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An accurate discrete
model for web-core
sandwich plates

Anup Pydah and K Bhaskar

Abstract

An accurate discrete model is presented here for the analysis of simply supported web-

core sandwich plates. In this model, the face plates are analysed using the equations of
3D elasticity and for the webs a plane stress idealization is used to model the kinematics

of transverse bending while simple one-dimensional classical models are employed for

lateral bending and torsion. Thus, this model accounts for the non-classical effects of

transverse shear deformation and transverse thickness-stretch in the face-plates and

the webs. It is shown that this model is capable of accurately capturing the effects of

secondary local bending of the face-plates between the webs on the displacement and

stress fields. Results obtained by this rigorous approach are used to highlight the errors

of the commonly used model based on the classical hairbrush hypothesis for the
face-plates.
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Introduction

Sandwich plates are extremely efficient modular structures which possess high

stiffness-to-weight ratios and the capability to be tailored according to design

requirements. These attributes make them a popular structural choice in the aero-

space, naval, automobile and other high-performance industries.

Sandwich plates consist of two isotropic or orthotropic face-plates separated by

a core which may be continuous – in the form of a metallic or a low-strength

foam – or discrete – in the form of a hollow core consisting of a corrugated
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sheet or a number of discrete webs running in one direction parallel to the face-

plates, or square or hexagonal cell honeycombs, or other similar configurations [1].

Foam-core sandwich plates are usually analysed using a discrete three-layer

approach wherein the core and face-plates are modelled separately, along with

suitable stress and displacement continuity conditions at the interfaces. The typical

approximations made in such an approach are that the face-plates follow classical

plate – or even membrane – kinematics, while the core resists only shear [2].

However, the increasing use of composite face-plates, which have transverse

shear stiffness much smaller than bending stiffness as compared to metallic

plates, has led to the advent of models based on the first-order shear deformation

theory (FSDT) [3] as well as the three-dimensional elasticity theory for face-plates,

also besides the core [4,5].

For web-core, honeycomb core or other such discrete core plates, considerable

emphasis has been laid on developing ‘‘continuum-based’’ models wherein the

discrete core is replaced by an equivalent homogeneous orthotropic layer [6]; this

is obviously easier than discrete modelling of the core structural configuration.

The validity of such homogenization is established by comparing it with various

finite element models [7,8]. While this approach does simplify the analysis to a

great extent, a major drawback is that the complex expressions developed for the

stiffness parameters of a specific discrete core plate cannot be used for other core

configurations [9]; hence significant work has been done on developing homogen-

ization schemes for various discrete core configurations [10–12]. However, in any

of these homogenized models, the structure loses its discrete nature, making it

impossible to capture local effects like the secondary bending of the face-plates

between the webs of a web-core sandwich plate. Burton et al. [13,14] conducted

extensive numerical studies and concluded that global response quantities like

strain energy components, vibrational frequencies etc. can be predicted accurately

by the homogenized approach, but detailed local response components like stres-

ses would require a higher-order discrete layer approach. They also concluded

that the mechanical response of such structures is extremely sensitive to small

variations in the effective material properties. For web-core sandwich plates,

Romanoff et al. [15] developed a model which used a combination of the homo-

genized formulation based on the Reissner–Mindlin theory and a Kirchhoff plate

analysis which captures the local bending of the face-plates to accurately predict

stresses.

There have been a few attempts to discretely model the hollow structural core of

certain sandwich plates [16,17]. These models treat the web core sheets as

one-dimensional incompressible beams and capture their shear deformation

using a FSDT while ignoring the shear deformations of the face-plates. Further,

the out-of-plane effects of the webs including torsion and lateral bending are

omitted.

In the above context, the objective of the present paper is to extend the kine-

matics of a discrete model, proposed recently by the authors for blade-stiffened

plates [18,19], to web-core sandwich plates. In these references it was shown that
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non-classical effects like transverse shear deformation and thickness-stretch play an

important role in the kinematics of stiffened plates and that the errors of the

classical theories are much more significant in stiffened plates than for correspond-

ing unstiffened plates. It was also shown that the shear deformation of the plate is

more significant than that of the stiffeners and must be captured unless the plate is

extremely thin.

In the present extension of the above model to the discrete analysis of web-core

sandwich plates, the face-plates are modelled using the full three-dimensional equa-

tions of elasticity while the webs are analysed using a plane-stress formulation for

transverse bending, and Euler–Bernoulli hypothesis and Saint-Venant’s theory of

torsion, respectively, for lateral bending and twisting. Thus this model completely

captures the non-classical effects of transverse shear deformation and thickness-

stretch for the face-plates and the webs while completely neglecting such effects on

lateral bending of the webs. This approach is first validated by comparing it with a

full-3D finite element model of the face-plates as well as the webs. Later, results are

generated for isotropic and orthotropic web-core plates of different thicknesses and

configurations and are compared with models based on the classical Kirchhoff

hypothesis for the face-plates to ascertain the importance of capturing these non-

classical effects for the face-plates. Transverse deflections and stress results are

tabulated for future comparisons.

Formulation

Consider a rectangular web-core sandwich plate of sides a, b (Figure 1) with simply

supported edges of the shear-diaphragm type. The sandwich plate consists of two

face-plates of thickness hf separated by a set of nw equally spaced unidirectional

webs, each of height H and breadth B. The webs are integrally attached to the face-

plates and are also taken to be simply supported at the ends of their length. In the

present discrete formulation, the plate and the webs are modelled separately while

maintaining suitable compatibility at the interfaces; this is explained in full detail

below.

