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For a class of continuously differentiable function φ satisfying certain decay 
conditions, it is shown that if the maximum gap δ := sup

i

(xi+1 − xi) between the 

consecutive sample points is smaller than a certain number B0, then any f ∈ V (φ)
can be reconstructed uniquely and stably. As a consequence of this result, it is shown 
that if δ < 1, then {xi : i ∈ Z} is a stable set of sampling for V (φ) with respect to 
the weight {wi : i ∈ Z}, where wi = (xi+1 − xi−1)/2 and φ is the scaling function 
associated with Meyer wavelet. Further, the maximum gap condition δ < 1 is sharp.
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1. Introduction

In [8], Gröchenig proved that if {xi : i ∈ Z} is a sample set with sup
i

(xi+1 − xi) < 1, then {xi} is a stable 

set of sampling for V (sinc) with respect to certain weight {wi : i ∈ Z}. In [2], Aldroubi and Gröchenig proved 

that if X ⊂ R is a separated set such that sup
i

(xi+1 − xi) < 1, then any function in a shift-invariant space 

with B-spline as a generator can be reconstructed stably and uniquely from its samples {f(xi) : xi ∈ X}. In 

that paper, they conjectured that the theorem remains true for a much larger class of shift-invariant spaces. 

Since their methods use special properties of spline functions, they mentioned that it is not clear how to 

extend their result to shift-invariant spaces with even a compactly supported generator. Recently in [10], 

it is shown that for a class of totally positive functions φ of finite type, if δ := sup
i

(xi+1 − xi) < h, then 

{xi : i ∈ Z} is a stable set of sampling for Vh(φ), where Vh(φ) = span{φ(· − hk) : k ∈ Z}.

For sampling in shift-invariant spaces, the oscillation method dates back to the work of [1] where in 

they used the oscillation function oscδs, defined by (oscδs)(x) = sup
|y|≤δ

|s(x) − s(x + y)| in order to ob-
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tain a reconstruction method for spline-like spaces. In [12], an average sampling theorem was given for 

shift-invariant spaces with equally spaced sample points and arbitrary averaging functions. In [13], average 

sampling theorems were studied for spline subspaces with standard averaging functions χ[xk−1/2,xk+1/2]. In 

[14], an average sampling theorem was presented for shift-invariant spline spaces along with the optimal 

upper bound for the support length of averaging functions. In [16], explicit bound expression for sampling 

inequalities was obtained for shift-invariant spline spaces.

In this paper, we consider a class of continuously differentiable functions satisfying certain decay assump-

tions. We also assume that {Tnφ : n ∈ Z} forms a Riesz basis for V (φ) and esssup
w∈[0,1]

∑

l∈Z

(w+l)2|φ̂(w+l)|2 < ∞. 

Then we show that if sup
i

(xi+1 − xi) is smaller than a certain number B0, then {xi : i ∈ Z} is a stable set of 

sampling for V (φ) with respect to the weight {wi}, where wi = (xi+1 −xi−1)/2. In order to prove the above 

result, first we prove a Bernstein-type inequality, namely, ‖f ′‖2 ≤ 2π
√

B‖f‖2, for every f ∈ V (φ). This 

helps us to get the required bound B0 as 
1

2
√

B
, towards the maximum gap condition. As a consequence 

of sampling theorem for Meyer scaling function φ, we show that if δ < 1, then {xi : i ∈ Z} is a stable set 

of sampling for V (φ) with respect to the weight {wi : i ∈ Z}. Further, we show that the maximum gap 

condition δ < 1 is sharp. We wish to emphasize that many of the earlier papers with explicit sampling bound 

conditions available in the literature were far away from “sharpness” results and up to our knowledge, the 

present “sharp” result could not be obtained from the available conditions in the literature.

Further, we notice that in the case of Bernstein’s inequality for V (φ), it is not always possible to find 

the exact value of B except may be in the case of functions whose Fourier transform has compact support. 

So finally, we show that if φ is a differentiable function with support [a, b], then one can explicitly calculate 

a bound instead of B. In due course, we also provide a sampling formula for reconstructing a function f

belonging to V (φ), where φ satisfies the above condition, from its nonuniform samples. We refer to a recent 

paper of the authors [4], where an explicit sampling formula using complex analysis technique is provided 

for reconstructing a function f belonging to V (φ), where φ is a compactly supported even function, from 

its uniform samples.

