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Analysis of Optimal Combining in Rician Fading

with Co-channel Interference
Muralikrishnan Srinivasan, Sheetal Kalyani

Abstract—Approximate Symbol error rate (SER), outage prob-
ability and rate expressions are derived for receive diversity
system employing optimum combining when both the desired
and the interfering signals are subjected to Rician fading, for the
cases of a) equal power uncorrelated interferers b) unequal power
interferers c) interferer correlation. The derived expressions
are applicable for an arbitrary number of receive antennas
and interferers and for any quadrature amplitude modulation
(QAM) constellation. Furthermore, we derive a simple closed
form expression for SER in the interference-limited regime, for
the special case of Rayleigh faded interferers. A close match is
observed between the SER, outage probability and rate results
obtained through the derived analytical expressions and the ones
obtained from Monte-Carlo simulations.

Index Terms—Optimum combining, Rician fading, SER, QAM,
Wishart matrices, Hypergeometric functions

I. INTRODUCTION

A
MONG the various diversity combining schemes, opti-

mum combining (OC) proposed in [1] maximizes the

signal to interference plus noise ratio (SINR). Performance of

OC receivers has been extensively studied for various cases

when both the desired and interfering signals are subjected

to Rayleigh fading [2]–[13]. Many practical scenarios exist

such as indoor propagation, micro-cellular channels, satellite

channels, inter-vehicular communications, etc, where both the

desired and interfering signals may have line-of-sight (LoS)

paths. Symbol error rate (SER) expressions for OC have been

derived, when either the desired signals or the interfering

signals undergo Rician fading, while the other undergoes

Rayleigh fading [2].

Rician fading has found applications even in recent times

in the study of the performance of distributed multiple input

multiple output (MIMO) with zero forcing (ZF) receivers

over correlated Rician fading channels [14], in deriving ex-

pressions for achievable rates of MIMO relay systems with

ZF processing over Rician fading systems [15] and in the

study of the performance of co-operative relaying systems

with non-orthogonal multiple access [16]. Existing 4G and

emerging 5G systems are both interference-limited. Hence,

receiver techniques like OC and MRC will play a key role

in the performance analysis of these systems [17]. However,
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SER and/or outage probability (OP) expressions when OC

is employed and when both the user and interferers undergo

Rician fading have not been studied. Further, characterization

of OC receivers, which takes into account practical scenarios

such as unequal interference power and correlation among

interferers is not present in open literature. Hence, we address

the gap in the literature with the following contributions

through this paper:

• We derive exact expressions for the Laplace transform of

SINR at the output of OC considering Rician faded users

and a) mixture of Rayleigh and Rician faded interferers,

b) only Rician faded interferers and c) only Rayleigh

faded interferers. A simple approximation, which avoids

determinant evaluation, is also derived for Rayleigh faded

interferers in an interference dominated scenario.

• We also derive exact Laplace transform expressions of

SINR for unequal power interferers and correlated in-

terferers, which occur due to correlated channel fading,

shadowing and from spatial distribution of transmitters

[18]–[20]. An extension to κ − µ faded users is also

proposed.

• Using these Laplace transform expressions, we derive

approximate SER expressions that are functions of a

double infinite series, which are truncated to finite series

with arbitrarily small truncation error. The series terms

are functions of Tricomi hypergeometric functions, which

has been used extensively in analyzing throughput and

the rate of wireless systems over various fading channels

[21]–[24].

• We also derive an expression for the moments of the

SINR η. The first two moments are then matched with

those of a beta-prime random variable to obtain approxi-

mate outage probability and rate expressions. Inferences

on the impact of the fading parameters are analytically

studied by using stochastic ordering tools on the out-

age and SER expressions. All our results are compared

with corresponding Monte-Carlo simulations and a close

match is observed. We also give an application of OC in

vehicular technology networks.

The notations used in the paper are: CN (., .) denotes com-

plex normal random variable, (.)H denotes transpose of a

matrix, E(.) denotes expectation, 1F1(.) denotes confluent

hypergeometric function, |.| denotes determinant of a matrix,

tr(.) denotes trace, CW(.) denotes a complex Wishart random

matrix, U(.) denotes Tricomi hypergeometric function, ⊗
denotes Kronecker product, Ψ(.) is the digamma function.
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II. SYSTEM MODEL

Let NR denote the number of receive antennas, NI denote

the number of interferers, c denote the NR × 1 channel from

the transmitter to the user, ci denote the NR×1 channel from

the ith interferer to the user, x denotes the desired user symbol

belonging to unit-energy quadrature amplitude modulation

(QAM) constellation and xi denote the ith interferer symbol

also belonging a unit energy QAM constellation. The received

vector is given by

y = cx +

NI
∑

i=1

cixi + n, (1)

where n is the NR × 1 additive white complex Gaussian

noise vector, with a power of σ2 per dimension i.e., n ∼
CN (0, σ2INR). The interferer channels are modeled as i.i.d.

Rician i.e., ci ∼ CN (
√
a′m′

i
, b′INR), where a′ = κi

κi+1 ,

b′ = 1
κi+1 , κi is the ratio of the power of the line of sight

component to the scattering component of the interferer signals

and m′
i

is an NR × 1 arbitrary vector with elements of unit

magnitude. The user channel is also assumed to be i.i.d Rician

i.e., c ∼ CN (
√
am, bINR), where a = κs

κs+1 , b = 1
κs+1 . Note

that, the Rician parameter κs is the ratio of the power of the

line of sight component to that of the scattering component and

m is an NR×1 mean vector with elements of unit magnitude

and uniform phase. Let E′′
I = NI×E′

I denote the total energy

of the interfering signals, where E′
I is the mean energy of

each of the interfering signals. The covariance matrix of the

interference term plus the noise term is given by

R = E′
IC

′C′H + σ2I = EICCH + σ2I, (2)

where C′ = [c1, ..., cNI ], C
′ ∼ CN (

√
a′M′, b′INR ⊗ INI ).

M′ is an arbitrary deterministic matrix obtained by stack-

ing m′
i
s, such that, M′ = [m′

1,m
′
2,m

′
3, ....,m

′
NI

] and

tr(M′M′H) = NRNI . Here, C ∼ CN (M, INR ⊗ INI ),
EI = E′

I × b′ and M =
√
a′/

√
b′M′ =

√
κiM

′. The received

SINR for the OC is given by [8]

η = EDcHR−1c, (3)

where ED is the mean energy of the user signal. In the next

two sections, we will detail the procedure to obtain the Laplace

transform expressions.

III. LAPLACE TRANSFORM FOR EQUAL POWER

UNCORRELATED INTERFERERS

A general expression for the Laplace transform Mη(s) of

SINR η can now be obtained from Theorem 1 of [2]. We

further simplify this expression for the specific case of Rician

distribution. Let n2 = max(NR, NI) and n1 = min(NR, NI)
1.

Mη(s) = (−1)NR(σ2/EI)
(NR−n1)

EΛR

[(

n1
∏

i=1

σ2/EI + λi

λ
(NR−n1)
i

)

|J|
Vn1 (ΛR)

]

, (4)

1According to definition, moment generating function (mgf) should ideally
exist in an interval around 0. But in all works including [2], Mη(s) exists
only for s < 0. So we believe that calling Mη(s) Laplace transform is a
more appropriate, as Laplace transform can be one-sided unlike mgf.

where Vn1(ΛR) is the determinant of the Vandermonde matrix

formed by eigenvalues of non-central Wishart matrix CCH .

J is an n1 × n1 matrix with elements,

Ji,j =

{

h1(s, λi)−
∑NR−n1

t=1 ht(s, 0)λ
t−1
i , j = 1,

λNR−j
i , j = 2, ..., n1,

(5)

and

ht(s, x) =
1F1(t;NR;

aNRs
xEI/ED+σ2/ED−bs )

(bsED/EI − σ2/EI − x)t
, (6)

with the series expansion of 1F1(.) given by 1F1(a; b; z) =
∑∞

z=0
(a)kz

k

(b)kk!
. Laplace transform is derived in [2] for two

cases: a) Rician signal with Rayleigh interferers b) Rayleigh

signal with Rician interferers. In the former case, (4) is

used along with the eigenvalue distribution of central Wishart

matrix to arrive at a closed form expression for the Laplace

transform. In the latter case, the fact that user signal c

exhibits Rayleigh fading and hence invariant under unitary

transformation is exploited to derive a closed form expression

for the Laplace transform. To the best of our knowledge,

there is no open literature that proves that Rician distribution

is invariant under unitary transformation. Therefore, for the

case of Rician signals with Rician interferers, we propose

to evaluate the expectation in (4), by using the eigenvalue

distribution of non-central Wishart matrix and subsequently

simplify it by using properties of hypergeometric functions.

The joint probability density function (pdf) of ordered eigen-

values (λ1 > λ2 > ... > λn1) of non-central Wishart

matrix is given by [25],

f(λ1, ..., λs) = c1|Υ|
n1
∏

i<j

(λi − λj)

n1
∏

k=1

λn2−n1

k e−λk , (7)

where Υ is a n1×n1 matrix whose (i, j)th entry ∀i = 1, ..., n1

is given by,

Υi,j =

{

0F1(n2 − n1 + 1;wjλi), j = 1, ..., L,

λn1−j
i

(n2−n1)!
(n2−j)! , j = L+ 1, ..., n1,

and

c1 =
e−tr(Ω)((n2 − n1)!)