As the sandwich plate bends in the transverse z-direction, each web bends in the

transverse (x–z) as well as the lateral (x–y) planes, and also twists along its length.

The bending of the face-plates can be accurately analysed using the 3D equations

of elasticity so as to completely capture the non-classical effects of transverse shear

deformation and thickness-stretch. Transverse bending of the webs is analysed

using a 2D plane stress formulation which completely accounts for vertical shear

deformation (�xz) and normal strain (ez) effects. The other two modes of deform-

ation of the web, namely torsion and lateral bending, are expected to be of lesser

significance to the overall kinematics of the sandwich plate and are hence modelled

using the one-dimensional classical Saint-Venant’s free-warping torsion theory and

the Euler-Bernoulli theory, respectively.

Consistent with the above formulations, a set of appropriate interface tractions

are introduced, as explained below.
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The interface tractions

All three interface tractions are considered at the top and bottom of each

web (Figure 2) with the possibility of a general variation across the interface

Figure 2. Interface tractions on a web.

Figure 1. Web-core sandwich plate.
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width B; these quantities correspond to the stresses �z, �zx and �zy on the interface

plane x–y, and their directions, when positive as per the sign convention adopted

here, are shown in the figure. Constant as well as linear antisymmetric variations

along the breadth B of the interface patch are assumed for the transverse normal

and in-plane shear tractions, while the out-of-plane shear traction is assumed to be

constant along the breadth. The mathematical expressions for these tractions

(for the i th web), as well as suitable series expansions for later use, are given below:

1. The transverse normal traction pQint(x, y) is taken as

p
iQint ¼

p
iQ

S
int þ

p
i Q

A
int ¼

X

1

m¼1

�p

i
QS

m þ
p
iQ

A
m:y
�

sin

�

m�

a
x

�

ð1Þ

2. The in-plane shear traction pSint(x, y) is taken as

p
i Sint ¼

p
i S

S
int þ

p
i S

A
int ¼

X

1

m¼1

�p

i
SS
m þ

p
i S

A
m:y
�

cos

�

m�

a
x

�

ð2Þ

3. The out-of plane shear traction pVint(x, y) is taken as

p
iVint ¼

X

1

m¼1

p
iV

S
m sin

�

m�

a
x

�

ð3Þ

where the superscripts S and A denote the symmetric and antisymmetric part of the

tractions respectively, and the superscript p takes the values of t and b to denote the

top or bottom of the web, respectively.

Analysis of the web

The plane stress idealization for the web captures the effects of the constant parts of

the normal and in-plane shear tractions,
p
iQ

S
int and

p
i S

S
int, while the classical Euler–

Bernoulli beam theory and Saint-Venant’s torsion formulation are used to analyse

the lateral bending and torsion of the web due to the remaining traction compo-

nents. The latter one-dimensional formulations require the tractions to be shifted

to the centre line of the web and rewritten as loads and moments per unit length.

The anti-symmetric parts of the normal tractions
p
iQ

A
int are statically equivalent to

torques per unit length
p
i T1ðxÞ, with the superscript p just to show the source of such

torques. Shifting the out-of-plane shear tractions
p
iVint to the mid line results in a

statically equivalent loading system consisting of lateral loads per unit length
p
i qlðxÞ

and torques per unit length
p
i T2ðxÞ; once again, the superscript p indicates the

source. The effect of the antisymmetric part of the in-plane shear tractions
p
i S

A
int
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is to produce distributed moments per unit length
p
imlðxÞ. These are summarized

below:

p
i T1ðxÞ ¼

Z B
2

�B
2

p
i Q

A
int:y dy ¼

B3

12
:
X

1

m¼1

p
iQ

A
m sin

�

m�

a
x

�

ð4Þ

p
i T2ðxÞ ¼

p
i VintðxÞ:B:

H

2
¼

BH

2
:
X

1

m¼1

p
iV

S
m sin

�

m�

a
x

�

ð5Þ

p
i qlðxÞ ¼

p
i VintðxÞ:B ¼ B:

X

1

m¼1

p
iV

S
m sin

�

m�

a
x

�

ð6Þ

p
imlðxÞ ¼

Z B
2

�B
2

p
i S

A
int:y dy ¼

B3

12
:
X

1

m¼1

p
i S

A
m cos

�

m�

a
x

�

ð7Þ

with p¼ t or b.

Transverse bending of the web. This analysis, due to the normal and shear tractions
p
iQ

S
int and

p
i S

S
int, is carried out as a plane-stress problem in the x–z plane (Figure 2).

Assuming that the web is specially orthotropic with the plane stress constitutive law

�x

�z

�xz

8

>

<

>

:

9

>

=

>

;

¼

Q11 Q12 0

Q12 Q22 0

0 0 Q55

2

6

4

3

7

5

�x

�z

�xz

8

>

<

>

:

9

>

=

>

;

the 2D equations of equilibrium can be written in terms of the displacements u and

w along the x and z directions respectively, as

Q11u, xx þQ55u, zz þ ðQ12 þQ55Þw, xz ¼ 0

ðQ12 þQ55Þu, xz þQ55w, xx, þQ22w, zz ¼ 0 ð8Þ

Selection of displacement functions

uðx, zÞ ¼
X

1

m¼1

UðzÞ cos

�

m�

a
x

�

wðx, zÞ ¼
X

1

m¼1

WðzÞ sin

�

m�

a
x

�
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ensure that the shear-diaphragm type simple support conditions

at x ¼ 0, a; w ¼ 0, �x ¼ 0

for all z are satisfied a priori.