2. Notations and background

Definition 2.1. A sequence of vectors {fn : n ∈ Z} in a separable Hilbert space H is said to be a Riesz basis

if span{fn} = H and there exist constants 0 < c ≤ C < ∞ such that

c
∑

n∈Z

|dn|2 ≤
∥∥ ∑

n∈Z

dnfn

∥∥2

H
≤ C

∑

n∈Z

|dn|2, (2.1)

for all (dn) ∈ ℓ2(Z). Equivalently, a Riesz basis is an image of an orthonormal basis under a bounded 

invertible operator.

Definition 2.2. A sequence of vectors {fn : n ∈ Z} in a separable Hilbert space H is said to be a frame if 

there exist constants 0 < A ≤ B < ∞ such that

A‖f‖2
H ≤

∑

n∈Z

|〈f, fn〉H|2 ≤ B‖f‖2
H, (2.2)

for every f ∈ H.
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For each x, w ∈ R and s > 0, let Txf(t) := f(t − x), Mwf(t) := e2πiwtf(t), f ∈ L2(R).

Definition 2.3. Given a non-zero function g ∈ L2(R) and a, b > 0, the set of time-frequency shifts

G(g, a, b) := {TamMbkg : m, k ∈ Z}

is called a Gabor system. If G(g, a, b) is a frame for L2(R), then it is called a Gabor frame or Weyl–Heisenberg 

frame.

Definition 2.4. A closed subspace M of L2(R) is called a shift invariant space if Tnφ ∈ M , for every φ ∈ M

and n ∈ Z, where Tn is the translation operator defined by Tnφ(x) = φ(x − n), for all x ∈ R. For φ ∈ L2(R), 

span{Tnφ : n ∈ Z} is called shift invariant space generated by φ and denoted by V (φ).

Every Riesz basis is a frame. It is well known that {Tnφ : n ∈ Z} is a Riesz basis for V (φ) if and only if

0 < c ≤ Gφ(w) ≤ C < ∞ a.e. w ∈ R, (2.3)

where Gφ(w) :=
∑

n∈Z

|φ̂(w + n)|2. Here φ̂ denotes the Fourier transform of φ, defined by φ̂(w) :=

∞∫

−∞

φ(x)e−2πiwx dx. Moreover, ‖Gφ‖0 := essinf
w∈[0,1]

Gφ(w) and ‖Gφ‖∞ := esssup
w∈[0,1]

Gφ(w) are the optimal Riesz 

bounds for {Tnφ : n ∈ Z}. For a detailed study of sampling and reconstruction in shift-invariant spaces, we 

refer to [3].

Definition 2.5. Let {xn : n ∈ Z} be a sequence of real or complex numbers. Then

(i) {xn : n ∈ Z} is separated if there exists γ > 0 such that inf
m�=n

|xn − xm| ≥ γ.

(ii) {xn} is δ-dense if sup
n

|xn+1 − xn| = δ.

(iii) {xn : n ∈ Z} is said to be a set of uniqueness for V (φ) if f(xn) = 0, for all n, implies f ≡ 0.

(iv) {xn : n ∈ Z} is said to be a stable set of sampling for V (φ) with respect to the weight {wn ∈ R
∗ : n ∈ Z}

if there exist constants r, R > 0 such that

r‖f‖L2(R) ≤
( ∑

n∈Z

wn|f(xn)|2
)1/2

≤ R‖f‖L2(R), (2.4)

for every f ∈ V (φ).

Now we shall state a few well known theorems, which will be useful later in order to prove our main 

results.

Consider the infinite system

∑

k∈Z

dkφ(xj − k) = f(xj), j ∈ Z.

Let U be the infinite matrix with entries

Ujk = [wjφ(xj − k)], j, k ∈ Z.

Then the following result gives an equivalent condition for a stable set of sampling for V (φ) in terms of the 

operator U .
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Theorem 2.1. (cf. [3]) Let V (φ) be a reproducing kernel Hilbert space such that φ satisfies (2.3). Then the 

following statements are equivalent.

(1) The set X = {xj : j ∈ Z} is a stable set of sampling for V (φ) with respect to the weight {wj : j ∈ Z}.

(2) There exist A, B > 0 such that

A‖D‖2
ℓ2(Z) ≤ ‖UD‖2

ℓ2(Z) ≤ B‖D‖2
ℓ2(Z),

for every D ∈ ℓ2(Z).