−n1

∏n1−L
i=1 (n1 − L− i)!

∏L
i=1 w

n1−L
i

∏L
i<j(wi − wj)

.

Note that wis are the ordered L non-zero eigenvalues of the

non-centrality matrix, Ω = MHM and the series expansion

of the hypergeometric function 0F1(.) is given by 0F1(b; z) =
∑∞

k=0
zk

(b)kk!
. Substituting (7) in (4),

Mη(s) = c1(−1)NR

(

σ2

EI

)(NR−n1)

×
∫ ∞

0

(

n1
∏

i=1

(σ2/EI + λi)e
−λi

)

|J||Υ|dλ1...dλn1 .

(8)

Using Theorem 2 in Appendix of [26], we can simplify

Laplace transform in (8) to obtain,

Mη(s) = c|N|, (9)
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where

c =
e−tr(Ω)((n2 − n1)!)

−n1(−1)NR(σ2/EI)
(NR−n1)

∏n1−L
i=1 (n1 − L− i)!

∏L
i=1 w

n1−L
i

∏L
i<j(wi − wj)

,

Ni,j =























































































∫∞
0

( σ2

EI
+ x)e−xxn2−NR

0F1(n2 − n1 + 1;wix)

[h1(s, x)−
∑NR−n1

t=1 ht(s, 0)x
t−1]dx,

j = 1, i = 1, ..., L,
∫∞
0 ( σ2

EI
+ x)e−xxn2−NRxn1−i (n2−n1)!

(n2−i)!

[h1(s, x)−
∑NR−n1

t=1 ht(s, 0)x
t−1]dx,

j = 1, i = L+ 1, ..., n1,
∫∞
0

( σ2

EI
+ x)e−xxn2−NR

0F1(n2 − n1 + 1;wix)x
NR−jdx,

j = 2, ..., n1 i = 1, ..., L,
∫∞
0 ( σ2

EI
+ x)e−xxn2−NRxn1−i (n2−n1)!

(n2−i)! x
NR−jdx,

j = 2, ..., n1 i = L+ 1, ..., n1.

Further simplification of Ni,j is given in Appendix A. The

final expression for the entries of Ni,j is given in (10) and

this can be substituted in (9) to obtain the final Laplace

transform of SINR. In (10), p = σ2/EI , q = n2 − n1 + 1,

u = aNRsED/EI , v = bsED/EI − σ2/EI . Also, note that

the expression for Ni,j , for L = n1 and L = 0, which cor-

respond to all Rician faded interferers and all Rayleigh faded

interferers respectively, get significantly simplified. When we

do a Laplace expansion of the determinant |NL=0| along the

first column and substitute ζt(k) =
σ2

EI
Γ(n1 + n2 −NR + t−

k + 1) + Γ(n1 + n2 −NR + t− k + 2), we observe that the

expression for Mη(s) for the Rayleigh interferers case is the

same as the one obtained in [2, Eq. 13].

Interference-limited scenario

Recently, there has been a lot of interest in characterizing

the performance of cellular networks/wireless system in an

interference-limited scenario. Throughput and rate have been

studied in [27]–[31] and references therein, assuming the

noise can be neglected (i.e., σ2 = 0), in an interference-

limited scenario. Motivated by these works, we now show

that the Laplace expansion can be substantially simplified in

the case of Rayleigh interferers. Note that an interference-

limited scenario is possible only for NI > NR. For NR > NI

and σ2 = 0, the receive antennas can cancel every interfering

signal. If the number of non-zero eigenvalues L = 0 as is the

case for Rayleigh fading, then Mη(s) = c|Nσ2=0,L=0|, where

c = ((n2−n1)!)
−n1

∏n1
i=1(n1−i)!

(−1)NR

(

σ2

EI

)(NR−n1)

. Note that in c, we

do not neglect σ2. The expression can be further simplified as

shown in Appendix B to obtain,

Mη(s) =
(−1)NR+n1−1(σ2/EI)

(NR−n1)n2!

(n2 − n1)!
∏n1

i=1(n1 − i)!
n1
∑

i=1

(−1)i+1A(i)

∏n1

j=1(j − 1)!

(n1 − i)!(i − 1)!
, (11)

where A(i) is given in Appendix B below (50).

IV. LAPLACE TRANSFORM FOR CORRELATED

INTERFERERS AND UNEQUAL POWER INTERFERERS

In the previous section, Laplace transform expressions are

derived for the case of equal power uncorrelated interferers.

But, in practice, the interferers can have different power and/or

can be correlated. In a practical cellular system, there can be

one or more of the following: a) receiver side correlation, b)

interferer correlation, c) unequal power interferers.

The general non-central Wishart matrix W is written as

W = C′C′H , where C′ ∼ CN (M,Σ ⊗ Ψ). Here, the

NR × NR matrix Σ denotes the receive correlation and

the NI × NI matrix Ψ denotes the transmit correlation

or interferer correlation in our case. Suppose, we consider

only receive side correlation and assume that the interferer

correlation is not present, i.e., Ψ is an identity matrix. This

reduces to the non-central Wishart matrix denoted by W ∼
CW(NI ,Σ,Σ

−1MMH). This case, where Ψ is assumed to

be an identity matrix, is widely discussed in the literature. The

eigenvalue distribution of this case, i.e., a non-central Wishart

matrix with a covariance matrix Σ which is not an identity

matrix, is analyzed in [32] in terms of zonal polynomials.

However, using this eigenvalue distribution to obtain the

Laplace transform expression of η becomes mathematically

intractable. Hence, considering receive correlation is beyond

the scope of this work.

On the other hand, the cases of Ψ being a diagonal matrix,

i.e., unequal power interferers or Ψ being a full matrix,

i.e., correlated interferers, have barely received attention in

statistic literature. There do not even exist matrix variate and

eigenvalue distribution results for this case. However, we do

provide results for this case by considering the problem as two

sub-problems a) for NR ≥ NI exact results are provided, b)

for NR < NI approximate results are provided. In short, in

this section, we derive Laplace transform expressions for C′ ∼
CN (M, INR ⊗ Ψ). Note, W = C′C′H can be decomposed

into W = CΨCH , such that C ∼ CN (MΨ− 1
2 , INR ⊗ INI )

[33]. Let us first consider the case of correlated interferers.

The covariance matrix of the interference term plus the noise

term is given by

R = CΨCH + σ2I. (12)

The received SINR for the OC is given by (3). We will

consider this problem as two cases: a) NR ≥ NI , b) NR < NI .

A. NR ≥ NI

Similar to (4), the general expression for the Laplace

transform Mη(s) of SINR η is given by,

Mη(s) = (−1)NR(σ2)(NR−n1)

EΛR

[(

n1
∏

i=1

σ2 + λi

λ
(NR−n1)
i

)

|J|
Vn1(ΛR)

]

, (13)

where Vn1(ΛR) is the determinant of the Vandermonde matrix

formed by eigenvalues of non-central Wishart matrix CΨCH .

J is an n1 × n1 matrix with elements given by (5) and

ht(s, x) =
1F1(t;NR;

aNRs
x/ED+σ2/ED−bs )

(bsED − σ2 − x)t
. (14)
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Ni,j =



















































































































∑T2

k=0
wk

i

qkk!

[

∑T1

l=0
ul

(NR)l

[

− Γ(k + n2 −NR + 2)U(l + 1, l− k − n2 +NR,−v)− pΓ(k + n2 −NR + 1)

U(l + 1,−k − n2 +NR + l+ 1,−v)
]

]

−∑NR−n1

t=1
1F1(t;NR;u/v)

vt

[

pΓ(t+ n2 −NR) 1F1(t+ n2 −NR; q;wi)

+Γ(t+ n2 −NR + 1)1F1(t+ n2 −NR + 1; q;wi)

]

, j = 1, i = 1, ..., L,

(n2−n1)!
(n2−i)!

[

∑T1

l=0
ul

(NR)l

[

− Γ(n2 −NR + n1 − i+ 2)U(l+ 1, l − n2 +NR − n1 + i,−v)

−pΓ(n2 −NR + n1 − i+ 1)U(l+ 1,−n2 +NR − n1 + i+ l + 1,−v)
]

− ∑NR−n1

t=1
1F1(t;NR;u/v)

vt

[

pΓ(t+ n2 + n1 −NR − i) + Γ(t+ n2 + n1 −NR − i+ 1)

]

]

, j = 1, i = L+ 1, ..., n1,

p 1F1(n2 − j + 1; q;wi)Γ(n2 − j + 1) + Γ(n2 − j + 2)1F1(n2 − j + 2; q;wi), j = 2, ..., n1 i = 1, ..., L.
(n2−n1)!
(n2−i)! [pΓ(n2 + n1 − i− j + 1) + Γ(n2 + n1 − i− j + 2)], j = 2, ..., n1 i = L+ 1, ..., n1.

(10)

Recall that, in the case of equal power uncorrelated interferers,

we simplified the expression in (4) using the eigenvalue

distribution of the non-central Wishart matrix. But for the

case of correlated interferers, there exists no matrix variate

distribution formula in the open literature and deriving one

requires integration over the Stiefel manifold [32]. Also,

there exists no eigenvalue distribution for this case. Hence,

initially, we consider the case of Rayleigh-faded interferers,

i.e., M = 0.

