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Abstract

An accurate discrete model is presented here for the analysis of simply supported web-
core sandwich plates. In this model, the face plates are analysed using the equations of
3D elasticity and for the webs a plane stress idealization is used to model the kinematics
of transverse bending while simple one-dimensional classical models are employed for
lateral bending and torsion. Thus, this model accounts for the non-classical effects of
transverse shear deformation and transverse thickness-stretch in the face-plates and
the webs. It is shown that this model is capable of accurately capturing the effects of
secondary local bending of the face-plates between the webs on the displacement and
stress fields. Results obtained by this rigorous approach are used to highlight the errors
of the commonly used model based on the classical hairbrush hypothesis for the
face-plates.

Keywords
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Introduction

Sandwich plates are extremely efficient modular structures which possess high
stiffness-to-weight ratios and the capability to be tailored according to design
requirements. These attributes make them a popular structural choice in the aero-
space, naval, automobile and other high-performance industries.

Sandwich plates consist of two isotropic or orthotropic face-plates separated by
a core which may be continuous — in the form of a metallic or a low-strength
foam — or discrete — in the form of a hollow core consisting of a corrugated
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sheet or a number of discrete webs running in one direction parallel to the face-
plates, or square or hexagonal cell honeycombs, or other similar configurations [1].

Foam-core sandwich plates are usually analysed using a discrete three-layer
approach wherein the core and face-plates are modelled separately, along with
suitable stress and displacement continuity conditions at the interfaces. The typical
approximations made in such an approach are that the face-plates follow classical
plate — or even membrane — kinematics, while the core resists only shear [2].
However, the increasing use of composite face-plates, which have transverse
shear stiffness much smaller than bending stiffness as compared to metallic
plates, has led to the advent of models based on the first-order shear deformation
theory (FSDT) [3] as well as the three-dimensional elasticity theory for face-plates,
also besides the core [4,5].

For web-core, honeycomb core or other such discrete core plates, considerable
emphasis has been laid on developing ‘“‘continuum-based” models wherein the
discrete core is replaced by an equivalent homogeneous orthotropic layer [6]; this
is obviously easier than discrete modelling of the core structural configuration.
The validity of such homogenization is established by comparing it with various
finite element models [7,8]. While this approach does simplify the analysis to a
great extent, a major drawback is that the complex expressions developed for the
stiffness parameters of a specific discrete core plate cannot be used for other core
configurations [9]; hence significant work has been done on developing homogen-
ization schemes for various discrete core configurations [10—12]. However, in any
of these homogenized models, the structure loses its discrete nature, making it
impossible to capture local effects like the secondary bending of the face-plates
between the webs of a web-core sandwich plate. Burton et al. [13,14] conducted
extensive numerical studies and concluded that global response quantities like
strain energy components, vibrational frequencies etc. can be predicted accurately
by the homogenized approach, but detailed local response components like stres-
ses would require a higher-order discrete layer approach. They also concluded
that the mechanical response of such structures is extremely sensitive to small
variations in the effective material properties. For web-core sandwich plates,
Romanoff et al. [15] developed a model which used a combination of the homo-
genized formulation based on the Reissner—Mindlin theory and a Kirchhoff plate
analysis which captures the local bending of the face-plates to accurately predict
stresses.

There have been a few attempts to discretely model the hollow structural core of
certain sandwich plates [16,17]. These models treat the web core sheets as
one-dimensional incompressible beams and capture their shear deformation
using a FSDT while ignoring the shear deformations of the face-plates. Further,
the out-of-plane effects of the webs including torsion and lateral bending are
omitted.

In the above context, the objective of the present paper is to extend the kine-
matics of a discrete model, proposed recently by the authors for blade-stiffened
plates [18,19], to web-core sandwich plates. In these references it was shown that
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non-classical effects like transverse shear deformation and thickness-stretch play an
important role in the kinematics of stiffened plates and that the errors of the
classical theories are much more significant in stiffened plates than for correspond-
ing unstiffened plates. It was also shown that the shear deformation of the plate is
more significant than that of the stiffeners and must be captured unless the plate is
extremely thin.

In the present extension of the above model to the discrete analysis of web-core
sandwich plates, the face-plates are modelled using the full three-dimensional equa-
tions of elasticity while the webs are analysed using a plane-stress formulation for
transverse bending, and Euler—Bernoulli hypothesis and Saint-Venant’s theory of
torsion, respectively, for lateral bending and twisting. Thus this model completely
captures the non-classical effects of transverse shear deformation and thickness-
stretch for the face-plates and the webs while completely neglecting such effects on
lateral bending of the webs. This approach is first validated by comparing it with a
full-3D finite element model of the face-plates as well as the webs. Later, results are
generated for isotropic and orthotropic web-core plates of different thicknesses and
configurations and are compared with models based on the classical Kirchhoff
hypothesis for the face-plates to ascertain the importance of capturing these non-
classical effects for the face-plates. Transverse deflections and stress results are
tabulated for future comparisons.