The following result gives a basic connection between Gabor frames and stable set of sampling in a 

shift-invariant space.

Theorem 2.2. (cf. [10]) The Gabor system G(g, 1, 1) is a frame for L2(R) if and only if each set x + Z is a 

stable set of sampling for V (g) with uniform constants independent of x ∈ R.

The following result shows that a function g generating a Gabor frame cannot be well localized in both 

time and frequency.

Theorem 2.3 (Balian–Low). (cf. [9]) If G(g, 1, 1) is a frame for L2(R), then either xg /∈ L2(R) or wĝ /∈
L2(R).

The following inequality brings a relation between the L2-norm of the function and its derivative.

Theorem 2.4 (Wirtinger’s inequality). (cf. [6]) Let f be a complex valued function defined on the interval 

[a, b]. If f ∈ C1 [a, b] with f(a) = f(b) = 0, then

b∫

a

|f(x)|2 dx ≤
(b − a

π

)2
b∫

a

|f ′(x)|2 dx. (2.5)

The equality holds iff

f(x) = c sin
π(x − a)

(b − a)
, c ∈ C.

3. Sampling density for shift-invariant spaces generated by functions having moderate decay

As mentioned earlier, it is well known that if X ⊂ R is a separated set such that sup
i

(xi+1 − xi) < 1, 

then {xi : i ∈ Z} is a stable set of sampling for a shift-invariant space generated by a B-spline function. 

Further, for a class of totally positive functions of finite type ≥ 2, if sup
i

(xi+1 − xi) < h, then {xi : i ∈ Z} is 

a stable set of sampling for Vh(φ) = span{φ(· − hk) : k ∈ Z}. We wish to look at the sampling density for 

shift-invariant spaces associated with a class of continuously differentiable functions having certain decay. 

In fact, let A denote the class of continuously differentiable functions φ such that

(i) |φ(x)| ≤ C1

|x|0.5+ǫ
and |φ′(x)| ≤ C2

|x|0.5+ǫ
, for sufficiently large x, where C1, C2, ǫ are positive constants,

(ii) esssup
w∈[0,1]

∑

l∈Z

(w + l)2|φ̂(w + l)|2 < ∞.
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Clearly if φ is a continuously differentiable function with compact support, then φ ∈ A. Let us define, for 

φ ∈ A,

B(w) :=

∑
l∈Z

(w + l)2|φ̂(w + l)|2

∑
l∈Z

|φ̂(w + l)|2
, w ∈ [0, 1], (3.1)

B = esssup
w∈[0,1]

B(w) and B0 =
1

2
√

B
. Then it was shown in [11] that B ≥ 1

4
, under the assumption that 

{Tnφ : n ∈ Z} forms a Riesz basis for V (φ).

Theorem 3.1. Let φ ∈ A be such that {Tnφ : n ∈ Z} forms a Riesz basis for V (φ). Then we have the 

Bernstein-type inequality

‖f ′‖2 ≤ 2π
√

B‖f‖2, (3.2)

for every f ∈ V (φ).

Proof. Clearly B = esssup
w∈[0,1]

B(w) < ∞. Now let f ∈ V (φ). Then it is easy to show that f(x) =
∑

k∈Z

ckφ(x −k), 

and f ′(x) =
∑

k∈Z

ckφ′(x − k), (ck) ∈ ℓ2(Z). (The equality holds pointwise as φ satisfies (i) in the definition 

of A.) Let mf (w) =
∑

k∈Z

cke−2πikw. Then using Plancherel identity, it follows that

‖f ′‖2
2 = ‖f̂ ′‖2

2 =
∥∥ ∑

k∈Z

ckφ̂′(· − k)
∥∥2

2

=

∞∫

−∞

∣∣ ∑

k∈Z

2πickwφ̂(w)e−2πikw
∣∣2

dw

= 4π2

∞∫

−∞

∣∣mf (w)wφ̂(w)
∣∣2

dw

= 4π2

1∫

0

|mf (w)|2
∑

l∈Z

(w + l)2|φ̂(w + l)|2 dw

= 4π2

1∫

0

B(w)|mf (w)|2
∑

l∈Z

|φ̂(w + l)|2 dw

≤ 4π2B‖f‖2
2. ✷

Remark 3.1. The constant 2π
√

B cannot be improved. The proof of this statement follows similar lines as 

in the proof of Theorem 1 in [5].

