting phase (φo)

By extending arguments made for the case of φo = 0,

the response of shock to sinusoidal perturbation for various

starting phases can be obtained. Figure 7 shows the results

for φo = 0, 0.5π, π, and 1.5π. From this analysis, it can be

seen that the effect of the starting phase and thus the history

of perturbation is very important. It confirms the arguments

made in Sec. III that the terms in Eq. (5) are both cumulative

and local nonlinearities of the system.

3. Effect of ω and ε

Figure 8 shows that the variation of ε only scales O(ε)

terms and does not contain new physics. Hence, the shock

response is predicted to follow the same trend, but the magni-

tude of response (i.e., the various inequalities) becomes more

pronounced at higher ε and thus the departure of the response

from the sinusoid profile becomes higher.

As all the δu terms are dependent only on the phase (φ),

they are independent of the distance between each wave for a

sinusoidal perturbation profile. Hence, the effect of ω is felt

FIG. 7. Pressure downstream of shock/pseudo-shock due to downstream perturbation for different φ0. (a) φo = 0. (b) φo = 0.5π. (c) φo = 1.0π. (d) φo = 1.5π.
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FIG. 8. Variation of downstream pressure experienced by the shock with time due to downstream perturbations. The plot is to be read as follows: triangular

marker (△) for M1 = 1.5, ε = 0.02, ω = 10 Hz; solid line (—) for M1 = 1.5, ε = 0.02, ω = 100 Hz; dotted line (· · · ) for M1 = 1.5, ε = 0.04, ω = 100 Hz and

dashed-dotted line (– · – · –) for M1 = 2.5, ε = 0.04, ω = 100 Hz. (a) φo = 0. (b) φo = 0.5π. (c) φo = 1.0π. (d) φo = 1.5π.

only through the quantity ∆to. Also, δx terms scale linearly

with δu terms and though they are dependent on the history

of perturbation, only the relative positioning of each wave is

important. Therefore, the frequency of perturbation has only a

scaling effect on the shock response and becomes indepen-

dent of it when t(φ) is scaled with the time period of the

perturbation (T̄ ).

F. Upstream perturbations

In the case of upstream perturbations, the effect of the

contact surface does not exist because the contact surfaces are

convected downstream along with the flow while the perturba-

tion waves exist only upstream of shock. Hence, the response

is predicted by Eq. (14). From Fig. 2, we see that the effect of

nonlinearity is negligible in the case of upstream perturbation.

This can be deduced by the non-dimensional term δus which

has been defined as the ratio of the speed of the shock to the

speed of propagation of the wave. Now, while the shock speed,

being a function of the pressure jump across the shock, is sim-

ilar for both the downstream and upstream perturbation, the

speed of wave propagation is larger for the upstream pertur-

bation compared to its downstream counterpart for the same

frequency of perturbation. This makes δus much smaller for the

case of an upstream perturbation than for the case of a down-

stream perturbation. Hence, all the nonlinear effects become

negligible and therefore, the response of the shock will be a

sinusoid for upstream perturbations. By similar arguments, the

ratio of amplitude of shock oscillation to the wavelength of per-

turbation is an order of magnitude less than the corresponding

downstream perturbation value.

If the response of shock to upstream perturbation is

plotted similar to the downstream perturbation (Fig. 7), it

would be a sinusoid in time shifted according to the initial

phase of the perturbation, φo. As in the case of downstream

perturbations, ε and ω scale the response because they do not

contain new physics as the response is purely a sinusoid. Note

that in the case of upstream perturbation, the change in pressure

gets amplified across the shock. Therefore, the magnitudes of

maxima and minima of the ratio to be plotted along the y-axis

is always greater than 1. As M1 increases, this amplification

increases and therefore the magnitudes of maxima and minima

increase. We know that

Ms = M1 −

√

γ + 1

2γ

(

P2

P1

− 1

)

+ 1, (16)

where Ms is the Mach number of the shock. So, the velocity of

shock is purely a function of the pressure ratio across the shock.

