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Abstract

Using accurate multi-component diffusion treatment in numerical combustion studies remains formidable due to

the computational cost associated with solving for diffusion velocities. To obtain the diffusion velocities, for low

density gases, one needs to solve the Stefan-Maxwell equations along with the zero diffusion flux criteria, which

scales as O(N3), when solved exactly. In this article, we propose an accurate, fast, direct and robust algorithm

to compute multi-component diffusion velocities. We also take into account the Soret effect, while computing the

multi-component diffusion velocities. To our knowledge, this is the first provably accurate algorithm (the solution

can be obtained up to an arbitrary degree of precision) scaling at a computational complexity of O(N) in finite

precision. The key idea involves leveraging the fact that the matrix of the reciprocal of the binary diffusivities,

V , is low rank, with its rank being independent of the number of species involved. The low rank representation

of matrix V is computed in a fast manner at a computational complexity of O(N) and the Sherman-Morrison-

Woodbury formula is used to solve for the diffusion velocities at a computational complexity of O(N). Rigorous

proofs and numerical benchmarks illustrate the low rank property of the matrix V and scaling of the algorithm.
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1. Introduction

Computational combustion studies typically employ an approximate mixture-averaged diffusion treatment

with velocity correction [1]. However, several works have pointed to the need for accurate treatment of multi-

component species diffusion in the presence of high concentration gradients and in simulations that capture the

structure of flames [2–9]. For instance, Bongers and De Goey [4] found that errors up to 10% occur in the

burning velocities of methane/oxygen and hydrogen/oxygen flames with an approximate diffusion treatment.

Gopalakrishnan and Abraham [5] investigated the ignition of n-heptane/air diffusion flames, and reported a

10% difference in the transient temperature and major species profiles when using an approximate diffusion

model. In a numerical study with different transport models, Dworkin et al. [8] found deviations up to 15%

in peak soot volume fraction in ethylene/air coflow flames, although only small differences were observed in

temperature profiles. In the case of combustion of n-heptane droplet in a forced-convection environment, Pope

and Gogov [7] found that extinction velocity, maximum temperature, flame dimensions, evaporation constant, and

drag coefficient are significantly different between using single binary diffusion coefficient and multi-component

diffusion coefficients. Xin et al. [9] found marked deviations for peak temperatures between mixture-averaged

and multi-component diffusion treatments at elevated pressure and large strain rates in counterflow diffusion

flames and in droplet ignition. Even for turbulent configurations, Hilbert et al. [6] found the choice of transport

model to play an essential role, in particular for high flame curvatures and far from stoichiometry. However,

using accurate multi-component diffusion treatment in numerical combustion studies remains formidable due to

the computational cost associated with solving for diffusion velocities.

For low density gases, the diffusion velocities are obtained by solving the Stefan-Maxwell equations [10–12]:

∇Xp =

Difference in velocities︷ ︸︸ ︷
N∑
k=1

XpXk

Dpk
(vk − vp) +

N∑
k=1

XpXk

Dpk

(
D

(T )
k

Yk
− D

(T )
p

Yp

)
∇T
ρT︸ ︷︷ ︸

Temperature gradient (Soret effect)

+

Pressure gradient︷ ︸︸ ︷
(Yp −Xp)

∇P
P

+
ρ

P

N∑
k=1

YpYk (fp − fk)︸ ︷︷ ︸
Difference in body force

(1)

where N is the number of species, Xk’s are the mole fractions, vk’s are the diffusion velocities, Dpk’s are binary

diffusion coefficients, D
(T )
k ’s are the thermal diffusion coefficients, T , ρ & P are the temperature, density &

pressure of the mixture, and fk’s denote the body forces. Equation (1) can be rewritten as shown in Equation (2).

∇Xp =

N∑
k=1

XpXk

Dpk

((
vk +

∇T
ρT

D
(T )
k

Yk

)
−
(
vp +

∇T
ρT

D
(T )
p

Yp

))
︸ ︷︷ ︸

Difference in velocities and the Soret effect

+

Pressure gradient︷ ︸︸ ︷
(Yp −Xp)

∇P
P

+
ρ

P

N∑
k=1

YpYk (fp − fk)︸ ︷︷ ︸
Difference in body force

(2)
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From kinetic theory (assuming elastic collisions), Dpk is given by

DEpk = K1

(
kBT

π

)3/2
1

P

1
√
mpk(dp + dk)2 , (3)

where P is the pressure, T is the temperature, kB is the Boltzmann’s constant, mpk is the reduced mass of

species p & k and dp, dk are the collision diameter for species p & k respectively. To take inelastic collisions into

account, Equation (3) must be modified by a collision integral Ωpk as,

DIpk = K2

(
kBT

π

)3/2
1

P

1
√
mpk(dp + dk)2Ωpk

(4)

where Ωpk = Ωpk

(
kB
εpk

T

)
= Ωpk (T ∗) and K1,K2 are two fixed constants.