Substitution of the above displacement functions into (8) reduces them to a 4th

order system of linear ordinary differential equations in z. Following the standard

procedure of seeking solutions for U(z) and W(z) as

U

W

� �

¼
U0

W0

� �

esz

one gets the auxiliary equation as

A0 s4 þ B0 s2 þ C0 ¼ 0 ð9Þ

where A0, B0, C0 and D0 are functions of the harmonic m and the material properties

Qij of the web.

The nature of the roots of this equation dictates the final solution. For example,

in the case of real and distinct roots, the final solution is of the form

u ¼
X

1

m¼1

X

4

i¼1

C1ie
siz

 !

cos

�

m�

a
x

�

w ¼
X

1

m¼1

X

4

i¼1

C2ie
siz

 !

sin

�

m�

a
x

�

ð10Þ

Of the eight constants C1i, C2i (for each harmonic m), only four are independent.

The inter-relationships are established by substituting the above displacement field

into the ordinary differential equations and equating the coefficients of esiz (i¼ 1

to 4) in each equation to 0.

The four independent constants for each m can be determined by enforcing the

conditions:

a. at the top surface z ¼ �H
2
,

�zðxÞ ¼
t
iQ

S
int and �xzðxÞ ¼

t
iS

S
int

b. at the bottom surface z ¼ H
2
,

�zðxÞ ¼
b
iQ

S
int and �xzðxÞ ¼

b
i S

S
int
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and are thus obtained in terms of
p
iQ

S
m and

p
i S

S
m (see equations (1) and (2)).

Lateral bending of the web. The analysis of the lateral bending of the web, due to

lateral loads
p
i qlðxÞ per unit length and distributed moments

p
imlðxÞ per unit length,

is carried out using the classical beam theory.

The effect of these loads can be captured by starting with a displacement field as

vbðx, yÞ ¼ vbðxÞ

ubðx, yÞ ¼ �y:vb, x

The corresponding equations of equilibrium are

Vl, x ¼
t
iql �

b
i ql ð11Þ

Ml, x þ ðtiml �
b
imlÞ þ Vl ¼ 0 ð12Þ

where Vl and Ml are the shear force and bending moment respectively, at any

section of the beam.

Eliminating Vl from (11) and (12) yields

Ml, xx þ ðtiml �
b
i mlÞ, x þ

t
iql �

b
i ql ¼ 0 ð13Þ

Using �x¼Exex¼�Ex.y vb,xx and obtaining the moment-curvature relations by

appropriate integrations over the cross-sectional area A, the governing equation

can be derived from (13) as

Ex:Izzvb, xxxx þ ðtiml �
b
imlÞ, x þ

t
iql �

b
i ql ¼ 0 ð14Þ

where Izz is the area moment of inertia of the cross-section about the neutral axis

passing through the centroid.

For simply supported boundary conditions at the ends given by

at x ¼ 0, a; vb ¼ Ml ¼ 0

i.e. vb ¼ vb, xx ¼ 0,

a solution can be sought as

vbðxÞ ¼
X

1

m¼1

vbm sin

�

m�

a
x

�
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Substitution of this in equation (14) yields vbm in terms of
p
iV

S
m and

p
i S

A
m

(see equations (6) and (7)).

Torsion of the web. The torsional analysis of the web is carried out using Saint-

Venant’s assumption that cross-sections of the web rotate as rigid bodies and

warp freely. It needs to be noted that the web is subject to variable torques

along its length, so this is a case of non-uniform torsion; however, since the

warping constant is quite small for the open section webs considered here, it is

neglected and the torque-twist relationship is simply taken as

Tx�Gxz:J:�, x ð15Þ

where Tx is the the torque stress resultant, y(x) is the rotation of a cross-section

about its centre of twist and J is the torsional constant of the rectangular cross

section given by [20]

J ¼ H:B3

�

1

3
�
64

�5

B

H

X

1

r¼1,3,5::

1

r5
tanh

�

r�H

2B

��

With respect to the torsional loads given by (4) and (5), the equation of motion

for this system is

Tx,x ¼t
i T1 þ

t
i T2 �

b
i T1 þ

b
i T2

Using (15), the governing equation can be derived as

Gxz:J:�, xx ¼t
i T1 þ

t
i T2 �

b
i T1 þ

b
i T2 ð16Þ

Corresponding to the shear-diaphragm boundary conditions

at x ¼ 0, a : � ¼ 0

a solution can be sought in the form

�ðxÞ ¼
X

1

m¼1

�m sin

�

m�x

a

�

Substitution of this in equation (16) yields ym in terms of
p
iQ

A
m and

p
iV

S
m

(see equations (4) and (5)).
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The displacement components along the y and z directions due to twisting are

given by

vtðx, y, zÞ ¼ �z:�ðxÞ

wtðx, y, zÞ ¼ y:�ðxÞ

The shear strain gxy (required later for enforcing compatibility between the

face-plates and the webs) is found out using

�xy ¼ �, z=Gxy ð17Þ

where � is the Prandtl stress function given by [20]

�ðx, y, zÞ ¼
8GxyB

2�, x

�3
:
X

1

r¼1,3,5::

1

r3
:

�

1�
coshðr�z=BÞ

coshðr�H=2BÞ

�

: sinðr�=2Þ: cos

�

r�y

B

�

This concludes the analysis of the web. By virtue of the principle of superposition,

the total displacement field is simply a sum of the displacement contributions from

each of the three-deformation modes of the web. While the web also undergoes

warping displacement u due to torsion, this displacement is not of any interest in

this analysis. This is because the displacement continuity between the plate and webs

will be enforced (see section Analysis of the overall structure) only along the centre

line of the interface patch, and along this line the warping displacement u is zero.