For an upstream perturbation, this ratio is altered by varying

the denominator. Thus the magnitude of minima of pressure

ratio is higher than that of maxima, unlike the downstream

case, where the numerator is varied and thus the magnitude

of maxima and minima are same. Therefore, the magnitude of

velocity of the shock is higher for the negative half cycle than

the positive half cycle (i.e., the magnitude of shock velocity in

the upstream direction is higher than that in the downstream

direction). This coupled with the prediction that duty cycles

of positive and negative half cycles are equal results in a net

upstream motion of shock over one full sinusoidal cycle of

perturbation for any upstream perturbation.

V. WAVE TRACKING STUDY

A. Algorithm

The given perturbation profile is discretized to a finite

number of waves. This number of waves, n, is chosen such that

the shock response is same (i.e., difference is less than 0.1%

variation in the time period of shock response) for n/2 and 2n

number of waves (typically n = 100). The first wave reaches the
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shock and generates a contact surface and a residual wave. The

contact surface is tracked till it interacts with all the remaining

upstream traveling waves. At each shock-wave interaction and

contact surface-wave interaction, the position and new propa-

gation speed of the waves are obtained by solving a Riemann

problem. As seen in Sec. III B, the residual wave is insignificant

with respect to the contact surface and is therefore not tracked.

The method to solve the Riemann problem is same as the one

discussed in Sec. III B. The waves travel upstream with the

new speeds till they encounter a contact surface or shock. The

computations are essentially performed by tracking each con-

tact surface (initially formed due to shock-wave interaction)

till it interacts with all remaining waves (the jump across the

contact surface changes after each interaction). This method

of tracking the waves has been verified by calculating vari-

ous standard flow fields like a piston moving into a quiescent

flow, shock tube, etc. Apart from the approximation of neglect-

ing residual wave, this study is exact. The approximation of

neglecting the residual wave results in a very low error at low

supersonic Mach numbers. In the case of upstream perturba-

tions, as the contact surface and residual wave do not interact

with waves approaching the shock, this analysis becomes exact

at any Mach number. This method is different from the CFD

method used in Sec. VI where a control volume (stationary)

approach is used to solve the Euler equations in the integral

form.

B. Observations

From Fig. 8, it can be seen that the predictions made in

Secs. III and IV regarding shock response are verified. The

perturbation frequency ω indeed has a purely scaling effect.

Furthermore, as ε increases, the departure from the sinusoidal

response increases and the response tends toward a sinusoid

in time as M1 increases. Also, it can be concluded that the

response of shock to perturbation has a cumulative nonlinearity

and, therefore, the history of perturbation plays an important

role.

However, small departures do exist and could be because

of the O(ε2) and higher order terms. In Fig. 8, for φo = 0◦, it is

seen that t(2π) > T̄ but the analytical study predicts that t = T̄ .

This could be because of the additional distance the waves

need to travel due to the upstream movement of the shock that

has been neglected in the analytical treatment as it is a higher

order effect. From similar arguments, it can be seen that for

φo = 180◦, t(2π +φo) < T̄ . However, these effects were shown

to be higher order effects and neglected by analytical predic-

tions and hence these small departures from the predictions

are observed and are to be expected.

As predicted by the analytical study, the response is seen

not to be a sinusoid and, therefore, it is not obvious if the shock

will return to its initial position. This difference between the

final and initial shock positions after one cycle of perturba-

tion is referred to as “drift.” As the response is not sinusoidal,

the amplitude of the shock location is defined as the dis-

tance between the extreme positions during one full cycle of

perturbation. These variables, drift and amplitude of shock

movement, are of practical consequence and, hence, the effect

of various parameters on these variables is presented. Drift

and amplitude of shock movement decrease with Mach num-

ber (M1), increase with amplitude of perturbation imposed

(ε), and scale linearly with wavelength (in Fig. 9, wavelength

appears as a normalization factor on the vertical axis). The data

presented by Moase et al.10 support the observation that shock

drifts over a full cycle of sinusoidal perturbation. However,

they have neither mentioned this observation nor explained it in

their study. Experimental investigations by Bruce and Babin-

sky11 have not revealed any drift. This could be because, as

mentioned, they have manually operated the wind tunnel valve

if the mean position of shock was varying or could be due to the

short length of the tunnel which would mean less nonlinearity.