We observe the following.

Remark 3.2. If {xi} is a separated set of zeros of f ∈ V (φ) such that xi < xi+1, i ∈ Z, then 
⋃
i

[xi, xi+1] = R.
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Remark 3.3. If f is of the form

f(x) = c sin
π(x − xi)

(xi+1 − xi)
, c ∈ C,

in the interval [xi, xi+1], then

‖f‖2
2 =

∑

i∈Z

xi+1∫

xi

∣∣∣∣c sin
π(x − xi)

(xi+1 − xi)

∣∣∣∣
2

dx

= |c|2
∑

i∈Z

xi+1 − xi

π

π∫

0

sin2 u du

=
|c|2
2

∑

i∈Z

(xi+1 − xi).

Since {xi : i ∈ Z} is separated, there exists γ > 0 such that xi+1 − xi ≥ γ from which it follows that 

‖f‖2 = ∞.

Theorem 3.2. Let φ ∈ A be such that {Tnφ : n ∈ Z} forms a Riesz basis for V (φ). If a non-zero function 

f ∈ V (φ) has infinitely many zeros on the real axis which are separated, then there exists at least one pair 

of consecutive zeros whose distance apart is greater than B0.

The proof of this theorem is similar to the proof of Theorem 2.1 in [15], where in we make use of 

Wirtinger’s inequality for the interval [xi, xi+1] and the Remarks 3.2 and 3.3.

Corollary 3.1. Let f ∈ V (φ) be such that f(xi) = 0 for all i. If {xi : i ∈ Z} is a separated set such that 

sup
i

(xi+1 − xi) ≤ B0, then f ≡ 0.

Let {xi : i ∈ Z}, · · · < xi−1 < xi < xi+1 < · · · , be a sample set of density δ. Let yi =
xi + xi+1

2
. Consider 

the approximation operator

Af = P

(∑

i∈Z

f(xi)χ[yi,yi+1]

)
,

where P is an orthogonal projection of L2(R) onto V (φ). Then one has the following

Theorem 3.3. Let φ ∈ A be such that {Tnφ : n ∈ Z} forms a Riesz basis for V (φ). If sup
i

(xi+1 − xi) < B0, 

then {xi : i ∈ Z} is a stable set of sampling for V (φ) with respect to the weight {wi : i ∈ Z}, where 

wi =
xi+1 − xi−1

2
.

We refer to [8] and Theorem 8.14 of [7] for the proof.

Example 3.1. Consider the Littlewood–Paley wavelet

φ(x) :=
sin πx

πx
(2 cos πx − 1).
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Its Fourier transform is given by

φ̂(w) =

{
1 if 1/2 ≤ |w| ≤ 1,

0 otherwise.

The collection {Tnφ : n ∈ Z} is an orthonormal basis for V (φ) and 
∑
l∈Z

|φ̂(w + l)|2 = 1 almost everywhere. 

Therefore,

B(w) =
∑

l∈Z

(w + l)2|φ̂(w + l)|2.

But one can easily see that B(w) = 2 if w = 0 or 1/2, B(w) = (w − 1)2 on (0, 1/2) and B(w) = w2 on 

(1/2, 1]. Hence B = esssup
w∈[0,1]

B(w) = 1 and B0 =
1

2
. Thus if sup

i
(xi+1 − xi) <

1

2
, then {xi : i ∈ Z} is a stable 

set of sampling for V (φ) with respect to the weight {wi : i ∈ Z}, where wi =
xi+1 − xi−1

2
.

Remark 3.4. The Theorem 3.3 does not give the sharp bound for all shift-invariant spaces V (φ) generated 

by functions belonging to A. For example, if φ is a B-spline function of order ≥ 2, then the constant value 

B0 ≈ 0.9. (cf. [5]). However, Aldroubi and Gröchenig proved that the best constant value of the maximum 

gap is 1. Thus it becomes a natural question to investigate whether we can find a function belonging to A
for which Theorem 3.3 gives the sharp bound. If φ belongs to the class of functions proposed by Meyer, 

then we answer the question affirmatively. This is established in Theorem 4.1, in fact, which is the essence 

of the paper.