3D elasticity formulation for the face-plates

The simply supported face-plate of dimensions a x b x hf is taken to be orthotropic

with respect to the x–y–z axes and governed by the following constitutive law:

�x
�y
�z
�yz
�xz
�xy

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

�x
�x
�x
�yz
�xz
�xy

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

For each face-plate the origin of the z coordinate is taken at its mid-plane. The 3D

equations of equilibrium in terms of the displacements u, v and w along the x, y and

z directions respectively are

C11u, xx þ C66u, yy þ C55u, zz þ ðC12 þ C66Þv, xy þ ðC13 þ C55Þw, xz ¼ 0
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C66v, xx þ C22v, yy þ C44v, zz þ ðC12 þ C66Þu, xy þ ðC23 þ C44Þw, yz ¼ 0

C55w, xx þ C44w, yy þ C33w, zz þ ðC13 þ C55Þu, xz þ ðC23 þ C44Þv, yz ¼ 0
ð18Þ

The displacement functions

uðx, y, zÞ ¼
X

1

m¼1

X

1

n¼1

UðzÞ cos

�

m�

a
x

�

sin

�

n�

b
y

�

vðx, y, zÞ ¼
X

1

m¼1

X

1

n¼1

VðzÞ sin

�

m�

a
x

�

cos

�

n�

b
y

�

wðx, y, zÞ ¼
X

1

m¼1

X

1

n¼1

WðzÞ sin

�

m�

a
x

�

sin

�

n�

b
y

�

satisfy the shear-diaphragm conditions of both face-plates

at x ¼ 0, a; w ¼ 0, v ¼ 0, �x ¼ 0

at y ¼ 0, b; w ¼ 0, u ¼ 0, �y ¼ 0

a priori, and reduce the problem to a 6th order system of linear ordinary differen-

tial equations.

Proceeding as done for the web by starting with

U

V

W

8

>

<

>

:

9

>

=

>

;

¼

U0

V0

W0

8

>

<

>

:

9

>

=

>

;

esz

one gets the auxiliary equation as

As6 þ B s4 þ Cs2 þD ¼ 0 ð19Þ

where A, B, C and D are functions of m, n and the material properties Cij.

The nature of the roots of this auxiliary equation dictates the form of the final

solution. For the case of real and distinct roots, the final solution is given by:

u ¼
X

1

m¼1

X

1

n¼1

X

6

i¼1

K1ie
siz

 !

cos

�

m�

a
x

�

sin

�

n�

b
y

�

Pydah and Bhaskar 11



v ¼
X

1

m¼1

X

1

n¼1

X

6

i¼1

K2ie
siz

 !

sin

�

m�

a
x

�

cos

�

n�

b
y

�

w ¼
X

1

m¼1

X

1

n¼1

X

6

i¼1

K3ie
siz

 !

sin

�

m�

a
x

�

sin

�

n�

b
y

�

ð20Þ

wherein only six constants (for each harmonic set fm, n}) are independent.

For the purpose of enforcing lateral surface conditions, the interface tractions
p
iQint,

p
i Sint and

p
iVint acting over any ith strip 0� x� a and ðb� � B

2
Þ � y � ðb� þ B

2
Þ

need to be expressed in double series as

p
iQint ¼

X

1

m¼1

X

1

n¼1

�

p
iQmn sin

�

m�

a
x

�

sin

�

n�

b
y

��

ð21Þ

p
i Sint ¼

X

1

m¼1

X

1

n¼1

�

p
i Smn cos

�

m�

a
x

�

sin

�

n�

b
y

��

ð22Þ

and

p
i Vint ¼

X

1

m¼1

X

1

n¼1

�

p
iVmn sin

�

m�

a
x

�

cos

�

n�

b
y

��

ð23Þ

where

p
iQmn ¼

2

b

Z ðb�þB
2
Þ

ðb��B
2
Þ

ð
p
i Q

S
m þ

p
iQ

A
m:ð y� b�ÞÞ sin

�

n�

b
y

�

dy

p
i Smn ¼

2

b

Z ðb�þB
2
Þ

ðb��B
2
Þ

ð
p
i S

S
m þ

p
i S

A
m:ð y� b�ÞÞ sin

�

n�

b
y

�

dy

p
i Vmn ¼

2

b

Z ðb�þB
2
Þ

ðb��B
2
Þ

p
i V

S
m sin

�

n�

b
y

�

dy

and b*¼ i*b/(nw+1)