The result that ω has only a scaling effect on the ampli-

tude of the shock movement has been verified experimentally11

and similar result was obtained through previous analytical

studies.1,2 It is important to note that though the analytical

study predicted the variation of shock response and thus the

sign of drift for a given φo, it could not predict further details

of the variation across φo as it necessitates the use of higher

order terms, and hence only a wave tracking numerical study

is performed to analyze the effect of φo.

For the case of upstream perturbations, as predicted, the

response is independent of φo, the amplitude of the response

(variation of downstream pressure normalized by the ampli-

tude of upstream perturbation) increases with M1, and ε and

ω have a scaling effect, as seen in Fig. 10. The wave track-

ing study shows that the response is not exactly a sinusoid

FIG. 9. Variation of amplitude of shock movement and drift with various flow parameters due to downstream perturbations. The plot is to be read as follows:

triangular marker (△) for M1 = 1.5, ε = 0.02, ω = 10 Hz; solid line (—) for M1 = 1.5, ε = 0.02, ω = 100 Hz; dotted line (· · · ) for M1 = 1.5, ε = 0.04,

ω = 100 Hz and dashed-dotted line (– · – · –) for M1 = 2.5, ε = 0.04, ω = 100 Hz. (a) Amplitude. (b) Drift.
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FIG. 10. Variation of downstream pressure experienced by the shock with time due to upstream perturbation. The plot is to be read as follows: triangular marker

(△) for M1 = 1.5, ε = 0.02, ω = 10 Hz; solid line (—) for M1 = 1.5, ε = 0.02, ω = 100 Hz; dotted line (· · · ) for M1 = 1.5, ε = 0.04, ω = 100 Hz and dashed-dotted

line (– · – · –) for M1 = 2.5, ε = 0.04, ω = 100 Hz. (a) φo = 0. (b) φo = 0.5π. (c) φo = 1.0π. (d) φo = 1.5π.

(too small to be visible directly from Fig. 10). This departure

(about 0.5% variation in the duty cycle) is to be expected as

we have neglected the nonlinearities for the analytical stud-

ies as they were small. Nevertheless these small effects are

captured by the wave tracking study as it is exact. The ampli-

tude of the shock movement, as predicted analytically, is much

smaller than the corresponding downstream cases {compare

the magnitude of amplitude for upstream perturbations

[Fig. 11(a)] with that corresponding to downstream perturba-

tions [Fig. 9(a)]}. The drift too, as predicted, is always in the

upstream direction for all conditions of flow and perturbations

[Fig. 11(b)].

Hence, it can be seen that overall there is a very good

match between the analytical predictions and wave tracking

results. In the semi-analytical wave tracking method, the weak

residual waves which are resultant of the shock-perturbation

interaction are neglected. It was further assumed that the

contact surface, when interacting with the next downstream

(incoming) perturbation, only alters the speed of the perturba-

tions and produces a downstream contact surface, but does not

create any other waves. This is not true, as there will always

be a weak residual wave created in each of these interactions.

These weak waves were neglected in the semi-analytical wave

tracking simulation as it was very expensive to keep track of

the huge number of waves generated by each such interaction

and follow their interactions with other waves in the flow. It

is possible that there are cumulative effects here, which are

lost when neglecting these weak waves, in the semi-analytical

method. By contrast, a CFD simulation does not make any

such assumption. Thus, CFD simulations of the same problem

were performed and results are compared with the results from

the wave tracking methods in Sec. VI.