Note that although there are N equations in Equation (2), only N -1 of these are independent. Therefore, the

diffusion velocities vk’s are solved for in Equation (2) along with the flux criterion that

N∑
k=1

Ykvk = 0 =⇒
N∑
k=1

Wk(Xkvk) = 0 (5)

where Yk is the mass fraction, Xk is the mole fraction and Wk is the molecular mass of species k. Solving

the linear system using Equations (2) and (5) to obtain the diffusion velocities requires O(N3) operations. In

unsteady multi-dimensional problems with detailed chemistry, a computational cost of O(N3) at every grid point

in the domain and at every time step must be expended, making the computation time consuming and therefore

out of practical reach.

Ern and Giovangigli proposed iterative methods [13–15] to obtain approximate solutions to the above equa-

tions, where all transport coefficients are expressed as convergent series and are approximated by the truncation

of these series, as implemented in the EGLIB software package [16]. Each iteration involves matrix vector prod-

ucts, which need O(N2) operations. If ni iterations were involved in their method, the total computational

cost to obtain vk’s will be O(niN
2). Recently, Xin et al. [9] proposed a reduced multi-component model, using

a multi-component diffusion treatment for critical-diffusivity-species (identified using sensitivity analysis) and

mixture averaged diffusion treatment for the others. The computational complexity of their model scales linearly

with the size of the number of species. A correction velocity must be applied to their diffusion velocities to

ensure net species diffusion flux is zero, since their model is a hybrid of the multi-component model and the

mixture-averaged model.

In the earlier studies that focused on obtaining solutions to the Stefan-Maxwell equations in faster compu-

tational time, the nature of the matrices underlying these equations have not been given attention. This will

be the focus of the present work. We propose an accurate, fast, mathematically provable and robust, universal,
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direct (non-iterative) algorithm to solve for multi-component diffusion velocities by leveraging the inherent low

rank structure of the matrix formed by the reciprocal of the binary diffusion coefficients. This direct algorithm to

compute diffusion velocities involves O(N) operations in finite precision. An important feature of this algorithm

is that the accuracy of the low-rank factorization is a user input, which in turn can be used apriori to quantify

the accuracy of the solution (in this case the diffusion velocities), unlike the methods proposed earlier [9, 13–15].

In addition, no velocity correction is needed in this approach, since the flux criterion (Equation (5)) is also satis-

fied. Further, there is no costly pre-computation step, such as sensitivity analysis, involved in this algorithm. In

fact, the total time taken by our algorithm to obtain diffusion velocities is orders of magnitude faster than the

conventional LU factorization based algorithm even for a small number of species (∼ 200).

This article is organized as follows. In Section 2, the low rank structure of the matrix whose entries are the

reciprocal of binary diffusivities is rigorously analysed. Following this, in Section 3, the key ingredients of the

algorithm and the pseudo-code are presented. The computational complexity of the algorithm is demonstrated

in Section 4, followed by accuracy analysis and comparison to exact solution. Section 5 concludes the article by

highlighting the main contributions and applicability of the algorithm.

2. Structure of the binary diffusion matrix

Letting zk = Xk ·
(
vk +

∇T
ρT

D
(T )
k

Yk

)
, the Stefan-Maxwell equation (Equation (2) in Section 1) can be rewritten

as

N∑
k=1

Xpzk
Dpk

−
N∑
l=1

Xlzp
Dpl

= ∇Xp − (Yp −Xp)
∇P
P
− ρ

P

N∑
k=1

YpYk (fp − fk) (6)

which when written in a matrix form gives us Equation (7).

Az = b (7)

where A ∈ RN×N and z, b ∈ RN×1. The entries of A and b are as given in Equations (8) and (9).