1) Rayleigh faded correlated interferers: We exploit the

property that W = CΨCH has the same non-zero eigenvalues

as that of Ψ
1
2CHCΨ

1
2 , where CHC is also a Wishart matrix.

The eigenvalue distribution of Ψ
1
2CHCΨ

1
2 , is given by [34],

f(λ1, ..., λs) = c1|Υ|
NI
∏

i<j

(λi − λj)

NI
∏

k=1

λNR−NI

k , (15)

where Υ is a NI × NI matrix whose (i, j)th entry

∀i, j = 1, ..., NI is given by, Υi,j = e
−λi

rj and c1 =

(−1)
1
2NI(NI−1) |Ψ|−NR

∏NI
i<j(

1
ri

− 1
rj

)
∏NI

k=1(NR−k)!
. Also, note that ris

are the ordered NI distinct non-zero eigenvalues of Ψ. Using

(15) to simplify (13), we obtain the Laplace transform of η as

Mη(s) = (−1)NR(σ2)(NR−NI)

×
∫ ∞

0

c1

n1
∏

i=1

(σ2 + λi)|J||Υ|dλ1...dλNI . (16)

As in the case of equal power interferers, we use Theorem 2

in the Appendix of [26] and the identity
∫∞
0 e−pxxs−1dx =

p−sΓ(s) from [35]. We can solve the integral for j = 1, by

expanding the 1F1 hypergeometric series and interchanging

the integration and summation. The approach followed in

Appendix A can be followed here. The Laplace transform after

simplification becomes,

Mη(s) = c|N|, (17)

where c = (−1)NR (σ2)(NR−NI )(−1)
1
2
NI (NI−1)|Ψ|−NR

∏NI
i<j(

1
ri

− 1
rj

)
∏NI

k=1(NR−k)!
and N is

given by

Ni,j =























































∑∞
l=0

(aNRsED)l

(NR)l
(σ2|bsED − σ2|−l

U(1, 1− l, ri|bsED − σ2|) + |bsED − σ2|−l+1

U(2, 2− l, ri|bsED − σ2|))

−∑NR−NI

t=1

1F1(t;NR;
aNRs

σ2/ED−bs
)

(bsED−σ2)t (σ2rtiΓ(t)

+rt+1
i Γ(t+ 1)], j = 1, i = 1, ..., NI ,

σ2rNR−j+1
i Γ(NR − j + 1) + rNR−j+2

i

Γ(NR − j + 2), j = 2, ..., NI i = 1, ..., NI ,
(18)

where ri, 1 ≤ i ≤ NI are the eigenvalues of Ψ. We

can truncate the converging infinite series for j = 1 at a

finite value, with an arbitrarily small truncation error. The

convergence proof is similar to the one given in Appendix A.

Note that this is an exact Laplace transform expression and

is novel for the case of Rayleigh faded correlated interferers

with Rician faded users. Earlier works like [2], considers only

equal power uncorrelated interferers, while recent works like

[10] consider only Rayleigh faded user. An approximation

which works for σ2 ≈ 0 is also derived in Appendix D. The

expression is as follows:

Mη(s) ≈ c

NI
∑

i=1

(−1)i+1B(i)r−NR+NI−2
i |V i(r)|, (19)

where c = (−1)NR(σ2)(NR−NI )(−1)
1
2
NI (NI−1)|Ψ|−NR

∏NI
i<j(

1
ri

− 1
rj

)
∏NI

k=1
(NR−k)!

, A(i) and

|V i(r)| are given in Appendix D.

2) Rician faded correlated interferers: For the case of

Rician faded interferers, the above approach is not possible

even for NR ≥ NI . This is because we have to use the zonal-

polynomial based eigenvalue distribution from [32] to simplify

the Laplace transform, which is not mathematically tractable.

Nevertheless, we arrive at a mathematically tractable solution,

wherein we propose to approximate the non-central Wishart
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matrix by a central Wishart matrix through moment matching

and then use the derived expression given in (17).

The expected value of any matrix of the form AHA, if

A ∼ CN (M, INI ⊗ INR), with NR degrees of freedom,

is given by E[AHA] = NR + MHM. This implies that

for W = Ψ
1
2CHCΨ

1
2 , the first moment is given by,

E[W] = NRΨ + Ψ1/2MHMΨ1/2. The first moment of

any central Wishart matrix W1 ∼ CW(NR,Φ) with the

same degree of freedom NR, is given by E[W1] = NRΦ.

When the first moments of the W and W1 are equated, we

obtain Φ = Ψ+ 1
NR

Ψ1/2MHMΨ1/2. We have now obtained

a central Wishart approximation of the non-central Wishart

matrix. Hence, W can be approximated as a central Wishart

CW(NR,Ψ+ 1
NR

Ψ1/2MHMΨ1/2). A similar approximation

is performed in [36]. Now that we have a central Wishart

matrix, the expressions derived for the case of Rayleigh faded

interferers hold, but with the matrix Ψ in (17) replaced by

Ψ+ 1
NR

Ψ1/2MHMΨ1/2.

3) Unequal power interferers: All the above analysis holds

for a general Ψ. For the case of unequal power interferers, Ψ

is just a diagonal matrix, with the interferer powers occupying

the diagonal. Hence, the Laplace transform expressions (17)

can be used for unequal power Rayleigh-faded and Rician-

faded interferers respectively.

B. Rayleigh faded correlated interferers for NI > NR

For the case of Rayleigh-faded correlated interferers, for

NI > NR, the covariance matrix of the interference term

plus the noise term is given by R = CΨCH + σ2I. Here,

C ∼ CN (0, INR ⊗ INI ). From [37], the distribution of

W = CΨCH is the same as that of
∑NI

i=1 λiWi, where

λi are the eigenvalues of Ψ and Wi ∼ CW(1, INR). Though

this method works for NR ≥ NI , we can use the analysis

given in the previous subsection for determining the Laplace

expansion.

From [38], the sum of central Wishart matrices can be

approximated by another central Wishart matrix. In our case,

from [38], W ≈ S
∑NI

i=1 λi

ps
, where S ∼ CW(ps, INR) and

ps =

[

(
∑NI

i=1 λi)
2

∑NI
i=1 λ2

i

]

rounded to the nearest integer. Note that,

this has reduced to a case of a Wishart matrix with an identity

covariance matrix. Hence, the Laplace transform expression

derived for the case of equal power Rayleigh interferers, i.e.,

expressions corresponding to L = 0 given in Section III, can

now be used. Also, the determinant simplification that has been

derived in the case of equal power Rayleigh faded interferers

holds for this case.

V. SER EXPRESSIONS

Using the standard assumption that the contribution of the

interference and the noise at the output of optimum combiner,

for a fixed η, can be well-approximated to be Gaussian as in

[39] and [40] and references therein, the probability of symbol

error for an M-ary square QAM constellation is given by [41],

Pe ≈ k1Q(
√

k2η)− k3Q(
√

k2η)
2, (20)

where k1 = 4
(

1 − 1√
M

)

, k2 = 3
M−1 , k3 =

k2
1

4 and

the Q-function is given by Q(x) = 1
2π

∫∞
x
e−u2/2du. The

assumption that the contribution of the interference and the

noise at the output of OC, for a fixed η, is Gaussian, is valid

even when the number of interferers NI is small [40] and

such a system model assumption is made in a number of

papers [8], [42], [43] to derive the SER expression. Using the

approximation Q(x) ≈ 1
12e

− 1
2x

2

+ 1
4e

− 2
3x

2

, one can write Pe

as [44], Pe ≈ ∑5
l=1 ale

−blη, where a1=k1

12 , a2=k1

4 , a3=−k3

144 ,

a4=−k3

16 , a5=−k3

24 , b1=k2

2 , b2= 2k2

3 , b3=k2, b4= 4k2

3 and b5= 7k2

6 .

The average SER obtained by averaging Pe over all channel

realizations is,

SER ≈ Eη[Pe] = Eη[

5
∑

l=1

ale
−blη] =

5
∑

l=1

alMη(s)|s=−bl ,

(21)

where Mη(s) is the Laplace transform of η and Eη denotes

expectation over SINR η. Now, the SER approximations can be

directly obtained by substituting the Laplace transform expres-

sions in the above equation. Wherever the Laplace transform

is simplified to circumvent the determinant expansion, we get

simplified SER expressions. For example, for an interference-

limited scenario (NI > NR and σ2 = 0), by substituting

n1 = NR and n2 = NI , the SER becomes,

SER ≈
5
∑

l=1

al
(−1)NR+1NI !

(NI −NR)!
∏NR

i=1(NR − i)!

×
NR
∑

i=1

(−1)i+1A(i)

∏NR

j=1(j − 1)!

(NR − i)!(i− 1)!
|s=−bl . (22)

Ours is the first work to obtain SER expression in an

interference-limited scenario, for Rayleigh faded interferers in

a closed form. All existing works, so far, require an explicit

evaluation of the determinant. Further, the expression derived

also gives an approximation of SER, for NI > NR for very

low noise values σ2 ≈ 0. If we substitute n1 = NI and

n2 = NR in (9) and ignore the σ2 term inside the determinant,

we also obtain an approximation for the SER as,

SER ≈
5
∑

l=1

al
(−1)NR+1(σ2/EI)

(NR−NI)NR!