FIG. 11. Variation of amplitude of shock movement and drift with various flow parameters for upstream perturbations. The plot is to be read as follows: triangular

marker (△) for M1 = 1.5, ε = 0.02, ω = 10 Hz; solid line (—) for M1 = 1.5, ε = 0.02, ω = 100 Hz; dotted line (· · · ) for M1 = 1.5, ε = 0.04, ω = 100 Hz and

dashed-dotted line (– · – · –) for M1 = 2.5, ε = 0.04, ω = 100 Hz. (a) Amplitude. (b) Drift.
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FIG. 12. Distribution of pressure and temperature for a shock tube simulation; initial conditions P4 = 27 240.6 Pa, P1 = 10 896.2 Pa; T4 = 205.6 K, T1 = 102.8 K

are shown by the dotted lines. (a) Pressure. (b) Temperature.

VI. CFD SIMULATION

A. Validation

CFD simulations are performed to compare with the pre-

dictions of the semi-analytical and analytical work presented

earlier in this paper. The code used for simulation of the shock-

perturbation interaction performed in this work is a finite

volume based solver for the discretized Euler equations. The

Low Diffusion Flux Splitting Scheme (LDFSS)15 is used for

the first order reconstruction of interface fluxes using the left

and right states (reconstructed) at the interface using the 4th

piecewise parabolic method.16 The equations are integrated

in time using a 4th order CFD type Runge-Kutta scheme. A

global time stepping with a CFL number of 1.0 is used here.

The 1-D Euler code is validated by simulating a shock

tube case. Figure 12 shows the jump in the pressure and tem-

perature for the shock-tube simulation. The domain for this

simulation extends from X = 0 to X = 20 m. A spacing of

δ = 0.5 × 10−4 m is used for this simulation. The shock tube

simulation is initiated as a Riemann problem at X = 2.0 m, with

discontinuities in pressure, density, and temperature. This is

shown in Fig. 12, where the left state is denoted by “4” and the

right state by “1.” The choice of the left and right states are

ad hoc. The given initial condition would generate a right mov-

ing shock, an expansion wave moving to the left, and a right

moving contact discontinuity in between. Figure 12 also shows

the comparison of the pressure and temperature distributions

initially and after 20 000 iterations. The plot of pressure in

Fig. 12(a) shows the presence of a region of expansion fol-

lowed by a discontinuity across the moving normal shock. In

Fig. 12(b), in addition to the changes in temperature across the

expansion fan and the normal shock, a strong jump is observed

across the moving contact surface, which is located between

the expansion and normal shock. To get an estimate of the

error in the predictions of the CFD code, a comparison of flow

properties determined analytically and those computed by the

simulation are presented in Table I after 20 000 iterations.

A plot of the shock location vs time for 20 000 itera-

tions is also shown in Fig. 13. As can be seen in this plot,

the shock position determined analytically and that predicted

by the simulation virtually coincide.

In addition to the shock-tube simulation, a slow mov-

ing shock17 is also simulated to validate the solver. This is

included to check whether downstream-running noise of large

wavelength and/or amplitude, as observed with the use of

Roe’s flux-difference splitting scheme,17 are also generated

with the present solver, which employs a flux-vector splitting

scheme. It is especially important in this case to determine if

the pressure downstream of the moving shock shows any dis-

cernible noise, as it would raise doubts about the accuracy of

CFD predictions of the pressure field (downstream) due to the

shock-perturbation interaction studied in this work.

The computational domain for this case, which extends

from X = 0 m to X = 2 m, consists of 200 cells of equal

TABLE I. Comparison between analytical and computational solutions.