Apk = δpk

N∑
l=1

Xl

Dpl
− Xp

Dpk
(8)

bp = −∇Xp + (Yp −Xp)
∇P
P

+
ρ

P
Yp

(
fp − f̃

)
(9)

where f̃ =

N∑
l=1

Ylfl. Note that the entire vector b (i.e., the right hand side of the linear system in Equation (7))

can be computed at cost of O(N).
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Letting V to denote the matrix containing the reciprocal of the binary diffusion coefficients, i.e., Vpk =
1

Dpk
,

we see that

A = diag(V X)− diag(X)V (10)

The key structure that we will exploit is that the matrix V is a low-rank matrix. In fact, in the next subsection,

we prove that this is indeed the case, when the molecules undergo elastic collisions. We also present numerical

benchmarks, which give additional evidence to the fact that the matrix V is low-rank for both elastic and inelastic

collisions.

2.1. Elastic collisions

When the molecules undergo elastic collisions, since we have a simple expression for Vij , we will show using

analytic means that the matrix V is truly low-rank, i.e., the rank of the matrix V up to machine precision doesn’t

scale with the size of matrix (the rank is independent of N).

From Equation (3), writing the reciprocal of the binary diffusion coefficient, we have the elements of the

matrix V ∈ RN×N given by

Vij = K
P

T 3/2

(di + dj)
2√mimj√

mi +mj

where K is a constant. If we can represent
1√

mi +mj
in a separable form as

p∑
k=1

fk(mi)skfk(mj), we then have

Vij = K
P

T 3/2
(di + dj)

2√mimj

(
p∑
k=1

fk(mi)skfk(mj)

)
(11)

= K
P

T 3/2

(
p∑
k=1

(d2
i

√
mifk(mi))sk(

√
mjfk(mj)) + (di

√
mifk(mi))(2sk)(dj

√
mjfk(mj)) + (

√
mifk(mi))sk(d2

j
√
mjfk(mj))

)
(12)

= K
P

T 3/2

(
p∑
k=1

(
d2
i Ũik

)
skŨjk +

p∑
k=1

(diŨik)(2sk)(djŨjk) +

p∑
k=1

Ũjksk

(
d2
j Ũjk

))
(13)

where Ũjk =
√
mjfk(mj). Writing this in matrix form, we obtain that

V = K
P

T 3/2

(
(D2Ũ)SŨT + (

√
2DŨ)(S)(

√
2DŨ)T + ŨS(D2Ũ)T

)
(14)

= K
P

T 3/2

[
D2Ũ

√
2DŨ Ũ

]
N×(3p)


S 0 0

0 S 0

0 0 S


(3p)×(3p)


Ũ

√
2DŨ

D2Ũ


(3p)×N

(15)

where D = diag(d) ∈ RN×N and S = diag(s) ∈ Rp×p, which means the rank of V is at-most 3p. We will
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now prove that
1√

mi +mj
can be efficiently represented in a separable form. There are may ways to obtain

a separable form for
1√

mi +mj
. One way is to use a Taylor series representation making use of the fact that

1 ≤ mi,mj ≤M . However for a compact argument, we choose to make use of the identity

1√
mi +mj

=
2√
π

∫ ∞
0

exp(−(mi +mj)y
2)dy

Recall that 2 ≤ mi + mj ≤ 2M . Hence, all we need is an efficient quadrature of

∫ ∞
0

e−xy
2

dy for x ∈ [2, 2M ].

Recall that the tail of the integral has the following bounds, i.e., we have

∫ ∞
t

e−xy
2

dy <
e−xt

2

2tx

Hence, for x ∈ [2, 2M ], we have that

∫ ∞
t

e−xy
2

dy ≤
∫ ∞
t

e−2y2dy <
e−2t2

4t

In fact, for t = 4, we hit an error bound close to machine precision for x ≥ 2, i.e.,

∫ ∞
4

e−xy
2

dy < 10−15

We hence have

1√
mi +mj

=εm

2√
π

∫ 4

0

e−(mi+mj)y2dy

where εm = 10−15 and a =εm b is to be interpreted as |a− b| < εm. There exists a wide range of quadratures we

can deploy to obtain arbitrary accuracy we want, i.e.,

1√
mi +mj

=εm

p∑
k=1

wke
−(mi+mj)y2k =

p∑
k=1

e−miy
2
kwke

−mjy
2
k =

p∑
k=1

fk(mi)skfk(mj)

Hence, if we form the matrix L ∈ RN×N , where Lij =
1√

mi +mj
, we then have that L = HCHT , where

H ∈ RN×p with Hik = e−miy
2
k and C ∈ Rp×p is a diagonal matrix.