(NR −NI)!
∏NI

i=1(NI − i)!

×
NI
∑

i=1

(−1)i+1A(i)

∏NI

j=1(j − 1)!

(NI − i)!(i− 1)!
|s=−bl . (23)

Note that the dependence of c term on σ2 is not present for

NI > NR. On the other hand, the σ2 term exists in c term for

NR > NI . Note that SER expressions obtained for Rayleigh

interferers in [2] involve not only an explicit evaluation of

determinants but also numerical integration, while results

here require neither. For the case of Rayleigh/Rician faded

correlated interferers and NR > NI , we can substitute (17) in

(21) to get the SER approximations. For this case also, we have

a Laplace expansion in (19) that doesn’t involve determinant

evaluation. This approximation works very well when σ2 is

actually small or when interferer powers are large compared



6

to σ2. This can be further substituted in (21), to obtain the

approximate expression for SER as,

SER ≈
5
∑

l=1

al(−1)NR(σ2)(NR−NI)(−1)
1
2NI(NI−1)|Ψ|−NR

∏NI

i<j(
1
ri

− 1
rj
)
∏NI

k=1(NR − k)!

×
NI
∑

i=1

(−1)i+1B(i)s=−blr
−NR+NI−2
i |V i(r)|. (24)

In case of correlated or unequal power Rayleigh faded in-

terferers and NI > NR, we have discussed an approximate

expression for Laplace transform in Section III.B, which can

be used to determine the SER expressions. In case, of corre-

lated or unequal power Rician faded interferers for NI > NR,

it is mathematically intractable to give an Laplace transform

expression and hence derive an SER expression. Nevertheless,

the existing SER expressions derived for the case of equal

power uncorrelated interferers can be used as an upper bound.

If we consider all the interferers to have the same power as

that of the maximum-power interferer, our expression gives an

upper bound for the actual SER, i.e., our expressions give the

worst case SER. Similarly, the expressions for the uncorrelated

case gives the worst case SER, i.e., a good upper bound on

for the actual SER of correlated interferers. This is because,

correlated interferers cause partial interference alignment [10]

and hence the receive antennas can cancel the interferers better,

leading to a lower SER when compared to the uncorrelated

case.

VI. OUTAGE AND RATE APPROXIMATIONS

Apart from SER, outage probability and rate are the other

performance metrics that are useful in characterizing the

performance of any wireless system . In the preceding sec-

tion, we used the exponential approximation to determine

the approximate SER at the output of OC. But, no such

straightforward method exists for determining expressions for

outage probability and rate. This is so because expressions

for the pdf of the SINR or signal to interference ratio (SIR)

are mathematically intractable to derive. However, we, in

this section, detail a moment-matching method to determine

approximate expressions for outage probability and rate. To

the best of our knowledge, ours is the first work to obtain

even approximate expressions for outage probability and rate.

For doing this, we will first determine the exact moments of

the SINR.

A. Moments of Rician-Rician

The lth moment of SINR for Rician faded user and Rician

faded interferers is given by,

µRic−Ric
l =

dl

dsl
Mη(s)|s=0 = αRic

l c

n1
∑

k=1

(−1)k|Yk|dl

where c = e−tr(Ω)((n2−n1)!)
−n1

∏n1
i<j(wi−wj)

(−1)NR(σ2/EI)
(NR−n1), dl is

given by (57), Yk is the matrix formed by omitting the kth row

and 1st column of the matrix Yi,j =
σ2

EI
1F1(n2 − j+1;n2 −

n1+1;wk)Γ(n2−j+1)+Γ(n2−j+2)1F1(n2−j+2;n2−n1+

1;wi) and αRic
l = bl

∑l
k=0

(

l
k

) (aNR/b)k

(NR)k
. The derivation is

given in Appendix C and is very similar to the one given in [2].

Though we have derived the moments for the uncorrelated case

in the presence of noise, similar moment expressions can be

obtained for an interference-limited scenario or for Rayleigh

faded correlated/unequal power interferers. These derivations

are not given here due to space constraints.

B. Moment matched approximation

Inspired by the simplicity of the results in [6], we now use

the idea of moment matching to approximate the SINR/SIR

random variables for our case too. If we had Rayleigh faded

users and interferers as in the case of [6], the SIR would

be distributed according to a beta-prime distribution, because

the ratio of two gamma random variables follow a beta-prime

distribution. We propose to match the first two moments of the

SINR/SIR with the moments of the beta-prime distribution. As

an example, let us consider the interference-limited scenario,

i.e., NI > NR and σ2 = 0. The lth moment is given by

µl =
e−tr(Ω)((NI −NR)!)

−NR

∏NR

i<j(wi − wj)
(−1)NR

NR
∑

k=1

(−1)k+1

× (−1)bll!(
ED

EI
)l

l
∑

m=0

(

l

m

)

(aNR

b )mΓ(NI −NR − l + 1)

(NR)m

× 1F1(NI −NR − l + 1, NI −NR + 1, wk)|Yk|, (25)

where Yi,j = Γ(NI − j+2)1F1(NI − j+2;NI −NR+1;wi)
and Yk is the matrix Y with kth row and first column removed.

The first two moments µ1 and µ2 of the SIR can be matched

with the first two moments α
β−1 and

α(α+1)
(β−1)(β−2) , respectively,

of a beta prime distribution with parameters α, β. In other

words, α
β−1 = µ1 and

α(α+1)
(β−1)(β−2) = µ2. This implies that

β =
µ2
1 − µ1 − 2µ2

µ2
1 − µ2

(26)

and

α = µ1(β − 1). (27)

Since the first and second moments do not involve any infinite

summations, the parameters α and β are obtained in closed

form. These parameters can be substituted in the cumulative

distribution function (CDF) of a beta-prime distributed random

variable, say Z , with parameters α and β given by [45, Eq 2]

P0(Z < z) =
(β)αz

α
2F1(α+ β, α, α+ 1,−z)

Γ(α+ 1)
(28)

to obtain the closed form outage expression for OC. Here,

2F1(.) denotes the Gauss hypergeometric function [46, 15.1.1].

Similarly using the pdf of beta-prime distribution given by

f(z) = Γ(α+β)
Γ(α)Γ(β)z

α−1(1 + z)−α−β , one can obtain the ap-

proximate rate as

R ≈
∫ ∞

0

log2(1 + x)
Γ(α+ β)

Γ(α)Γ(β)
xα−1(α+ x)−α−βdx

=
ψ(α+ β)− ψ(β)

ln2
, (29)
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where ψ(.) is the di-gamma function [46, 6.3.1]. The sec-

ond equality is obtained by using the integral identity [35,

4.292.14].

Here, we have considered the case of all interferers to be

Rician faded. We can even consider the case of a mix of

Rayleigh faded and Rician faded interferers, especially single

rank non-centrality matrix MMH or the case of correlated

interferers and do a similar moment matching to obtain the

approximate outage probability and rate expressions.

C. Analysis using stochastic ordering

Now, we can study the impact of the Rician parameters

on the approximate expressions using stochastic ordering.

According to [47, Theorem 1.A.12], for two random variables

X and Y with pdf f and g, respectively, if S−(g − f) = 1
and the sign sequence is −,+, then X ≤st Y or in other

words P (X ≤ x) ≥ P (Y ≤ y), i.e., outage probability of

X is greater than that of Y . Here S− denotes the number of

sign changes and ≤st denotes stochastic ordering [47, 1.A.1].

In case we assume f and g to be beta-prime with parameters

(α, β+δ) and (α, β), we can easily prove that the sign change

from − to + occurs at z =
(

(β+δ)α
(β)α

)
1
δ − 1, where (x)y

denotes the Pochhammer symbol [46, 13.1.2]. This implies

that, P0 given by (28), evaluated using parameter β + δ is

greater than P0 evaluated using the parameter β. Similarly,

we can also prove P0 evaluated using the parameter α+ δ is

lesser than P0 evaluated using the parameter α. This method is

also adopted in [48]. Since, it is intractable to directly analyze

the approximate SER expressions, we’ll introduce a Laplace

ordering result to connect the variations in outage probability

with variations in SER. Let X and Y be two non-negative

random variables such that

E[exp(sX)] ≥ E[exp(sY )], ∀s < 0. (30)

Then X is said to be smaller than Y in the Laplace transform

order denoted by X ≤Lt Y . According to [47, Theorem

5.A.6], X ≤St Y , then X ≤Lt Y . In other words, P (X ≤
x) ≥ P (Y ≤ y) implies E[exp(sX)] ≥ E[exp(sY )]. Recall

that in the probability of error is given by (20), if we neglect

the second term, which is usually small in magnitude, SER,

by exponential approximation of Q-function, is given by

SER ≈ Eη[

2
∑

l=1

ale
−blη], (31)

where a1=k1

12 , a2=k1

4 , b1=k2

2 and b2= 2k2

3 . Now if P (X ≤ x) ≥
P (Y ≤ y), then by the preceding Laplace ordering result,

SER for X is greater than that for Y . Though, these results

actually pertain to the moment-matched η and not the actual

η, we can still get some approximate trends in SER based

on the variations in outage probability. We also can make the

following inferences about variation of outage probability and

SER with respect to fading parameters:

• I1) We can observe that an increase in EI , decreases µ2

and µ1, which in turn increases β. Similarly, an increase

in EI decreases α. According to the previous stochastic

ordering result, an increase in β and a decrease in α

increases the outage probability. By the Laplace ordering

result, the SER also increases.