Property Analytical Simulation Error (%)

T2 119.3 K 119.8 K 0.4

P2 18631 Pa 18351 Pa 1.5

T3 183 K 183.7 K 0.4

P3 18631 Pa 18351 Pa 1.5

Up (induced flow) 78.74 m/s 79.72 m/s 1.2

FIG. 13. Shock location history for the shock-tube simulation.
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FIG. 14. Normalised pressure vs. X for a slow left-moving shock; dashed-

dotted line: initial shock, solid line: after 1.8 ms.

FIG. 15. Normalised density vs. X for a slow left-moving shock; dashed-

dotted line: initial shock, solid line: after 1.8 ms.

size. The jumps in thermodynamic properties satisfying the

Rankine-Hugoniot condition, which corresponds to a Mach

number of ≈2.95, is imposed at X = 0.25 m. A supersonic

inflow boundary condition is used at X = 0 m and a subsonic

outflow (fixed pressure) boundary condition is used at X = 2 m.

The flow speeds to the left and right of the discontinuity are cal-

culated to ensure a left-moving shock at low speed; the ratio

of the shock speed (left moving) to the fastest wave speed

in the flow is ≈66.95. The simulation is run for a total time

of about 1.8 ms, during which the shock moves upstream by

0.024 m. Figure 14 shows the variation in pressure (normalised

by the values left of the shock) with distance. It can be observed

that the pressure downstream of the shock remains practi-

cally unaltered due to the shock movement and as such, any

right (downstream) running acoustic waves (if present down-

stream of the shock) are too small to be visible at this scale.

Figure 15, however, shows minor differences in the density

across the stationary and moving shocks, indicating that the

solver (flux-splitting scheme specifically) is giving rise to

right-moving entropy waves; the amplitude of these waves

though appear to be small (≈less than 1% of the downstream

density).

Based on the above validations, it can be stated the Euler

solver used in this work is capable of predicting 1-D flow-

fields with good accuracy and also does not introduce large-

amplitude noise downstream of moving shocks and as such is

used for the rest of the CFD results presented here.

B. Computational domain and introduction
of perturbation

The computational domain for the shock-perturbation

studies extends from X = −2λ to X = 8λ, where λ is the wave-

length of the perturbation. To study the effect of a downstream

wavelet on the shock, a sinusoidal perturbation is introduced

right at the shock location. In the computational domain, the

shock is located at a distance of 2 times the wavelength of the

perturbation from the origin. Figure 16(a) shows the position

of the perturbation downstream of the shock for two different

values of φo. The initial amplitude of the perturbation is cho-

sen as twice the amplitude of the wave since it splits into a

left and a right running wave, of which only the left running

FIG. 16. Variation of pressure in the computational domain at t = 0 for M1 = 1.5 and ǫ = 0.04. (a) φo = 0. (b) φo = Π.
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TABLE II. Comparison of errors for different grid resolutions.

Resolution ( ncells
λ

) Drift (m)
drift
∆x

Error (%)

10 000 ☞9.98× 10☞5 1 20.16

20 000 ☞1.25× 10☞4 2.5 ≈0

40 000 ☞1.25× 10☞4 5 . . .

wave interacts with the shock. The thermodynamic proper-

ties of the perturbed state are constructed assuming isentropic

processes of compression and expansion from the post-shock

state to the perturbed state. In this context, it is different from

the semi-analytical simulations presented earlier, wherein the

perturbations are modelled as weak compression and expan-

sion shocks. The velocities at the perturbed state are kept the

same as the post-shock state. This means that while local total

enthalpy at any point in the perturbed state may be different

from the post-shock state (at the same point), there is no global

energy addition to the system. The length of the computational

domain to the right of the shock is 8 times the perturbation

wavelength (λ). A much larger length (compared to upstream

of shock) is chosen for the downstream direction to ensure

that any wave formed due to the interaction of the right mov-

ing wave with the right boundary does not travel upstream and

interact with the shock or left moving wave within the time

frame of the simulation.

As the code uses a density based solver, the perturbation

is introduced by setting the temperature and density values in

order to cause the desired pressure change using an assumption

of isentropic process.