The low-rank decomposition of the matrix V obtained above by analytic means provides a sub-optimal upper

bound on the rank. The Singular Value Decomposition (SVD) of the matrix V gives us the optimal rank, though

obtaining the SVD is computationally expensive (scaling as O(N3)). We will see in Section 3.1 that the rank

and low-rank decomposition of the matrix V can be obtained by purely algebraic means in a fast way, i.e., at a

computational cost of O(N). We see from Figure 1(a) that the rank of the matrix L (up to machine precision) is

an extremely weak function of the maximum mass M . More importantly, the analytic argument proves that the
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rank of the matrix L (up to machine precision) is independent of the number of species N and in fact the rank

� N as shown in Figure 1(b). Note that the rank of the matrix L (up to machine precision) doesn’t exceed 25,

even though the number of species is a few thousands.

0 5 10 15 20 25
10−16

10−12

10−8

10−4

100

Rank

S
in
gu

la
r
va
lu
es

M = 50
M = 100
M = 150
M = 200

(a) Maximum mass is varied keeping the number of species as
5000.

0 5 10 15 20 25
10−16

10−12

10−8

10−4

100

Rank

S
in
gu

la
r
va
lu
es

N = 100
N = 200
N = 500
N = 1000
N = 2000
N = 5000

(b) Number of species is varied keeping the max mass as 200.

Figure 1: Decay of singular values of the matrix L (normalized with the largest singular value). The masses of the N species are
uniformly distributed from 1 to the maximum mass in all cases.

2.2. Inelastic collisions

For inelastic collisions, the binary diffusion coefficient is given by Equation (4). Using numerical benchmarks,

we illustrate the low rank property of the matrix V arising out of the species involved in a comprehensive chemical

mechanism proposed by Sarathy et al. [17] for a wide range of methyl alkanes. From the total of 7171 species

involved in this kinetic scheme, we obtained a sequence of subsets of species (retaining the species with maximum

and minimum masses) of different sizes N ∈ {226, 450, 898, 1794, 3586, 7171}. For each of these subsets, we form

the matrix V and analyze its ε-rank as a function of the number of species N . The ε-rank of a matrix is the

number of singular values, which are within a factor of ε of the largest singular value, i.e., if a matrix A ∈ RN×N

with singular values σ1, σ2, . . . , σN , has an ε-rank of r, this means that
σk
σ1

< ε iff k > r. Figures 2(a) and 2(b)

show that the ε-rank of the matrix V is independent of the number of species for elastic and inelastic collisions

respectively. Further, even if we set ε = 10−14, which is very close to the machine precision, we see that the rank

of the matrix V is still orders of magnitude smaller than N . Also, not surprisingly, if lesser accuracy is sought

for, then the ε-rank decreases further.
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ε = 10−10

ε = 10−14

(a) Elastic collision
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(b) Inelastic collision

Figure 2: The maximum of the ε-rank over all the grid points as a function of number of species in the subset of species involved in
Sarathy et al. [17] mechanism. It is evident that the ε-rank is independent of N and decreases with decrease in accuracy.

3. Methodology

In the previous section, we illustrated that the matrix V has an inherent low-rank structure. In order to

leverage this structure for computing diffusion velocities in a fast manner, we need to perform two significant

steps:

1. Obtain low-rank factorization of the matrix V

2. Use this low-rank factorization to obtain diffusion velocities

In order for our algorithm to scale as O(N), both these steps must scale as O(N).

3.1. Fast low-rank factorization

If the matrix V ∈ RN×N has an ε-rank r, we factorize V as LRT , where L,R ∈ RN×r such that

‖V − LRT ‖2
‖V ‖2

< ε

The optimal ε-rank is given by the SVD [18], though SVD is computationally expensive, scaling as O(N3),

which defeats our purpose. Thankfully in recent years, there has been an increasing focus on constructing fast

(O(N)), accurate, low-rank factorizations [19–22] for matrices. Some fast techniques such as multipole expan-

sions, analytic interpolation, Adaptive Cross Approximation (ACA) [23, 24], pseudo-skeletal approximations [25],

interpolatory decomposition, randomized algorithms [26], rank-revealing LU and QR algorithms provide a great

way for constructing efficient low-rank representations.