• I2) It is also clear that an increase in Rician parameter of

the user κ decreases µ2, keeping µ1 constant. This in turn

increases α. Also, β increases very negligibly. Though,

the stochastic ordering result cannot be used directly if

both α and β increases, the increase in β is actually

negligible. Hence, the outage probability decreases with

increase in α due to an increase in κ. Also, by the Laplace

ordering result, the SER decreases.

• I3) Also, an increase in NR or a decrease in NI decreases

β and increases α. This in turn decreases the outage

probability.

VII. A SHORT EXTENSION TO κ− µ FADED USER AND

RAYLEIGH FADED INTERFERERS

Recently there has been a lot of interest in studying the

effect of a general fading model such as the κ − µ fading

model for a LoS scenario. Moreover, κ−µ fading also includes

Rician, Nakagami-m, Rayleigh and one-sided Gaussian as its

special cases [49]. Given, the fairly complicated nature of

these general fading distributions and due to unavailability of

a matrix model for these distributions, it is mathematically

intractable to determine any expressions considering κ − µ
fading in the interferers. However, it is possible to consider

κ−µ fading in the user and Rayleigh fading in the interferers

and determine exact OP and approximate SER expressions.

Recall that the SINR for OC is given by [2], η = ED

EI
cHR−1c,

where R =
∑NI

i=1 cic
H
i , where the user c is κ− µ faded and

the interferers ci are Rayleigh faded. We consider only the

case of NI > NR and neglect noise in the analysis. Note that,

if noise is neglected, R is a complex Wishart matrix, i.e.,

R ∼ CWNR(NI , INR). From [50], it is known that for any

R ∼ CWm(n, Im), such that n ≥ m SRSH ∼ CWm(n, Im)
for any m × m unitary matrix S. Let V = SRSH and S

be a unitary matrix such that, SH = (SH
1 , (c

Hc)−
1
2 c) where

S1 is m ×m − 1 matrix and c ∈ Cm. From [50], we obtain

cHR−1c = (cHc)vmm, where the elements of V−1 = (vjk).
Letting V = LLH , where L = (lij) is a complex lower

triangular matrix with positive diagonal elements, we get,

vmm = l−2
mm. Using this result for the case m = NR,

η =
ED

EI
cHR−1c =

ED

EI
(cHc)l−2

NRNR
=
ED

EI

y

x
, (32)

where y = cHc and x−1 = l−2
NRNR

and are independent.The

pdf of η = (cHc)
l2NRNR

ED

EI
= y

x
ED

EI
is can now be obtained by

solving the integral using using (42) as,

f(η) =
EI

ED

NRµ
e−NRκµ

Γ(NRµ)Γ(a)
(µ(1 + κ))NRµηNRµ−1Γ(NRµ+ a)

× (µ(1 + κ)
EI

ED
η + 1)−NRµ−a

× 1F1(NRµ+ a,NRµ,
NRµ

2κ(1 + κ) EI

ED
η

µ(1 + κ) EI

ED
η + 1

).

(33)
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Though there are existing results which derive the CDF of this

ratio [51], [52], obtaining the pdf of SIR η by differentiating

these CDF expressions is not straightforward. The outage

probability for our case can be obtained by substituting β = a,

λ = 1, µ = NRµ, ra = EI

ED
and T = T

NR
in [51, Eq.11], as,

P (η < T ) = AΨ1(a+NRµ, 1; a+ 1, NRµ;

1

µ(1 + κ)T EI

ED

,
NRµ

2(1 + κ)T EI

ED

µ(1 + κ)T EI

ED

), (34)

where A = 1 − e−NRκµ Γ(NRµ+a)
Γ(a+1)Γ(NRµ)

(µ(1+κ)T
EI
ED

)NRµ

(1+µ(1+κ)T
EI
ED

)a+NRµ

and Ψ1 is the confluent Appell function [51].

We apply the following identities from [46], [53] sequentially

to simplify (33): a) 1F1(p + a, p, z) = ez 1F1(−a, p,−z),
b) 1F1(−a, p,−z) = a!

(p)a
Lp−1
a (−z), c) Lp−1

a (−z) =
Γ(a+p)

a!

∑a
k=0

(−a)k(−z)k

Γ(k+p)k! and d) (−a)k = a!
(a−k)!k! for p ∈

R
+ and a ∈ Z

+. Note, in our case p = NRµ and a ∈ Z
+.

Finally, using the Taylor series expansion for the exponen-

tial term and the identity for Laplace expansion Mη(s) =
∫∞
0
e−sηf(η)d(η), we obtain

Mη(s) =
e−NRκµΓ(NRµ+ a)

Γ(NRµ)Γ(a)

a
∑

k=0

a!(NRµκ)
k

(a− k)!k!(NRµ)k

×
∫ ∞

0

e−sη
∞
∑

l=0

( EI

ED
µ(1 + κ))NRµ+k+l(NRµκ)

l

l!

× ηNRµ+k+l−1(1 +
µ(1 + κ)EIη

ED
)−NRµ−a−l−kdη.

The summation and integration can be interchanged by the

direct application of Tonelli’s theorem [54], since fl(η) =

( EI

ED
µ(1+κ))NRµ+k+l (NRµκ)k+l

l! ηNRµ+k+l−1(µ(1+κ) EI

ED
η+

1)−NRµ−a−l−k > 0. We now use the integration identity
∫∞
0
e−pxxq−1(1 + ax)−vdx = a−qΓ(q)U(q, q + 1 − v, p/a)

from [35], to obtain the Laplace expansion of η as,

Mη(s) =
e−NRκµΓ(NRµ+ a)

Γ(NRµ)Γ(a)

a
∑

k=0

a!(NRµκ)
k

(a− k)!k!(NRµ)k

×
∞
∑

l=0

(NRµκ)
lΓ(b)

l!
U

(

b, 1− a,
s

µ(1 + κ) EI

ED

)

,

(35)

where b = NRµ + k + l. Substituting the expression for the

Laplace expansion from (35) in (21), we obtain the average

SER as

SER =

5
∑

m=1

am
e−NRκµΓ(NRµ+ a)

Γ(NRµ)Γ(a)

a
∑

k=0

a!

(a− k)!k!(NRµ)k

×
∞
∑

l=0

(NRµκ)
k+lΓ(b)

l!
U

(

b, 1− a,
bm

µ(1 + κ) EI

ED

)

,

(36)

where U(.) is the Tricomi Hypergeometric function [22]. Since

U(a + 1, c+ 1, x) < −1
c U(a, c, x) for a > 0 > c and x > 0

from [55], we obtain

U(b, 1− a,
bm

µ(1 + κ) EI

ED

)

<

U(NRµ+ k, 1− a− l, bm
µ(1+κ)

EI
ED

)

(NI −NR)l
.

Also, since U(m,n − k, x) decreases monotonically with

k [22],
∑∞

l=0
(NRµκ)k+l

l! Γ(b)U(b, 1 − a, bm
µ(1+κ)

EI
ED

) <

∑∞
l=0

(NRµκ)k+l

l! Γ(b)

U(NRµ+k,NR−NI ,
bm

µ(1+κ)
EI
ED

)

(NI−NR)l
which is a

converging series. Hence the infinite summation can be trun-

cated to a finite series with arbitrarily low truncation error.

VIII. NUMERICAL RESULTS

The derived SER expressions are verified using Monte-

Carlo simulations. The total interference power is denoted as

E′′
I , from which average interference power per interferer is

obtained as E′
I = E′′

I /NI . The mean energy of the received

signal, ED , is taken to be unity without loss of generality.

SIR is given by ED/E
′′
I . The determinant of N matrix whose

entries are given by (10) is determined with the infinite

summation truncated to T1 = T2 = 70. For a SER of

10−5, with T1 = 100 and T2 = 100 terms, the numerical

evaluation completes in 40 seconds2. Also, for Rayleigh faded

interferers, the expressions have only a single infinite series,

which takes a maximum of 2 seconds for evaluation. On

the other hand, Monte-Carlo simulations take close to 500

seconds. By substituting the determinant of N matrix in (9),

the Laplace transform is evaluated for s = bl, ∀l = 1 to 5.

These Laplace transform values are substituted in (21) and

theoretical SER is calculated for values of signal to noise

ratio (SNR) in the range 5 dB to 25 dB. For the Monte-Carlo

simulation, the deterministic matrix M′ is first obtained with

unit magnitude and uniform phase, satisfying the condition

tr(M′M′H) = NRNI . This matrix is fixed during a set of

simulations.

For the case of equal power and uncorrelated interferers,

a close match between the theoretical and simulated SER is

observed in Fig. 1(a) and Fig. 1(b). The exponential approx-

imation Q(x) ≈ 1
12e

− 1
2x

2

+ 1
4e

− 2
3x

2

, from [44] provides a

very tight upper bound for values of x > 0.5 and the bound

becomes tighter as x increases. Since, for NI > NR, the

average SINR is much lower when compared to the case

NR > NI , we can observe a small mismatch between the

theoretical and the simulated SER in Fig. 1(b). Also, the

SER approximation plot in Fig. 1 is tight beyond 15 dB.