The lateral boundary conditions for the top face-plate are:

a. at the top surface (z ¼ �
hf
2
),

�zðx, yÞ ¼ �tq0ðx, yÞ, �xzðx, yÞ ¼ 0 and �yzðx, yÞ ¼ 0

12 Journal of Sandwich Structures and Materials 0(00)



b. at the bottom surface (z ¼
hf
2
),

�zðx, yÞ ¼
X

nw

i¼1

t
iQint, �xzðx, yÞ ¼

X

nw

i¼1

t
iSint and �yzðx, yÞ ¼

X

nw

i¼1

t
iVint ð24Þ

and for the bottom face-plate are:

a. at the top surface (z ¼ �
hf
2
),

�zðx, yÞ ¼
X

nw

i¼1

b
iQint, �xzðx, yÞ ¼

X

nw

i¼1

b
i Sint and �yzðx, yÞ ¼

X

nw

i¼1

b
iVint

b. at the bottom surface (z ¼
hf
2
),

�zðx, yÞ ¼
bq0ðx, yÞ, �xzðx, yÞ ¼ 0 and �yzðx, yÞ ¼ 0 ð25Þ

where tq0 and bq0 are the applied transverse loads on the top and bottom face-

plates respectively, which are taken to be positive when applied downward in the

positive z direction. The above equations yield the six unknown constants of the

top and bottom face-plates in terms of
p
i Q

S
m,

p
i Q

A
m,

p
i S

S
m,

p
i S

A
m,

p
i V

S
m and the applied

transverse loads.

Analysis of the overall structure

With the continuity of interface tractions already satisfied as explained above, the

only step left is to enforce the displacement continuity along the interface patch at

the top and bottom of each web. Consistent with the approximate models

employed for the webs, the following interface continuity conditions are

appropriate:

1. Continuity of the u, v and w displacements along the centre line of each interface

patch of width B.

2. Continuity of the rotations w,y of the face-plate and �v,z of the web along the

centre line of each interface patch of width B (see Figure 3).

3. Continuity of the inplane rotation u,y of a small linear element oriented along

the y-direction in the plane of the interface patch for both the face-plate and the

web; the small element is located at the centre of the patch (see Figure 3).

The continuity conditions 2 and 3 are necessary in order to maintain the integral

nature of the web-core sandwich structure. It is convenient to enforce condition 3
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by ensuring continuity of the shear strain gxy of the face-plate and the web along

the centre line of the interface patch; this is because gxy¼ u,y+ v,x and continuity

of v,x is already enforced by virtue of condition 1. The limitation of enforcing the

continuity conditions only along the centre line of the interface patch is shown later

to be quite satisfactory and one that yields good agreement with the results of full

3-D modelling of both the face-plates and the webs.

Imposing the above continuity conditions and comparing the corresponding

Fourier terms results in a set of linear equations in
p
i Q

S
m,

p
iQ

A
m,

p
i S

S
m,

p
i S

A
m and

p
i V

S
m.

A simpler model based on classical assumptions

In order to study the importance of capturing non-classical effects like transverse

shear deformation and thickness stretch in the face-plates, the above rigorous

model needs to be compared with one based on the kinematic assumptions of

the classical plate theory, namely the hairbrush hypothesis for the face-plates;

while doing so, it is important to shift the interface tractions to the mid-plane of

the face-plates, as explained below. It should be noted that the webs continue to be

analysed as explained earlier, because the transverse shear deformation of the core

should always be accounted for in sandwich plate analysis.

Shifting the interface tractions to the mid-plane of the plate results in two add-

itional distributed moments
p
impxðx, yÞ and

p
impyðx, yÞ per unit area, acting over the

interface area a x B between the ith web and the face-plate, besides
p
i Qintðx, yÞ,

p
i Sintðx, yÞ and

p
i Vintðx, yÞ (see equations (21), (22) and (23)). These are given by

p
i mpxðx, yÞ ¼

hf

2
:
p
i Sintðx, yÞ ¼

hf

2

X

1

m¼1

X

1

n¼1

�

p
i Smn cos

�

m�

a
x

�

sin

�

n�

b
y

��

Figure 3. Displacement continuity at the interface.
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p
i mpyðx, yÞ ¼

hf

2
:
p
i Vintðx, yÞ ¼

hf

2

X

1

m¼1

X

1

n¼1

�

p
iVmn sin

�

m�

a
x

�

cos

�

n�

b
y

��

A displacement field given by

wðx, y, zÞ ¼ wðx, yÞ

uðx, y, zÞ ¼ u0ðx, yÞ � z:w, x

vðx, y, zÞ ¼ v0ðx, yÞ � z:w, y

where u0, v0 and w are mid-plane displacements, is sufficient to capture the effect of

the loading system.

The corresponding equations of equilibrium for the top face-plate are

Nx, x þNxy,y þ
X

nw

i¼1

t
iSint ¼ 0 ð26Þ

Nxy, x þNy,y þ
X

nw

i¼1

t
iVint ¼ 0 ð27Þ

Mx, x þMxy,y þ
X

nw

i¼1

t
impx ¼ Qx ð28Þ

Mxy, x þMy,y þ
X

nw

i¼1

t
impy ¼ Qy ð29Þ

Qx, x þQy,y þ
X

nw

i¼1

t
iQint þ

t q0 ¼ 0 ð30Þ

wherein Nj, Mj and Qj are the usual stress resultants of plate theory and tq0 is the

transverse load applied on the top face-plate.