In this article, we rely on the Partially Pivoted Adaptive Cross Approximation [23] (PPACA) algorithm,

which scales as O(r2N) to construct a low-rank factorization of matrix V , where r � N is the rank obtained
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using PPACA. The PPACA proceeds by obtaining an input accuracy εinp from the user and subsamples the rows

and columns of the matrix (similar to the partially pivoted LU algorithm) to construct a low-rank factorization

of the matrix up to the desired input accuracy εinp. In the past, PPACA has been used to compress a wide range

of matrices including those arising out of N -body problems [27], integral equations [28], covariance matrices [29],

etc. The rank obtained using PPACA is very close to the optimal rank as has been observed in [24, 30].

3.2. Obtaining the diffusion velocities

Now we will take advantage of the low-rank factorization of V (V =ε LR
T ) in computing the diffusion

velocities, i.e., for solving the linear system in Equation (16), which is obtained using Equations (7) and (10).

(diag(V X)− diag(X)V ) z = b (16)

Equation (16) cannot be solved alone, since the system has a non-trivial null-space as discussed in the introduc-

tion. The flux criterion in Equation (5) also needs to be enforced along with Equation (16). The flux criterion

in terms of zk’s, instead of vk’s is given by

N∑
k=1

Wkzk =

N∑
k=1

WkXk

(
vk +

∇T
ρT

D
(T )
k

Yk

)
=

N∑
k=1

WkXkvk︸ ︷︷ ︸
=0

+

N∑
k=1

WkXk
∇T
ρT

D
(T )
k

Yk
=
W

ρ

∇T
T

N∑
k=1

D
(T )
k (17)

Hence, the flux criterion in terms of zk’s is

N∑
k=1

Wkzk =
W

ρ

∇T
T

N∑
k=1

D
(T )
k = α (18)

The Equations (16) and (18) can be combined into a single Equation (19).

(
diag(V X)− diag(X)V − SWT

)
z = b− αS (19)

where S ∈ RN×1 is a random vector. Equation (19) can be rewritten as

(
D − PQT

)
z = b− αS (20)

where D = diag(LRTX) ∈ RN×N , P =

[
diag(X)L, S

]
∈ RN×(r+1), Q =

[
R, W

]
∈ RN×(r+1) and r � N .

The solution to Equation (20) is given by the Sherman-Morrison-Woodbury (SMW) formula [31, 32], i.e.,

z = D−1 (b− αS) +D−1P
(
I −QTD−1P

)−1
QTD−1 (b− αS) (21)
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The main thing to note with the SMW formula is that it if we can solve a linear system efficiently, then low-rank

updates to the linear system can also be solved efficiently. Once the vector z ∈ RN×1 is obtained, the diffusion

velocities vk’s can be obtained by Equation (22).

vk =


zk
Xk
− ∇T
ρT

D
(T )
k

Yk
if Xk 6= 0

−∇T
ρT

D
(T )
k

Yk
if Xk = 0

(22)

The pseudocode for computing vk’s using Equations (21) and (22), along with the computational cost for

each step, is presented in Algorithm 1. Note that the only dense matrix we are inverting is in the last step in

Algorithm 1, i.e., we are inverting (I − P ), which is a small dense matrix of size R(r+1)×(r+1).

Algorithm 1 Pseudo code for computing diffusion velocities and computational complexity of each step; Note
that the rank r of the matrix V is much smaller and is independent of N , the size of the matrix V .

Step # Computational step Matrix/Vector type Cost

1 V =ε LR
T using PPACA Thin matrices L,R ∈ RN×r O(r2N)

2 D = diag(LRTX) Diagonal matrix D ∈ RN×N O(N)

3 P =
[
diag(X)L S

]
Thin matrix P ∈ RN×(r+1) O(rN)

4 α =
W

ρ

∇T
T

N∑
k=1

D
(T )
k Scalar α ∈ R O(N)

4 b̃ = D−1(b− αS) Vector b̃ ∈ RN×1 O(N)

5 P̃ = D−1P Thin matrix P̃ ∈ RN×(r+1) O(rN)

6 b = QT b̃ Vector b ∈ R(r+1)×1 O(rN)

7 P = QT P̃ Small matrix P ∈ R(r+1)×(r+1) O(r2N)

8 z = b̃+ P̃
(
I − P

)−1
b Solution vector z ∈ RN×1 O(rN + r3)

9 vk =


zk
Xk
− ∇T
ρT

D
(T )
k

Yk
if Xk 6= 0

−∇T
ρT

D
(T )
k

Yk
if Xk = 0

Diffusion velocities vk, where k ∈ {1, 2, . . . , N} O(N)

4. Numerical benchmarks

4.1. Benchmark 1

For the same subsets of species considered in Section 2.2, based on the mechanism of Sarathy et al. [17],

we consider a 1D multi-component diffusion problem on the interval [−1, 1] with an imposed temperature and

mass fraction profile. The pressure throughout the domain is kept constant to be the atmospheric pressure and

the body forces are taken as zero. The interval is discretized into 1001 equally spaced grid points. The right

hand side, which involves the gradients of the mass fractions are computed using second order central difference.