For Rayleigh interferers, i.e., κI = 0, the SER approximation

computed using (23), match with the simulation results at high

SNR, for NR > NI as seen from Fig. 1(a) and Fig. 1(a). We

can also see from Fig. 1 that, when the interference power

dominates the noise power, as is the case when E′′
I = −1 dB,

the SER approximation is tight even at 15 dB SNR.

2in MATLAB R2015b run in an iMac with 2.8GHz with intel i5 core and
8 GB RAM in Sierra OS
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Similar Monte-Carlo simulations are performed for the case

of correlated and/or unequal power interferers. The difference

is that, random covariance matrix R of the interference terms

plus the noise term is now calculated using (12). Also note

that the determinant of N matrix whose entries are given

by (18). From Fig. 2(a), we can observe that for correlated

Rayleigh faded interferers, SER computed by means of (17)

and (18) matches the simulated values. We can also see that

the approximation for σ2 ≈ 0 computed using (24) gives

good match with the simulated results for higher values of

SNR. We consider exponential correlation between interferers

[10], i.e., Ψ(i, j) = ρ|i−j| and 0 ≤ ρ ≤ 1, where Ψ is the

interferer covariance matrix. Similar results can be obtained

for unequal power interferers and is not give here due to

space constraints. In Fig. 3(a), we studied the case of mix

of Rayleigh and Rician faded unequal power interferers. Here

also, the SER approximation given by (24) gives a good match

to the simulated SER for high SNR values. For Rayleigh

faded interferers with unequal power and NI > NR, the

approximation in Section IV.B gives a fairly good match to

the theoretical values as seen from Fig. 3(b), as long as the

interferer powers do not vary widely.

It is known that OC trades off the effect of noise and

interference at the receiver. In the absence of noise it max-

imizes the average SIR and specializes to a ZF receiver,

which is the ideal receiver for interference cancellation. In the

presence of noise, OC balances between noise cancellation

and interference cancellation. This results in a sub-optimal

average SIR. A better SIR translates to a lower SER and

hence we observe a lower SER for both 4-QAM and 16 QAM,

for NI > NR and σ2 = 0. This is captured by the fact

that SER approximation that assumes σ2 = 0 forms a lower

bound for the SER values of NI > NR with non-zero σ2.

This can be observed in Fig. 1(b). Also, note that the bound

becomes tighter for large values of SNR. In this regime, OC

mimics the performance of ZF. In the case of NR > NI , the

approximation is ad-hoc and computationally less intensive

due to the absence of determinant evaluation.

The variation of the outage probability is shown in Fig.

4(a) for changes in NR and NI . As discussed in I3, the

outage probability decreases with an increase in NR or a

decrease in NI . Also, as discussed in I1, the outage probability

decreases with a decrease in EI . In Fig. 4(b), κI , the Rician

parameter of the interferers is varied. We can observe that the

outage probability decreases with a decrease in κI . Finally, the

Monte-Carlo simulations and approximate expressions for rate

are shown in Fig. 5. We can observe that the rate increases

with an increase in NR or SNR or a decrease in NI . Finally,

from Fig. 6 and 7, we can observe that the OP expressions

(34) and SER expressions (36) for κ− µ fading users match

the simulations.

IX. APPLICATIONS

Device-to-device (D2D) communication enables a pair of

closely located mobile users to establish a direct link for

their user-plane traffic without going through the entire net-

work infrastructure, while reusing the spectrum allocated for
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traditional cellular communication. Due to the existence of

a LoS component, it is appropriate to model D2D links

by Rician fading. In fact, in [56] and references therein,

several performance metrics were analyzed in Rician fading

D2D systems. In D2D underlying cellular networks, strong

interference may occur between cellular and D2D links sharing

the same spectrum. To mitigate the interference, many resource

allocation schemes have been proposed in [56]–[58]. Similar

to [56], we consider a D2D-enabled communications network,

where M single-antenna cellular users (CUE) perform high-

capacity uplink cellular communications with the base station

(BS) with NR antennas. In [56]–[58], only one antenna at BS

is considered. But it makes practical sense to consider the BS

to be equipped with more than one antenna. Also, consider K
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pairs of single-antenna users doing local data exchange in the

form of D2D communications. These are denoted as DUEs or

D2D users. The K DUEs can reuse the M sub-channels in the

underlay mode. Since the BS is equipped with more than one

antenna, the interference at the BS can be cancelled by means

of OC.

Let hm,B denote the NR × 1 Rician channel (with Rician

factor κm,B) from the mth CUE to the BS. hk denotes the

channel fast fading coefficient between the kth DUE pair.

Due to the presence of strong LoS component between the

D2D receiver (Rx) and transmitter (Tx), hk is assumed to

be Rician with Rician factor κ as in [56]. hk,B denote the

NR × 1 interferer channel fast fading coefficients from the

kth DUE Tx to BS. hm,k denotes the channel fast fading

coefficient (with Rician factor κm,k) from the mth CUE to
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the the Rx of the kth DUE. This alone is assumed to be

Rayleigh faded as in [56]. Also, let sm,B , sk, sk,B and sm,k

denote the corresponding slow fading coefficients. Since we

consider a high-speed scenario where fast-fadings are difficult

to estimate and only slow-fadings are available, we can assume

the slow-fadings to be known constants and the fast-fadings to

be random variables. Denote the CUE set as M = {1, ...,M}
and the DUE set as K = {1, ...,K}. The SINR at the output

of OC at the BS is

γcm = P c
msm,Bh

H
m,B(

∑

k∈K
ρm,kP

d
k sk,Bhk,Bh

H
k,B + σ2I)−1hm,B

and the SINR at the the kth D2D Rx is

γdk =
P d
k sk|hk|2

∑

m∈M ρm,kP c
msm,k|hm,k|2 + σ2

, (37)

where P c
m and P d

k denote transmit powers of the mth CUE

and the kth DUE, respectively, σ2 is the noise power and

ρm,k is the spectrum allocation indicator with ρm,k = 1
indicating the kth DUE reuses the spectrum of the mth CUE

and ρm,k = 0 otherwise. The ergodic capacity of the mth

CUE is given by Cm = E[log2(1+γ
c
m)]. We maximize the sum

ergodic capacity of M CUEs while guaranteeing the minimum

reliability for each DUE. In addition, we set a minimum

capacity requirement for each CUE. The reliability of DUEs

is guaranteed through controlling the probability of outage

events, where its received SINR γdk is below a predetermined

threshold γd0 . Hence the radio resource allocation problem in

vehicular networks is formulated as [56], [57]

max
ρm,kP c

m,Pd
k

∑

m∈M
E[log2(1 + γcm)],

s.t. E[log2(1 + γcm)] ≥ rc0, ∀m ∈ M,

P r{γdk ≤ γd0} ≤ p0, ∀k ∈ K,
0 ≤ P c

m ≤ P c
max, ∀m ∈ M and 0 ≤ P d

k ≤ P d
max, ∀k ∈ K,

∑

∀m∈M
ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈ M,

∑

∀k∈K
ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K, (38)

where rc is the minimum capacity requirement of the rate

intensive CUEs and γd0 is the minimum SINR needed by

the DUEs to establish a reliable link. p0 is the tolerable

outage probability of the D2D links. P c
max and P d

max are the

maximum transmit powers of the CUE and DUE, respectively.

The last two constraints mathematically model the assumption

that the spectrum of one CUE can only be shared with a single

DUE and one DUE is only allowed to access the spectrum of

a single CUE.

The power allocation problem can be written for kth DUE

sharing the band of the mth CUE as

max
P c

m,Pd
k

E[log2(1 + γcm)],

s.t. Pr{γdk ≤ γd0} ≤ p0,

0 ≤ P c
m ≤ P c

max and 0 ≤ P d
k ≤ P d

max. (39)

Since the D2D links are Rician and the link between the the

CUE and Rx of the D2D link is Rayleigh as in [56], the

reliability constraint of the kth DUE, Pr{γdk ≤ γd0} ≤ p0,

is given by [56, Eq 6] P (γdk ≤ γd0 ) = θ
θ+1e

− κ
θ+1 = f(θ),

where θ =
γd
0P

c
msm,k

Pd
k sk

. From [56, Eq.9], we can obtain an

upper bound of P c
m as P c

m ≤ skθ0
sm,kγd

0
P d
k , where θ0 = f−1(p0)

and β = skθ0
sm,kγd

0
. Using the same reasoning as in [56], the

optimal power allocation is obtained as

(P c∗

m , P d∗

k ) =

{

(P c
max,

P c
max

β ), ifβ >
P c

max

Pd
max

,

(P d
maxβ, P

d
max), ifβ <

P c
max

Pd
max

.
(40)

With the optimal power allocations (P c∗

m , P d∗

k ), under each

given channel allocation, we aim to maximize the cellular rates

by searching over all possible channel allocation schemes.