Eliminating Qx and Qy from (30) using (28) and (29), we have

Mx, xx þ 2Mxy, xy þMy, yy þ
X

nw

i¼1

ðtiQint þ
t
impx, x þ

t
impy, yÞ þ

t q0 ¼ 0 ð31Þ

Using the plane stress-reduced constitutive law for the plate as given by

�x

�y

�xy

8

>

<

>

:

9

>

=

>

;

¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2

6

4

3

7

5

�x

�y

�xy

8

>

<

>

:

9

>

=

>

;
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and obtaining the generalized force displacement relations by appropriate integra-

tion over the thickness of the plate, the governing equations of the top face-plate

can be derived as

A11u0, xx þ A12v0, xy þ A66ðu0, yy þ v0, xyÞ ¼ �
X

nw

i¼1

t
iSint

A66ðu0, xy þ v0, xxÞ þ A12u0, xy þ A22v0, yy ¼ �
X

nw

i¼1

t
iVint

D11w, xxxx þD22w, yyyy þ ð2D12 þ 4D66Þw, xxyy ¼
X

nw

i¼1

ðtiQint þ
t
impx, x þ

t
impy, yÞ þ

t q0

where Aij and Dij are defined as

ðAij,DijÞ ¼

Z h=2

�h=2

Qijð1, z
2Þdz

Similarly, the governing equations of the bottom face-plate are derived as

A11u0, xx þ A12v0, xy þ A66ðu0, yy þ v0, xyÞ ¼
X

nw

i¼1

b
i Sint

A66ðu0, xy þ v0, xxÞ þ A12u0, xy þ A22v0, yy ¼
X

nw

i¼1

b
iVint

D11w, xxxx þD22w, yyyy þ ð2D12 þ 4D66Þw, xxyy ¼
X

nw

i¼1

ð�b
iQint þ

b
impx, x þ

b
i mpy, yÞ þ

bq0

where bq0 is the transverse load applied on the bottom face-plate. In the above

equations, Aij and Dij correspond to the stiffness coefficients Qij of the bottom face-

plate.

A solution of the form

wðx, yÞ ¼
X

1

m¼1

X

1

n¼1

Wmn sin

�

m�

a
x

�

sin

�

n�

b
y

�

u0ðx, yÞ ¼
X

1

m¼1

X

1

n¼1

Umn cos

�

m�

a
x

�

sin

�

n�

b
y

�
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v0ðx, yÞ ¼
X

1

m¼1

X

1

n¼1

Vmn sin

�

m�

a
x

�

cos

�

n�

b
y

�

ensures that the shear-diaphragm type simple support conditions for both the face-

plates:

at x ¼ 0, a; w ¼ 0, Mx ¼ 0, Nx ¼ 0, v ¼ 0

at y ¼ 0, b; w ¼ 0, My ¼ 0, Ny ¼ 0, u ¼ 0

are satisfied a priori.

Substitution of the displacements in the governing equations yields Umn, Vmn

and Wmn in terms of
p
iQ

S
m,

p
iQ

A
m,

p
i S

S
m,

p
i S

A
m,

p
iV

S
m and the applied transverse loads for

each face-plate.

Subsequent steps involving enforcement of displacement continuity along the

web-face-plate interfaces to determine the unknown traction coefficients are similar

to the ones explained earlier in section 2.4.

Results and discussion

Before proceeding with numerical studies, the acceptability of the assumptions

made in the above analytical formulation (denoted by 3D-PS, 3D elasticity for

the face-plates and plane stress for the webs) is verified by comparison with a

full three-dimensional finite element study (denoted by 3D-3D). The face-plates

and the webs are discretized using 20-noded Solid 186 elements in ANSYS. A mesh

involving four elements across the web depth, two elements across the web breadth

and two elements across the face-plate thickness is found to yield convergent

results. The problems considered are simply supported square web-core sandwich

plates with five equally spaced webs, subjected to a uniform downward load dis-

tributed equally on the top and bottom face-plates. Two materials are considered –

one isotropic with n¼ 0.3, and the other a unidirectional fibre composite with

the fibres and webs running along the x direction and with properties given by

EL/ET¼ 25, GLT/ET¼ 0.5, GTT/ET¼ 0.2 and nLT¼ nTT¼ 0.25, typical of graphite-

epoxy.

The central deflections and critical inplane stresses (�x and �y) of the top face-

plate are shown in Tables 1 and 2. Figure 4 shows the variation of the non-dimen-

sionalized deflections and inplane stresses along the span of the top face-plate. For

all cases, the breadth B of the webs are taken to be equal to the thickness hf of the

face-plate. The number of terms taken (mmax, nmax) in the Fourier series used in the

present formulation is of the order of (40, 400) to obtain good convergence of the

final results.

As can be seen from Tables 1 and 2, the deflections and stresses are predicted

quite accurately even for deep webs (a/H¼ 15). The 3D-PS model is also able to
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Figure 4. Displacement and stress fields for an orthotropic web-core sandwich plate with

a/hf¼ 60, H/hf¼ 4, B/hf¼ 1 and nw¼ 5.

Table 1. Isotropic web-core sandwich plate with five webs.

wcentreE
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=6,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf 3D-PS 3D-3D % Errora 3D-PS 3D-3D % Error 3D-PS 3D-3D % Error

60 4 88.47 90.34 �2.1 �0.221 �0.226 �2.2 �0.320 �0.305 4.9

120 4 82.39 83.26 �1.0 �0.219 �0.222 �1.4 �0.301 �0.291 3.4

aError of 3D-PS with respect to 3D-3D.

