Header menu link for other important links
X
Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells
, Abdi-Jalebi M., Nazeeruddin M.K., Grätzel M.
Published in American Chemical Society
2014
Volume: 8
   
Issue: 3
Pages: 2261 - 2268
Abstract
Mesoporous TiO2 nanoparticle films are used as photoanodes for high-efficiency dye-sensitized solar cells (DSCs). In spite of excellent photovoltaic power conversion efficiencies (PCEs) displayed by titanium dioxide nanoparticle structures, the transport rate of electrons is known to be low due to low electron mobility. So the alternate oxides, including ZnO, that possesses high electron mobility are being investigated as potential candidates for photoanodes. However, the PCE with ZnO is still lower than with TiO2, and this is typically attributed to the low internal surface area. In this work, we attempt to make a one-to-one comparison of the photovoltaic performance and the electron transfer dynamics involved in DSCs, with ZnO and TiO 2 as photoanodes. Previously such comparative investigations were hampered due to the morphological differences (internal surface area, pore diameter, porosity) that exist between zinc oxide and titanium dioxide films. We circumvent this issue by depositing different thicknesses of these oxides, by atomic layer deposition (ALD), on an arbitrary mesoporous insulating template and subsequently using them as photoanodes. Our results reveal that at an optimal thickness ZnO exhibits photovoltaic performances similar to TiO 2, but the internal electron transfer properties differ. The higher photogenerated electron transport rate contributed to the performances of ZnO, but in the case of TiO2, it is the low recombination rate, higher dye loading, and fast electron injection. © 2014 American Chemical Society.
About the journal
JournalData powered by TypesetACS Nano
PublisherData powered by TypesetAmerican Chemical Society
ISSN19360851
Open AccessNo