We first determine the ergodic capacity of mth CUE when

it shares spectrum with kth DUE is Cm,k for a power

allocation (P c∗

m , P d∗

k ). Since, OC is used at the BS, the rate

Cm,k(P
c∗

m , P d∗

k ) = E[log2(1+ γcm
∗)], where γcm

∗ is the SINR

at the output of OC for the power allocation (P c∗

m , P d∗

k ). This

rate can be easily determined by means of the rate expressions

(29). Without the rate expressions, it wouldn’t have been

possible to consider an interference cancellation scheme like

OC at the BS. To guarantee the minimum transmission rates

for CUEs and DUEs, we have to exclude those CUE-DUE

pairs unable to meet the rate requirements even with the

optimal transmitting powers. This condition is interpreted as

ρm,k = 0 if the pairing of CUE m with DUE k violates the

rate constraints. If for one such pair (m, k), Cm,k(P
c∗

m , P d∗

k )
is lesser than the minimum rate rc0, then the rate is replaced by

−∞. The exact procedure is as discussed in [57], [58]. Hence,

C∗
m,k =

{

Cm,k(P
c∗

m , P d∗

k ), if Cm,k(P
c∗

m , P d∗

k ) ≥ rc0,

−∞, otherwise

(41)

The spectrum allocation problem becomes

max
ρm,k

∑

m∈M
C∗

m,k,

∑

∀m∈M
ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈ M,

∑

∀k∈K
ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K.

This is a maximum weight bipartite matching problem and

can be solved by the Hungarian method as in [56]–[58].

Simulation results are presented to evaluate the performance

of joint power and channel allocation scheme. The simulation

parameters are as follows: M = 40, N = 20, rc0 = 0.1
bps/Hz, γ0 = 5dB, p0 = 0.1, P c

max = P d
max = 25 dBm and

κm,B = κk,B = 0.1. BS antenna gain is 8dBi and the user

antenna gain is 3 dBi. The noise power is σ2 = −114 dBm.

The loss exponents of the links to the BS and user antenna

are 3.76 and 2.27, respectively and the shadow fading standard

deviations are 8 dB and 3dB, respectively. It can be observed

from the Table I that the sum rate in bps/Hz increases with

increase in NR and the Rician factor κ between the D2D pairs.

Also, the utility of our expressions lies in the fact that it can be

used in any application, where the user and interferers undergo
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κ Sum rate of CUE for NR = 3 Sum rate of CUE for NR = 2
0 815.6465 780.0624
0.5 816.7338 781.1835
1 818.1748 782.7159
2 819.3933 783.8709
3 819.4748 783.9478

TABLE I: Sum rate of CUE in bps/Hz

Rician fading and OC is employed such as this application and

Vehicular Ad-hoc Network (VANET).

X. CONCLUSIONS

Approximate SER, outage probability and rate expressions

have been derived for OC for the case of Rician faded users

and a) Rician faded interferers, b) mixture of Rician and

Rayleigh faded interferers and c) Rayleigh faded interferers

when the interferers are correlated/uncorrelated and have equal

or unequal powers. SER is also derived for an interference-

limited scenario and the expressions obtained are significantly

simpler than the existing expressions. The Monte-Carlo simu-

lation closely match the derived results. We believe extending

this analysis to take into account receiver side correlation may

be interesting future work. An application where our results

have significant utility is also discussed.

APPENDIX A

SIMPLIFICATION OF Ni,j

We first substitute the value of h(t, x) from (6) for Nij

j = 1 and then use the following identities [35], for p < q
and Re(s) > 0,

∫ ∞

0

e−xxs−1
pFq(a1, .., ap; b1, .., bq; ax)dx

= Γ(s) p+1Fq(s, a1, .., ap; b1, .., bq; a), (42)

∫ ∞

0

e−xxs−1dx = Γ(s), (43)

to solve the integrals in Ni,j entries for j = 2, .., n1 in (9).

For j = 1, i = 1, ..., L and i = L + 1, ..., n1, the integrals to

be solved are of the form,

I =

∫ ∞

0

p+ x

v − x
e−xxz(0F1(q, wix))(1F1(1;NR;

u

x− v
))dx,

(44)

where p = σ2/EI , q = n2 − n1 + 1, u = aNRsED/EI ,

v = bsED/EI − σ2/EI and z is a positive integer greater

than zero. To obtain a solution for I , we substitute the series

expansion for 0F1 and 1F1, and interchange summations and

integration. The integral to be solved becomes,

I =

∞
∑

k=0

wk
i

(q)kk!

[ ∞
∑

l=0

ul(1)l
(NR)ll!

∫ ∞

0

p+ x

v − x
e−x xk+z

(x− v)l
dx

]

.

(45)

The justification for the interchange of summations and inte-

gration can be done in two steps. We first expand the 0F1 term

and apply Tonelli’s theorem to justify the exchange of the first

summation. The 1F1 term is now expanded and the summation

is interchanged with the integration using Lebesgue dominated

convergence theorem. Let A1 =
∫∞
0

p
v−xe

−x xk+z

(x−v)l
dx and

A2 =
∫∞
0

x
v−xe

−x xk+z

(x−v)l dx. The Tricomi function or con-

fluent Hyper-geometric function of the second kind is given

by [35], U(α, γ, z) = 1
Γ(α)

∫∞
0
e−zttα−1(1 + t)γ−α−1dt for

Re(α) > 0,Re(z) > 0. In our case −v > 0 and k + z > 0.

Hence using the above identity, A1 and A2 can be simplified

as,

A1 = −pΓ(k+z+1)(−v)l−k−zU(k+z+1, k+z+1−l,−v),
(46)

A2 = −Γ(k+z+2)(−v)l−k−z−1U(k+z+2, k+z+2−l,−v).
(47)

Further, using the functional identity U(a, b, z) = z1−bU(a−
b + 1, 2 − b, z) from [46], (46) and (47) are simplified and

substituted back in (45) to obtain,

I =
∞
∑

k=0

wk
i

(q)kk!

[ ∞
∑

l=0

ul(1)l
(NR)ll!

[

− Γ(k + z + 2)

× U(l + 1, l− k − z,−v)

− pΓ(k + z + 1)U(l + 1,−k − z + l + 1,−v)
]

]

. (48)

To reduce the computation time, we can use the recur-

rence identity for Tricomi hypergeometric functions given

in [59]. To prove the convergence of the above in-

finite summation, first consider the summation I1 =
∑∞

k=0
wk

i

(q)kk!

[

∑∞
l=0

|u|l(1)l
(NR)ll!

Γ(k+z+2)U(l+1, l−k−z,−v)
]

.

From Theorem 3 in [60], we get the identity U(a, b, x) < x−a

for x > 0, a > 0 and a − b + 1 > 0. In our case, we can

see that a = l + 1 > 0 and a − b + 1 = k + z + 2 > 0 and

x = −v > 0. Therefore,

I1 <

∞
∑

k=0

wk
i

(q)kk!

∞
∑

l=0

|u|l(1)l
(NR)ll!

Γ(k + z + 2)(−v)l+1

= (−v)Γ(z + 2)

∞
∑

k=0

wk
i (z + 2)k
(q)kk!

∞
∑

l=0

|uv|l(1)l
(NR)ll!

= (−v)Γ(z + 2) 1F1(z + 2, q, wi) 1F1(1, NR, |uv|).

The last equality is obtained from the series expansion defini-

tion of 1F1 Hypergeometric function [46]. A similar argument

can be used to prove the absolute convergence of the other

infinite summation. Hence, I is convergent, which implies that

we can truncate the double summation to T1 and T2 values

such that I −∑T1

l=0

∑T2

k=0
ul

(NR)l

wk
i

(q)k

[

− (k + 1)U(l + 1, l −

k,−v) − pU(l + 1,−k + l + 1,−v)
]

≤ ǫ for any ǫ > 0.

Hence, the simplified Ni,j entry is given by (10).

Analysis of truncation error

An exact analysis of the truncation error is mathematically

intractable. So, we upper bound the truncation error by an



13

upper bound and determine how the bound varies with various

parameters. The magnitude of the error in truncation is

E(T1, T2) =
∣

∣

∣

∞
∑

k=0

wk
i

(q)kk!

∞
∑

l=0

ul(1)l
(NR)ll!

Γ(k + z + 2)

U(l + 1, l− k − z,−v)−
T1
∑

k=0

wk
i

(q)kk!

T2
∑

l=0

ul(1)l
(NR)ll!

Γ(k + z + 2)U(l + 1, l− k − z,−v)
∣

∣

∣
.

From Theorem 3 in [60], we get the identity U(a, b, x) < x−a

for x > 0, a > 0 and a − b + 1 > 0. In our case, we can

see that a = l + 1 > 0 and a − b + 1 = k + z + 2 > 0
and x = −v > 0. Hence, the truncation error can be upper

bounded by

E(T1, T2) < |v|
T1
∑

k=0

wk
i

(q)kk!

[ ∞
∑

l=T2+1

|uv|l(1)l
(NR)ll!

Γ(k + z + 2)

]

+ |v|
∞
∑

k=T1+1

wk
i

(q)kk!

[

T2
∑

l=0

|uv|l(1)l
(NR)ll!

Γ(k + z + 2)

]

+ |v|
∞
∑

k=T1+1

wk
i

(q)kk!

[ ∞
∑

l=T2+1

|u|l(1)l
(NR)ll!

Γ(k + z + 2)

]

.