Table 2. Orthotropic web-core sandwich plate with five webs.

wcentreET
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=10,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf 3D-PS 3D-3D % Error 3D-PS 3D-3D % Error 3D-PS 3D-3D % Error

60 4 18.73 18.28 2.4 �0.543 �0.540 0.6 �0.093 �0.090 3.3

120 4 13.25 13.01 1.8 �0.530 �0.529 0.1 �0.081 �0.080 �0
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precisely capture the secondary bending of the face-plates between the webs, which

manifests as sudden changes in curvatures of the deflection field perpendicular to

the directions of the webs and waviness in the �y stress field (Figure 4). This indi-

cates that the plane stress idealization employed for the webs in the transverse x–z

plane and the simple one-dimensional lateral bending and torsion models are quite

adequate to model the kinematics of the webs and that enforcement of the asso-

ciated interface continuity conditions only along the centre line of each interface

patch is sufficient. Further, the assumed constant and linear components of the

interface tractions (see Figure 2) are also proved to be adequate.

Static flexure results derived from the present formulation are now generated for

simply supported isotropic and orthotropic square web-core plates of various

thicknesses. These are compared to results based on the classical approach denoted

by CPT-PS (i.e. Classical Plate Theory for the face-plates and plane stress for the

webs). The central deflections and critical inplane stresses (�x and �y ) at the top

face-plate are tabulated while non-dimensionalized deflections and inplane stress

fields are plotted along the span of the top face-plate. The following cases are

considered:

1. Bare isotropic and orthotropic square plates (Table 3).

2. Isotropic web-core sandwich plates with five (Table 4 and Figure 5) and seven

(Table 5 and Figure 6) equally spaced webs.

3. Orthotropic web-core sandwich plates with five (Table 6 and Figure 7) and seven

(Table 7 and Figure 8) equally spaced webs oriented parallel to the fibers.

The material properties are taken as for Tables 1 and 2. Further, the breadth B of

each web is taken to be equal to the thickness hf of the face-plates.

From these results, the following observations may be noted:

1. For all cases, the CPT-PS results of deflections are under-predictions as

expected.

Table 3. Bare plate.

Isotropic Plate Orthotropic Plate

wcentreE
q0

h3

a4
� 103 wcentreET

q0

h3

a4
� 104

a/h CPT 3D % Errora CPT 3D % Errora

60 44.36 44.42 �0.1 64.97 65.82 �1.3

80 44.36 44.39 �0.1 64.97 65.45 �0.7

120 44.36 44.38 0.0 64.97 65.18 �0.3

aError of CPTwith respect to 3D elasticity.
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Figure 5. Displacement and stress fields for an isotropic web-core sandwich plate with

a/hf¼ 60, H/hf¼ 4, B/hf¼ 1 and nw¼ 5.

Table 4. Isotropic web-core sandwich plate with five webs.

wcentreE
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=6,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf CPT-PS 3D-PS % Errora CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error

60 4 80.76 88.47 �8.7 �0.208 �0.221 �5.8 �0.350 �0.320 9.3

80 2 157.7 166.1 �5.0 �0.315 �0.325 �3.0 �0.612 �0.602 1.6

120 4 78.18 82.39 �5.1 �0.212 �0.219 �3.2 �0.324 �0.301 7.6

aError of CPT-PS with respect to 3D-PS.

Table 5. Isotropic web-core sandwich plate with seven webs.

wcentreE
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=10,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error

60 4 62.71 71.55 �12.4 �0.175 �0.193 �9.3 �0.403 �0.356 13.1

80 2 124.8 132.3 �5.7 �0.268 �0.277 �3.2 �0.578 �0.565 2.3

120 4 61.79 66.74 �7.4 �0.180 �0.191 �5.7 �0.381 �0.353 7.9
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2. The central deflection error of CPT-PS with respect to 3D-PS (fifth column in

Tables 4 to 7) is a combination of the effects of non-classical phenomena,

namely transverse shear deformation and thickness stretch. It has been shown

(see, for example, [20]) that the effect of shear deformation is always more sig-

nificant than thickness stretch, so this error will be referred to hereafter as the

shear deformation effect. This error is clearly significant (around 7%) even in

web-core sandwich plates with thin face-plates (a/hf¼ 120) and seems equally

pronounced in isotropic as well as orthotropic web-core plates. This has to be

contrasted with the results of the bare plate with the same a/h in Table 3 where

Figure 6. Displacement and stress fields for an isotropic web-core sandwich plate with

a/hf¼ 60, H/hf¼ 4, B/hf¼ 1 and nw¼ 7.

Table 6. Orthotropic web-core sandwich plate with five webs.

wcentreET
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=10,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error

60 4 17.31 18.73 �7.6 �0.565 �0.543 4.1 �0.095 �0.093 2.1

80 2 29.17 32.01 �8.9 �0.972 �0.957 1.5 �0.123 �0.124 �1.0

120 4 12.53 13.25 �5.4 �0.541 �0.530 2.0 �0.081 �0.081 0
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the errors are less than 0.3%. Thus, while the plate can be modelled as ‘‘thin’’

when used alone, such an idealization leads to significant errors when the same

plate is part of the sandwich construction. This is an important observation that

should be kept in mind while developing discrete models for sandwich plates.

3. The deflection plots perpendicular to the direction of the webs in Figures 5 to 8

reveal the prominent secondary bending effects of the face-plates between the

webs. This is characterized by abrupt changes in the curvature of the deform-

ations between the webs, with the waviness increasing as the number of webs

increases. This effect is more severe in the case of orthotropic web-core sandwich

plates because of the low bending stiffness of the plate in the direction perpen-

dicular to the webs. For such cases, it is further observed that the point of

Figure 7. Displacement and stress fields for an orthotropic web-core sandwich plate with

a/hf¼ 60, H/hf¼ 4, B/hf¼ 1 and nw¼ 5.