C. Grid refinement and CFL study

The grid spacing for this work is expressed using the

metric number of grid points per unit wavelength of the per-

turbation. The wavelength (λ) of the perturbation is defined as
wavespeed

frequency
, where wave speed is the acoustic velocity after the

shock and the frequency is 100 Hz. The perturbation ampli-

tude (ǫ) was taken as 0.04 for these simulations. Three different

grid spacings have been tried as listed in Table II. Based on

the values of drift obtained for the different grids, a resolution

of 40 000 cells
λ

is used for all the simulations at M = 1.5. This

results in a physical spacing of∆X = 2.4953× 10−5 m. The use

of the quantity ncells
λ

to determine the grid resolution ensures

that the grid spacing is problem specific.

As seen from Table II, the highest grid resolution consid-

ered corresponds to a drift of −1.25 × 10−4 m. This is assumed

to be closest to the true value. Thus the errors are calculated

with respect to this value and are tabulated. Although a grid

resolution of 20 000 cells
λ

shows similar value of drift as for

the finest mesh, the finest mesh is used for all the subsequent

CFD studies, as for smaller values of perturbation amplitude

(ǫ = 0.03), the lower resolution cannot capture the drift.

To check for the sensitivity of the solution to the CFL

number, the simulation for M = 1.5, ǫ = 0.04, and a frequency

of 100 Hz was run at two different CFL numbers of 0.5 and 1.0.

The results show hardly any difference (not shown here). As

such, a CFL of 1.0 has been used for the rest of the simulations

presented here.

To reduce the number of cells in the domain, instead of

using a uniform grid for the entire domain, only a part of the

domain from X = 0 to X = 3λ has a constant grid spacing,

beyond which a stretched grid is used with a constant stretching

ratio of 4%. The grid-resolution mentioned earlier pertains to

the uniform grid from X = 0 to X = 3λ.

D. Results

The simulation results from the shock-perturbation simu-

lations have been plotted against the results obtained from the

previously discussed semi-analytical algorithm (Sec. V) for

specific cases. If the final position of the shock is upstream of

the initial position (upstream drift), then the drift is taken as

negative.

Figure 17 plots change in the pressure just downstream

of the shock, due to the interaction with the perturbation,

normalized by the magnitude of the perturbation, vs the non-

dimensional time t/T as defined before. From Fig. 17, it is

observed that the downstream pressure variation predicted by

the semi-analytical method and the CFD simulation match

very closely for phase angles φo = 0 and π. Some noise in

the pressure data is observed and this can be attributed to post

shock oscillation in pressure across a moving shock observed

in most higher order numerical methods. Figure 18 shows that

the shock movement predicted by the semi-analytical method

and the CFD simulation match very closely as well.

Figure 19(a) compares CFD predictions of the amplitude

of shock motion with those computed using the semi-analytical

FIG. 17. Variation of downstream pressure experienced by the shock with time due to a downstream perturbation; M1 = 1.5, ε = 0.04, ω = 100 Hz; solid line

(—): semi-analytical method, dashed-dotted line (– · – · –): CFD simulation. (a) φo = 0. (b) φo = Π.
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FIG. 18. Variation of shock location with time due to a downstream perturbation; M1 = 1.5, ε = 0.04, ω = 100 Hz; solid line (—): semi-analytical method,

dashed-dotted line (– · – · –): CFD simulation. (a) φo = 0. (b) φo = Π.

FIG. 19. Comparison of amplitude of shock movement and drift between the semi-analytical method and the CFD simulation. M1 = 1.5, ω = 100 Hz; triangle

marker (∆): semi-analytical method; circle (o): CFD solution. (a) Amplitude. (b) Drift.

method, at discrete values of perturbation amplitude at Mach

1.5. As shown in the plot, the computational results almost

match the semi-analytical method. Figure 19(b) shows a com-

parison of drift values obtained from CFD computations and

the semi-analytical method, at the same set of perturbation

amplitudes used in Fig. 19(a) at Mach 1.5. As observed, the

drift values predicted by the CFD methods are lower com-

pared to their semi-analytical results. However, the two sets of

results agree qualitatively in the sense that both show a similar

direction of drift and a growth in the drift as the amplitude of

perturbation increases.