The diffusion velocities are computed at all the 1001 grid points and the total time taken for this computation

10



using the fast algorithm and the conventional algorithm based on LU decomposition (Gaussian elimination)

implemented using the linear algebra package Eigen [33] is shown in Figure 3(a).
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(a) Total time taken, which includes computing the low-rank factor-
ization using PPACA and obtaining the diffusion velocity using the
SMW formula, at all grid points
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(b) Maximum of the relative error over all grid points in the com-
puted solution using the fast algorithm

Figure 3: Fast algorithm for different accuracies versus LU decomposition in the interval [−1, 1] with 1001 grid points
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Iterative ε = 10−14

O(N)

O(N3)

Figure 4: Comparison of the total time taken for our proposed fast algorithm versus the total time taken for the iterative biconjugate
gradient based method proposed by Giovangigli [15]

From Figure 3(a), we see that even for a small number of species (224) the fast algorithm, for an accuracy of

10−6, is around 30 times faster than the conventional algorithm. Not surprisingly, the computational saving and

advantage is more prominent for a large number of species. For instance, with 1794 species the fast algorithm, for

an accuracy of 10−6, is around 2000 times faster than the conventional algorithm. Once the user input accuracy

11



is fixed, the accuracy of the solution is independent of the number of species as shown in Figure 3(b). Figure 4

presents the comparison our fast algorithm with the iterative biconjugate gradient proposed by Giovangigli [15].

We can clearly see that the computational cost of our proposed algorithm is orders of magnitude faster than

the iterative method. In fact, the iterative method still scales as O(N3) albeit it is faster than the usual LU

decomposition.

4.2. Benchmark 2

We also apply this algorithm to compute diffusion velocities of species involved in a jet fuel surrogate mech-

anism proposed by Narayanaswamy et al. [34], which has been developed in stages [35–38]. The temperature

and species mass fractions profiles are obtained from a transient solution to a 1D premixed flame of a jet fuel

surrogate. The simulation is performed at atmospheric pressure and unburnt temperature of 403K [34] in a

computational domain of length 17.6mm (with 303 grid points) using FlameMaster [39]. The mechanism consists

of 369 species. No body forces are considered. The time taken and accuracy in the diffusion velocities computed

at all the grid points at a specific time instant for different input accuracies are provided in Table 1. Note that

the fast algorithm, with an input accuracy of 10−6, is nearly 80 times faster than the conventional algorithm.

The error in the solution is comparable with the input accuracy of the low-rank factorization of the matrix V .

Table 1: Multi-component diffusion for a transient solution to a 1D premixed flame of a jet fuel surrogate. The total time taken for
the fast algorithm includes computing the low-rank factorization using PPACA and obtaining the diffusion velocity using the SMW
formula at all grid points. The relative error obtained is the maximum over all the grid points of the relative error of the solution
measured using the ‖·‖. The diffusion coefficients are computed using inelastic molecular collisions.

Input accuracy Time taken (in secs) Relative error
for PPACA (εinp) Fast LU in solution (εsol)

10−6 0.34
24.3

1.8× 10−5

10−10 1.01 7.4× 10−10

10−14 1.94 5.1× 10−15

5. Conclusions

An accurate, fast, direct and robust algorithm to compute multi-component diffusion velocities has been

proposed. To our knowledge, this is the first provably accurate algorithm (the solution can be obtained up to an

arbitrary degree of precision) scaling at a computational complexity of O(N) in finite precision. The key idea

involves leveraging the fact that the matrix of the reciprocal of the binary diffusivities, V , is low rank, with its

rank being independent of the number of species involved. The low rank representation of matrix V is computed

in a fast manner using PPACA algorithm [23, 24] at a computational complexity of O(N) and the Sherman-

Morrison-Woodbury [31, 32] formula is used to solve for the diffusion velocities. Rigorous proofs and numerical

benchmarks illustrate the low rank property of the matrix V and scaling of the algorithm. This method is being

12



incorporated in a droplet burning simulation, as a part of our ongoing work, where the diffusion velocities need

to be computed accurately.
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