Now, by Theorem 3.1, the matrix Ujk = [wjφ(xj − k)] with wj =
xj+1 − xj−1

2
, j, k ∈ Z, is bounded 

above and below. Hence the pseudo inverse of U exists and is given by U† = (U∗U)−1U∗. Then we have 

the following sampling formula.

Theorem 3.4. Let φ ∈ A be such that {Tnφ : n ∈ Z} forms a Riesz basis for V (φ). Then every f ∈ V (φ) can 

be reconstructed uniquely from the sample set {xj : j ∈ Z} by the formula

f(x) =
∑

j∈Z

f(xj)ψj(x), (3.3)

where ψj(x) :=
∑

k∈Z

(U†)kjφ(x − k).

Proof. Let f ∈ V (φ). Then there exists a unique sequence D = (dk) ∈ ℓ2(Z) such that

f(x) =
∑

k∈Z

dkφ(x − k), x ∈ R.

Notice that UD = {wjf(xj)}j∈Z. Define L(f) := {wjf(xj)}j∈Z. Since the matrix U∗U is invertible, we have

f(x) =
∑

k∈Z

[
U†L(f)

]
k
φ(x − k)

=
∑

k∈Z

[ ∑

j∈Z

(U†)kjwjf(xj)
]
φ(x − k)
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=
∑

j∈Z

wjf(xj)
∑

k∈Z

(U†)kjφ(x − k)

=
∑

j∈Z

wjf(xj)ψj(x),

where ψj(x) =
∑

k∈Z

(U†)kjφ(x − k). ✷

As mentioned earlier, in the case of Bernstein’s inequality for V (φ), it is not always possible to find the 

exact value of B except may be in the case of functions whose Fourier transform has compact support. In 

the next theorem, we show that if φ is a differentiable function with support [a, b], then one can explicitly 

calculate a bound instead of B.

Theorem 3.5. Let φ be a differentiable function with support [a, b] such that {Tnφ : n ∈ Z} forms a Riesz 

basis for V (φ). Then for any f ∈ V (φ), we have

‖f ′‖2 ≤
√

(1 + b − a)
‖φ′‖2

‖Gφ‖0
‖f‖2. (3.4)

Proof. Let f ∈ V (φ). Then f(x) =
∑

k∈Z

ckφ(x −k) and f ′(x) =
∑

k∈Z

ckφ′(x −k), where (ck) ∈ ℓ2(Z). Consider

f̂

(
w

b − a

)
=

∑

k∈Z

∫

R

ckφ(x − k)e−2πiwx/b−adx

= λf (w)

∫

R

φ(y)e−2πiwy/b−adx

= (b − a)λf (w)φ̂ab(w), (3.5)

where λf (w) =
∑
k∈Z

cke−2πikw/b−a and φ̂ab(w) =
1

b − a

b∫

a

φ(t)e−2πiwt/b−a dt.

Similarly, we can show that

f̂ ′

(
w

b − a

)
= (b − a)λf (w)φ̂′

ab(w), (3.6)

where φ̂′
ab(w) =

1

b − a

b∫

a

φ′(t)e−2πiwt/b−a dt. On the other hand, one can easily show that

∑

n∈Z

|φ̂′
ab(w + n)|2 =

1

b − a
‖φ′‖2

2. (3.7)

Consider

‖f ′‖2
2 = ‖f̂ ′‖2

2 =
1

b − a

∥∥∥∥f̂ ′

(
1

b − a
·
)∥∥∥∥

2

2

= (b − a)

∫

R

|λf (w)|2|φ̂′
ab(ω)|2 dw
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= (b − a)

b∫

a

|λf (w)|2
∑

l∈Z

|φ̂′
ab(w + (b − a)l)|2 dw. (3.8)

Since any interval of length 1 contains at most 1 +
1

b − a
distinct points of minimum distance b − a between 

each other, we have

‖f ′‖2
2 ≤ (b − a)

b∫

a

|λf (w)|2
(

1 +
1

b − a

)
sup

w∈[0,1]

∑

l∈Z

|φ̂′
ab(w + l)|2 dw

=

(
1 +

1

b − a

)
‖φ̂′‖2

2

b∫

a

|λf (w)|2 dw, (3.9)

using (3.7). (We refer to Lemma 6.1.2 of [9] in this context.) Therefore,

‖f ′‖2
2 ≤

(
1 +

1

b − a

)
‖φ̂′‖2

2(b − a)‖c‖2
ℓ2(Z)

≤ (1 + b − a)
‖φ′‖2

2

‖Gφ‖2
0

‖f‖2
2. ✷

4. Sampling density condition for Meyer scaling function

Consider a function ϑ(w) defined on the interval 0 ≤ w ≤ 1 satisfying the following properties:

(P1) 0 ≤ ϑ(w) ≤ 1,

(P2) ϑ(w) + ϑ(1 − w) = 1,

(P3) ϑ(w) is a monotonically decreasing function,

(P4) ϑ(w) = 1, 0 ≤ w ≤ 1

3
.