Combining the last two terms, then upper-bounding the first

term, and finally using hypergeometric expansion identity for

1F1, we obtain

E(T1, T2) < |v|Γ(z + 2)[ 1F1(z + 2, q, wi)
|uv|T2+1

(NR)T2+1

1F1(1, NR + T2 + 1, |uv|) + (z + 2)T1+1w
T1+1
i

(q)T1+1(T1 + 1)!

1F1(1, NR, |uv|)
2F2(z + T1 + 3, 1, q + T1 + 1, T1 + 2, wi)].

As the Rician factor κi at the interferers decreases, the

eigenvalues of the centrality matrix MMH , given by wi,

decreases. Therefore, E(T1, T2) decreases and the bound

becomes tighter. This implies that we need lesser terms in

the infinite summation as κi increases. Also, observe that a

decrease in |u| or |v| decreases E(T1, T2). A decrease in |u|
or |v| is true for an increase in EI or σ2.

APPENDIX B

APPROXIMATION FOR RAYLEIGH INTERFERERS

Consider the expression to be simplified, Mη(s) =
c|Nσ2=0,L=0|, where

c =
((n2 − n1)!)

−n1

∏n1

i=1(n1 − i)!
(−1)NR(σ2/EI)

(NR−n1)

and Nσ2=0,L=0 is from (10) for L = 0. First, the common

terms inside each column or row of the determinant are taken

out of the determinant and canceled with the existing terms in

the constant c. All columns j = 2, ..., n1 are flipped and all

rows i = 1, .., n1 are flipped. The term Γ(n2−n1+ i+ j− 1)

is then removed from each row to obtain Ñ. Now, Mη(s) =
c|Ñ|, where

c =

∏n1

i=1(n2 − n1 + i)!
(

σ2

EI

)(NR−n1)

∏n1

i=1(n1 − i)!
∏n1

i=1(n2 − i)!
(−1)NR+1, (49)

Ñi,j =











A(i) j = 1, i = 1, ..., n1,

1, j = 2, i = 1, ..., n1,
∏j−2

k=1(n2 − n1 + i+ k), j = 3, ..., n1, 1 ≤ i ≤ n1,
(50)

where A(i) = 1
(n2−n1+i)!

[

∑T1

l=0
(aNRsED/EI)

l

(NR)l
[

−Γ(n2−NR+i+1)U(l+1, l−n2+NR−i+1,−bsED/EI)

]

− ∑NR−n1

t=1
1F1(t;NR;aNRsED/(−bsED)

(bsED/EI)t
Γ(t + n2 − NR + i)

]

From [61], shifted factorials are defined by,

(z)s;n =

{

1, n = 0,
z(z + s)....(z + (n− 1)s), n = 1, 2, ...

(51)

A special case of this is the Pochhammer’s symbols, when

s = 1.

(z)n = (z)1;n =

{

1, n = 0,
z(z + 1)....(z + (n− 1)), n = 1, 2, ...

(52)

In our case, in the Ñ matrix, we have such Pochham-

mer’s symbols in all columns except in the first. From [61,

Lemma.1], we have the relation that determinant of a matrix

with ijth element for 0 ≤ i, j ≤ n − 1, being a shifted

factorial (zj)s;i is given by |(zj)s;i| = ∆n(z), where ∆n(z) =
∏

0≤i<j≤n−1(zj − zi). Evaluating |Ñ| by Laplace expansion

along the first column and using the above relation from [61],

we get

|Ñ| =
n1
∑

i=1

(−1)i+1A(i)∆i
n1−1(z), (53)

where z = [n2−n1+1+1, n2−n1+1+2, ...., n2−n1+1+n1]
and ∆i

n1−1(z) is the Vandermonde determinant formed by

all elements of the vector z except the ith element. Any

Vandermonde determinant remains unchanged if from each

element of the matrix, one subtracts the same constant,

i.e., ∆n(z + c) =
∏

0≤k<j≤n−1((zj + c) − (zk + c)) =
∏

0≤k<j≤n−1(zj − zk). Hence, the constant n2 − n1 + 1 can

be subtracted from each element of the vector z. Hence,

|Ñ| =
n1
∑

i=1

(−1)i+1A(i)∆i
n1−1(z), (54)

where z = [1, ..., n1]. The Vandermonde determinant ∆n(z),
whose nodes are given by first n1 integers, i.e., z = [1, ..., n1],
is given by ∆n(z) =

∏

1≤k<j≤n1
(j−k). For simplifying this

expression, we expand the double product as follows:

∆n(z) = (n1 − 1)!(n1 − 2)!...(1)! =

n1
∏

j=1

(j − 1)!. (55)

However, we actually want to evaluate ∆i
n1−1(z) and not

∆n(z). Note that the Vandermonde determinant ∆i
n1−1(z) in
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which the ith element is missing, is given by, ∆i
n1−1(z) =

∏

1≤k<j≤n1 ;k,j 6=i(j − k). Note that the above expression is

difficult to evaluate. Hence, to obtain a simplified expression

we multiply and divide the expression for ∆i
n1−1(z) by the

terms that are present in ∆n1(z), but are missing in ∆i
n1−1(z).

We thus obtain,

∆i
n1−1(z) =

∏

1≤k<j≤n1 ;
(j − k)

(i − 1)!(n1 − i)!.

Substituting (55) in the above expression, we obtain,

∆i
n1−1(z) in terms of ∆n1(z) as,

∆i
n1−1(z) =

∆n1(z)

(i− 1)!(n1 − i)!
=

∏n1

j=1(j − 1)!

(i− 1)!(n1 − i)!
.

Hence the final expression becomes (11).

APPENDIX C

MOMENTS OF SINR

For the case of L = n1 we will derive the lth moment. The

mgf equation for this case can be written as

Mη(s) = c

n1
∑

k=1

(−1)k+1ρk|Yk|, (56)

where ρk =
∫∞
0 ( σ2

EI
+ x)e−xxn2−NR

0F1(n2 − n1 +

1;wkx)
1F1(1;NR;

aNRs

xEI/ED+σ2/ED−bs
)

(bsED/EI−σ2/EI−x) dx

− ∑NR−n1

t=1
1F1(t;NR;aNRsED/(σ2−bsED)

(bsED/EI−σ2/EI)t
×
[

σ2

EI
Γ(t + n2 −

NR) 1F1(t+ n2 −NR;n2 − n1 + 1;wk)

+ Γ(t+n2−NR+1)1F1(t+n2−NR+1;n2−n1+1;wi)

]

,

Yi,j =
σ2

EI
1F1(n2−j+1;n2−n1+1;wk)Γ(n2−j+1)+Γ(n2−

j + 2)1F1(n2 − j + 2;n2 − n1 + 1;wi) and Yk is the matrix

Y with kth row and first column removed. The lth moment is

given by µl =
dl

dsl
Mη(s)|s=0. We need to evaluate dl

dsl
ρk. We

use the relations in [2] to evaluate the differential and obtain,
dl

dsl
ρk|s=0 = −αRic

l dl where αRic
l = bl

∑l
k=0

(

l
k

) (aNR/b)k

(NR)k
and

dl =l!(
ED

EI
)l

∞
∑

n=0

(wk)
nΓ(n2 −NR + n+ 1)

(q)nn!

U(l, l− n2 +NR − n,
σ2

EI
)

+

NR−n1
∑

t=1

(t)l(−
EI

σ2
)t(
ED

σ2
)l
[

σ2

EI
Γ(t+ n2 −NR)

1F1(t+ n2 −NR; q;wk)

+ Γ(t+ n2 −NR + 1)1F1(t+ n2 −NR + 1; q;wi)

]

.

(57)

APPENDIX D

CORRELATED AND/OR UNEQUAL POWER INTERFERERS

The determinant evaluation of |N| can be significantly

simplified for σ2 ≈ 0. We first substitute σ2 = 0 in Ni,j ,

to obtain

Ni,j =

{

B(i), j = 1, i = 1, ..., NI ,

rNR−j+2
i Γ(NR − j + 2), j = 2, ..., NI , i = 1, ..., NI .

where B(i) =
∑∞

l=0
(aNrs)

l

(NR)l
(|bsED|−l+1U(2, 2 −

l, ri|bsED|)) − ∑NR−NI

t=1
1F1(t;NR;

aNRs

−bs )

(bsED)t (rt+1
i Γ(t + 1)).

By taking rNr−NI+2
i and common gamma terms outside

the determinant term we obtain, Mη(s) ≈ c|N|, where

c = (−1)NR (σ2)(NR−NI )(−1)
1
2
NI (NI−1)|Ψ|−NR

∏NI
i<j(

1
ri

− 1
rj

)
∏NI

k=1
(NR−k)!

×∏NI

i=1 r
NR−NI+2
i

∏NI

j=2 Γ(NR − j + 2),

Ni,j =

{

B(i)r−NR+NI−2
i , j = 1, i = 1, ..., NI ,

rNI−j
i , j = 2, ..., NI , i = 1, ..., NI .

Expanding along the first column, we obtain an approxima-

tion for the Laplace transform for σ2 = 0 as, Mη(s) ≈
c
∑NI

i=1(−1)i+1B(i)r−NR+NI−2
i |V i(r)|, where V i(r) denotes

the Vandermonde matrix formed from all elements of r =
(r1, r2, .., rNI ) except the ith element. Note that, we do not

substitute σ2 ≈ 0 in the c term but only in the |N| term, to

obtain the approximation.
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