Table 7. Orthotropic web-core sandwich plate with seven webs.

wcentreET
q0

h3
f

a4
� 105

10�xða=2, a=2,�hf =2Þ

q0ð
a
hf
Þ2

10�y ða=2, a=10,�hf =2Þ

q0ð
a
hf
Þ2

a/hf H/hf CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error

60 4 13.49 14.61 �7.6 �0.457 �0.442 3.4 �0.085 �0.074 14.9

80 2 23.51 25.69 �8.5 �0.801 �0.789 1.5 �0.123 �0.121 1.8

120 4 9.87 10.43 �5.3 �0.440 �0.433 1.6 �0.062 �0.058 7.0
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maximum deflection shifts away from the centre of the plate to a point between

the webs. While the CPT-PS model is able to capture the qualitative aspects of

the secondary bending of the face-plates, it is evident that accounting for the

shear deformation of the face-plates is important to get accurate estimates of

deflections at specific points.

4. Critical values of the bending stresses (�x and �y) as calculated by both models

are shown in Tables 4 to 7. For any particular configuration of webs, the errors

of the CPT-PS model for the stresses are comparable to those for the deflections.

These stress errors are significant even for fairly thin face-plates (a/hf¼ 80),

indicating the importance of using thick face-plate kinematics for accurate

stress analysis.

5. The stress fields plotted in Figures 5 to 8 depict the effect of secondary bending

of the face-plates on the bending stress �y. The sudden changes in curvature of

the deformations of the face-plates between the webs cause this stress to oscillate

between being tensile and compressive, with the point of maximum �y occurring

between the webs away from the centre of the plate. For orthotropic web-core

plates, this stress is not expected to be very important (because of the low

bending stiffness of the face-plate in this direction), but for isotropic web-core

plates, this stress is clearly significant and even dominates over �x. Again, while

the CPT-PS model is able to exhibit the general trends of the stress field well, it is

unable to accurately capture the peak values.

Figure 8. Displacement and stress fields for an orthotropic web-core sandwich plate with

a/hf¼ 60, H/hf¼ 4, B/hf¼ 1 and nw¼ 7.
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Finally, a physical case study is presented to illustrate the difference in the flex-

ural behaviour of a web-core sandwich plate and a homogeneous bare plate; this

clearly shows the importance of employing discrete models for the accurate analysis

of web-core sandwich plates.

A simply-supported bare aluminium plate (E¼ 70GPa and n¼ 0.3) of dimen-

sions 1000mm� 1000mm� 50mm is subjected to a uniformly distributed load

q0¼ 100 kPa on the top surface. The displacements and stress fields are computed

using the 3D equations of elasticity. The same load is also applied on the top face-

sheet of a web-core sandwich plate of the same total thickness (50mm) as that of

the bare plate. The face-sheets have dimensions of 1000mm� 1000mm� 8.4mm

while the webs have cross-section dimensions B¼ 8.4mm and H¼ 33.3mm. Three

separate cases are considered with three, five and seven equally spaced webs.

Figure 9. Comparison of displacement fields.

24 Journal of Sandwich Structures and Materials 0(00)



The web-core sandwich plate is made of the same material as the bare plate.

Displacement and stress fields as determined by the 3D-PS model are plotted

along the midlines of the top-face plates and are compared with those of the

bare plate in Figures 9 and 10.

From these plots, it is observed that:

1. Since the total thickness of the homogeneous plate and web-core sandwich plate

are the same, the latter represents the case of material being removed from a

bare plate. Hence the displacement and bending stresses in the sandwich plate

are greater than those of the bare plate and are significantly influenced by

secondary bending effects, as explained below.

2. Due to the local secondary bending of the face-plates between the webs, the

deformation and stress fields of web-core sandwich plates are characteristically

Figure 10. Comparison of stress fields.
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different from those of a homogeneous bare plate. Sudden changes of curvatures

of the transverse deflections perpendicular to the direction of the webs causes the

�y bending stress to oscillate between being tensile and compressive in web-core

sandwich plates. Further, the point of maximum �y shifts away from the centre

of the plate to a point between the support and the first web, and is much larger

in magnitude than the critical value of �x. On the other hand, the deflection and

stress fields of the homogenous plate in both the perpendicular directions show

no sudden variations, with the points of maximum deflection and stresses lying

in the centre of the plate as expected. This clearly indicates the importance of

using discrete models to capture the localized secondary bending effects in web-

core sandwich plates for accurate displacement and stress analysis.

3. As the number of webs increase, the maximum deflections in the sandwich plate

reduce and the effects of secondary bending or ‘‘waviness’’ of the face plates

between the webs become more localized. Interestingly, with an increase in the

number of webs, the maximum stresses do not reduce significantly despite the

decrease in amplitude of the oscillatory �y stress.

Conclusion

An accurate discrete model for simply supported web-core plates is presented

which completely accounts for the non-classical effects of transverse shear deform-

ation and transverse thickness-stretch in the face-plates and the webs. This model is

capable of accurately capturing the secondary local bending effects of the face-

plates between the webs on the displacement and stress fields. Further, it is shown

that the lateral bending and torsion of the webs can be satisfactorily modelled using

classical one-dimensional theories. Results obtained by this rigorous approach are

used to highlight the errors of the commonly used model based on the classical

hairbrush hypothesis for the face-plates. It has clearly been shown that even a plate

that can be modelled using the classical thin-plate theory when used as a bare plate

needs to be considered as thick when it is used as a sandwich face-plate.
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