The function ϑ is extended to the real line by setting ϑ(w) = ϑ(−w) for −1 ≤ w ≤ 0 and ϑ(w) = 0 for 

|w| > 1. Then the Meyer scaling function is defined as

φ(x) :=

1∫

−1

√
ϑ(w)e2πiwxdw.

Since collection {Tnφ : n ∈ Z} forms an orthonormal basis for V (φ), we get 
∑
l∈Z

|φ̂(w + l)|2 = 1 a.e., w ∈ R. 

Therefore,

B(w) =
∑

l∈Z

(w + l)2|φ̂(w + l)|2.

In this case,

B(w) =

⎧
⎪⎨
⎪⎩

w2 if 0 ≤ w ≤ 1/3,

(w − 1)2ϑ(w − 1) + w2ϑ(w) if 1/3 ≤ w ≤ 2/3,

(w − 1)2 if 2/3 ≤ w ≤ 1.
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Since B ≥ 1

4
, B(w) attains its maximum in the interval [1/3, 2/3]. Therefore,

B = sup
1/3≤w≤2/3

(w − 1)2ϑ(w − 1) + w2ϑ(w)

= sup
1/3≤w≤2/3

(w − 1)2 + (2w − 1)ϑ(w).

The function ϑ satisfies 1/2 ≤ ϑ(w) ≤ 1 and 2w − 1 ≤ 0 in the interval [1/3, 1/2]. Further, 0 ≤ ϑ(w) ≤ 1/2

and 2w − 1 ≥ 0 in the interval [1/2, 2/3]. Hence we get

B(w) = (w − 1)2 + (2w − 1)ϑ(w) ≤ (w − 1)2 +
1

2
(2w − 1)

= w2 − w +
1

2
≤ 5

18
,

in [1/3, 2/3], using standard calculus techniques. Consequently, 
1

4
≤ B ≤ 5

18
and B0 ≥ 0.9487. In addition, 

if the function ϑ(w) satisfies the property

(P5) : ϑ(w) ≥ 2 − 3w in [1/3, 1/2] and ϑ(w) ≤ 2 − 3w in [1/2, 2/3],

then

B(w) = (w − 1)2 + (2w − 1)ϑ(w) ≤ (w − 1)2 + (2w − 1)(2 − 3w)

= −5w2 + 5w − 1 ≤ 1

4
,

in [1/3, 2/3]. In this case, B =
1

4
and B0 = 1. Thus, if ϑ is a C∞ function satisfying the properties (P1)

to (P5), then we have the following: If sup
i

(xi+1 − xi) < 1, then {xi : i ∈ Z} is a stable set of sampling for 

V (φ) with respect to the weight {wi : i ∈ Z}, where wi = (xi+1 − xi−1)/2. We arrive at this conclusion 

using Theorem 3.3.

There are many functions satisfying the properties (P1) to (P5). We now confine ourselves to the class 

of functions proposed by Meyer. Consider the function

φ̂(w) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 |w| ≤ 1

3
,

cos
[π

2
ν(3|w| − 1)

] 1

3
≤ |w| ≤ 2

3
,

0 otherwise,

where ν is a C∞ function satisfying

ν(x) =

{
0 if x ≤ 0,

1 if x ≥ 1,

with the additional property

ν(x) + ν(1 − x) = 1.