Figure 20 compares the CFD predictions of pressure

downstream of the shock, and the shock motion, with the

results from the semi-analytical method, for two succes-

sive perturbations for a Mach 2.5 flow at a perturbation

amplitude of 4%. Similar to what was observed for the case

of a single perturbation, the two methods compare very well

in this case also. Table III lists the values of drift as com-

puted using CFD, and the semi-analytical method, for 1, 2,

and 3 perturbations at a perturbation pressure amplitude of

4% and Mach 1.5 flow. Here the results of the semi-analytical

method suggest that the drift scales linearly with increase in

the number of perturbations. The CFD predictions of drift

also increase with successive perturbations, although the mag-

nitude of change is less compared to the semi-analytical

method.

The CFD results show a good level of agreement with the

semi-analytical method in general, except in the prediction of

drift, where the CFD results are consistently lower compared

to those obtained from the semi-analytical method. This can

FIG. 20. Variation of downstream pressure and shock location with time for two successive perturbations; M1 = 2.5, ε = 0.04, ω = 100 Hz, φo = 0; solid line

(—): semi-analytical method, dashed-dotted line (– · – · –): CFD simulation. (a) Downstream pressure variation. (b) Shock movement.
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TABLE III. Comparison of drift values (in m).

No. of perturbations Semi-analytical method CFD method

1 ☞6.39× 10☞4
☞2.07× 10☞4

2 ☞1.3× 10☞3
☞3.62× 10☞4

3 ☞1.9× 10☞3
☞5.69× 10☞4

primarily be attributed to the minor phase difference in the

response of the shock to the perturbation between the two

methods as can be seen in Fig. 18.

VII. CONCLUSIONS

This study investigated the response of a normal shock in

a constant area duct to sinusoidal perturbations. In this inter-

action, the contact surface, which was ignored by researchers

in previous studies, is shown to have a significant effect on the

flow field downstream of shock and consequently the shock

response to downstream disturbances. For upstream perturba-

tions, however, the interaction is important only to determine

the downstream pressure and the shock velocity. In this case,

the contact surface and residual wave generated in the process

are not important, as they exist only in the flow field down-

stream of shock, which is devoid of any externally imposed

perturbation.

It is demonstrated both analytically and numerically that

the shock responds nonlinearly to perturbation and the nonlin-

earity is both cumulative and local in nature. Hence, a linear

superposition of sinusoidal waves to simulate a complicated

perturbation profile may not work. Furthermore, the shock

response depends strongly on the perturbation history (φo).

The nonlinear nature of the response can be further seen by

the change in the time period of shock response with respect to

the time period imposed by the perturbation. In addition to this

variation, the duty cycle of positive and negative half cycles of

perturbation is altered. This results in a net upstream displace-

ment of the shock over one full cycle of perturbation, which

is referred to as drift. Although the magnitude of drift scales

with Mach number,
drift

amplitude
is higher for lower Mach numbers.

This suggests that the effect of drift is more pronounced at low

supersonic Mach numbers. This observation may have prac-

tical consequences, as this is the typical operating regime for

ramjets. Further studies are underway to examine the effect of

geometric variations, such as a C-D nozzle, on this nonlinear

response of shock.

In the case of upstream perturbations, the duty cycle is

very close to that of a sinusoid, as the nonlinearities are very

small. However, the magnitude of shock velocity, being lower

for the positive half cycle than the negative half cycle, causes

the shock to drift upstream over one full cycle of perturbation.

Thus we see that a shock does not come back to its initial

position, but ends up more upstream, for both upstream and

downstream sinusoidal perturbations. Furthermore, multiple

waves interacting with the shock result in a cumulative effect

on the shock movement.

In summary, this work studied in detail the interac-

tions between various flow features (shock-wave, contact

surface-wave) in a normal shock/perturbation interaction. It

conclusively establishes the shock response to be nonlinear

and that the shock does not return to its initial position over one

full cycle. Various physical processes behind the nonlinearities

were investigated thoroughly, and the parametric variation of

drift was explained. The drift in shock discussed in this study is

caused solely because of the unsteady perturbation. This, cou-

pled with geometric variation and spatial reflection of waves,

could lead to sustained oscillations. Further investigations are

underway to verify this possibility.

APPENDIX: SHOCK RESPONSE (ANALYTICAL FORM)

As seen in Sec. II A, each wave in the perturbation

travels at a different speed. Therefore, each wave has a non-

zero relative velocity with respect to its neighboring wave

and, hence, the distance between each of them gets altered.

The distance altered due to this nonlinear propagation can be

obtained as

δxn =
u(φi−1) − u(φi)

∆xo

[tinitial + ts], (A1)

where tinitial is the time taken by the (i − 1)th wave to reach

the shock position at xs(t = 0), xs is the shock location,

and ts is the time required to reach shock at t(φi−1) from

xs(t = 0). It is to be noted that in writing the above expression,

the observation that the contact surface alters the velocity of

all the upstream traveling waves by nearly the same amount

is utilized. Thus, the term (u(φi−1) − u(φi)) can be assumed

constant in time. Rewriting temporal terms in Eq. (A1),

we get

δxn =
u(φi−1) − u(φi)

∆xo

[

x(φi−1)|t=0

uavg(φi−1)
+

xs |t=t(φi−1)

uavg(φi−1)

]

, (A2)

where ua3g(φi−1) is the average velocity of the ith wave over

the time t(φi). Substituting Eq. (5) in Eq. (2), we get

t(φi) = T̂ (φi)[1 + δ] = (x(φi)/u0)[1 + δ], (A3)

where T̂ (φi) is the time taken by the ith wave to reach x(φ1)|t=0

in the case of the linearly propagating wave in the absence of

shock and δ is the contribution of O(ε) terms. As the waves

are uniformly spaced, Eq. (A3) can be written as

t(φi) = i∆to(1 + δ). (A4)

Substituting Eq. (A3) in Eq. (A2), we get

δxn =
u(φi−1) − u(φi)

∆xo

u0

u(φi−1)
T̂ (φi−1)

×

[

1 +
us,avg

u0

t(φi−1)

T̂ (φi−1)

]

u(φi−1)

uavg(φi−1)
.

Recall that

δus =
us,avg

u0

and

∆x0 = ∆t0u0.

Substituting Eq. (A4) in the last expression and expanding all

the individual terms in to O(ε), we get
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δxn ≈

[

(1 + δun(φi−1)) − (1 + δun(φi))

1 + δun(φi−1)

]

(i − 1)

×

[

1 + δus(1 + δ)

1 + δu′(φi−1)

]

, (A5)

where δu′(φi−1) is a O(ε) term representing the expansion of

ua3g(φi−1) about u(φi−1).

Simplifying Eq. (A5) using Binomial expansion to the

O(ε) term, we obtain

δxn(φi−1) ≈ [δun(φi−1) − δun(φi)](i − 1) ∝ max{δun(φj)},

(A6)

where the index j ∈ 1, 2, . . ., n.

An important observation from this analysis is that the

shock displacement terms are absent in Eq. (A6) and hence

it can be concluded that shock displacement has a higher

order effect on shock response. Also, through this derivation,

we have obtained the functional dependence of δxn on δun.

Thus, the variation of δxn with perturbation and mean flow

parameters can be studied through δun which is dependent

only on φ.
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