For ν, one can take the Meyer polynomials, νr (r ∈ N) which is defined using beta function. More precisely,

νr(x) =
1

B(r, r)

x∫

0

tr−1(1 − t)r−1dt, 0 ≤ x ≤ 1,
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Table 1

Meyer polynomials.

r νr(x)

1 x

2 x2(3 − 2x)

3 x3(10 − 15x + 6x2)

4 x4(35 − 84x + 70x2 − 20x3)

5 x5(126 − 420x + 540x2 − 315x3 + 70x4)

6 x6(462 − 1980x + 3465x2 − 3080x3 + 1386x4 − 252x5)

where B(r, s) =

1∫

0

tr−1(1 − t)s−1dt is the beta function. It is clear that

1 − νr(1 − x) =
1

B(r, r)

[ 1∫

0

tr−1(1 − t)r−1dt −
1−x∫

0

tr−1(1 − t)r−1dt
]

=
1

B(r, r)

1∫

1−x

tr−1(1 − t)r−1dt = νr(x).

The first six Meyer νr-polynomials are given in the Table 1.

The functions φ and φ̂ are rapidly decreasing functions. It is easy to show that [φ̂(w)]2 satisfies the 

properties (P1) to (P4).

Now, we show that [φ̂(w)]2 satisfies the property (P5). Since νr(x) is a convex function in the interval 

[1/3, 1/2] and cos2 x is a concave decreasing function in the interval [0, π/4], the function [φ̂(w)]2 is concave 

in [1/3, 1/2]. Therefore, each point on the chord between [1/3, 1] and [1/2, 1/2] is below the graph of [φ̂(w)]2. 

Hence, the function [φ̂(w)]2 satisfies the property [φ̂(w)]2 ≥ 2 − 3w in [1/3, 1/2]. Using property (2), we get

φ̂(−w +
1

2
)2 − 1

2
= cos2

[π

2
ν(−3w +

1

2
)
]

− 1

2

= cos2
[π

2

[
1 − ν(3w +

1

2
)
]]

− 1

2

= sin2
[π

2
ν(3w +

1

2
)
]

− 1

2

= 1 − cos2
[π

2
ν(3w +

1

2
)
]

− 1

2

= −
[
φ̂(w +

1

2
)2 − 1

2

]
.

Therefore, [φ̂(w)]2 is anti-symmetric with respect to the line y =
1

2
. Since [φ̂(w)]2 is concave in [1/3, 1/2], 

[φ̂(w)]2 is convex in [1/2, 2/3]. Thus, the function [φ̂(w)]2 satisfies the property [φ̂(w)]2 ≤ 2 −3w in [1/2, 2/3]. 

Hence B =
1

4
.

Further, we shall show that the maximum gap condition (δ < 1) is sharp. In other words, we show that 

if δ = 1, then there exists x ∈ R such that x + Z is not a stable set of sampling for V (φ). Suppose that 

were not true. Then each set {xi} with δ = 1 is a stable set of sampling for V (φ) with respect to the weight 

{wi : i ∈ Z}, where wi = (xi+1 − xi−1)/2, i.e., there exists A, B > 0 such that

A‖f‖2
2 ≤

∑

i∈Z

wi|f(xi)|2 ≤ B‖f‖2
2,
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for every f ∈ V (φ). In particular, x +Z is a stable set of sampling for V (φ) for every x ∈ R with bounds A, B. 

Then it follows from by Theorem 2.2 that G(φ, 1, 1) is a frame for L2(R). Hence by Balian–Low theorem, 

either xφ /∈ L2(R) or ξφ̂ /∈ L2(R). But both xφ, wφ̂ ∈ L2(R) as φ, φ̂ are rapidly decreasing functions, which 

is a contradiction. Hence δ < 1 is sharp. Thus we have proved the following

Theorem 4.1. Let ϑ be a C∞ function satisfying the properties (P1) to (P5). Let

φ(x) :=

1∫

−1

√
ϑ(ξ)e2πiwxdw

be the Meyer scaling function. Suppose δ = sup
i

(xi+1 − xi) < 1. Then {xi : i ∈ Z} is a stable set of sampling 

for V (φ) with respect to the weight {wi : i ∈ Z}, where wi = (xi+1 − xi−1)/2. Further, the maximum gap 

condition δ < 1 is sharp.

Remark 4.1. Consider a totally positive function ψ of finite type ≥ 2, i.e., ψ̂(w) =
M∏

ν=1
(1 + 2πiδνw)−1, 

δν ∈ R
∗ and M ≥ 2. It is clear that the Fourier transform of ψ cannot have compact support. However, the 

function 
√

ϑ = φ̂ considered in Theorem 4.1 has compact support. This means φ is not a totally positive 

function of finite type ≥ 2. Hence the Theorem 4.1 cannot be deduced from Theorem 2 in [10].
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