Formulation

Consider a rectangular web-core sandwich plate of sides a, b (Figure 1) with simply
supported edges of the shear-diaphragm type. The sandwich plate consists of two
face-plates of thickness /i, separated by a set of n,, equally spaced unidirectional
webs, each of height H and breadth B. The webs are integrally attached to the face-
plates and are also taken to be simply supported at the ends of their length. In the
present discrete formulation, the plate and the webs are modelled separately while
maintaining suitable compatibility at the interfaces; this is explained in full detail
below.

As the sandwich plate bends in the transverse z-direction, each web bends in the
transverse (x—z) as well as the lateral (x—y) planes, and also twists along its length.
The bending of the face-plates can be accurately analysed using the 3D equations
of elasticity so as to completely capture the non-classical effects of transverse shear
deformation and thickness-stretch. Transverse bending of the webs is analysed
using a 2D plane stress formulation which completely accounts for vertical shear
deformation (t..) and normal strain (&.) effects. The other two modes of deform-
ation of the web, namely torsion and lateral bending, are expected to be of lesser
significance to the overall kinematics of the sandwich plate and are hence modelled
using the one-dimensional classical Saint-Venant’s free-warping torsion theory and
the Euler-Bernoulli theory, respectively.

Consistent with the above formulations, a set of appropriate interface tractions
are introduced, as explained below.
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Figure 1. Web-core sandwich plate.

Figure 2. Interface tractions on a web.

The interface tractions

All three interface tractions are considered at the top and bottom of each
web (Figure 2) with the possibility of a general variation across the interface
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width B; these quantities correspond to the stresses o, 7., and 7., on the interface
plane x—y, and their directions, when positive as per the sign convention adopted
here, are shown in the figure. Constant as well as linear antisymmetric variations
along the breadth B of the interface patch are assumed for the transverse normal
and in-plane shear tractions, while the out-of-plane shear traction is assumed to be
constant along the breadth. The mathematical expressions for these tractions
(for the i th web), as well as suitable series expansions for later use, are given below:

1. The transverse normal traction Q;.(x, y) is taken as

th th th Z( m /’QA )Sin(”;nx> .

m=1

2. The in-plane shear traction S;,(x, y) is taken as

= mm
DS =S5 + f’sﬁlt—Z(fS,f, +7 S;‘1.y)cos<7x> )

m=1

3. The out-of plane shear traction ?V;,(x, y) is taken as
PVine = Z"VS sin (—x) (3)

where the superscripts S and 4 denote the symmetric and antisymmetric part of the
tractions respectively, and the superscript p takes the values of # and b to denote the
top or bottom of the web, respectively.

Analysis of the web

The plane stress idealization for the web captures the effects of the constant parts of
the normal and in-plane shear tractions, Q5 and 7S? , while the classical Euler—
Bernoulli beam theory and Saint-Venant’ s torsion formulation are used to analyse
the lateral bending and torsion of the web due to the remaining traction compo-
nents. The latter one-dimensional formulations require the tractions to be shifted
to the centre line of the web and rewritten as loads and moments per unit length.
The anti-symmetric parts of the normal tractions 7Q: are statically equivalent to
torques per unit length ? 7' (x), with the superscript p just to show the source of such
torques. Shifting the out-of-plane shear tractions  Viy to the mid line results in a
statically equivalent loading system consisting of lateral loads per unit length ?¢,(x)
and torques per unit length ?75(x); once again, the superscript p indicates the

source. The effect of the antisymmetric part of the in-plane shear tractions 7S
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is to produce distributed moments per unit length ?m,(x). These are summarized
below:

TTi(x) = ZfQﬂ’n-ydy =75 Z O sm( > “4)
1700 = V(.85 = B ZPVS sm( x) 5)
Lqi(x) = Vin(%).B = B.;fl/;i sin(%x) (6)

Pmy(x) = f Stydy = — ZfS;ﬁ cos< x) (7)

with p=1 or b.

Transverse bending of the web. This analysis, due to the normal and shear tractions
Pos and 7S5 . is carried out as a plane-stress problem in the x—z plane (Figure 2).
Assummg that the web is specially orthotropic with the plane stress constitutive law

Oy On Onp 0 €y
o ¢ =|0n 0O0»n O €
Txz 0 0 QSS Vxz

the 2D equations of equilibrium can be written in terms of the displacements u and
w along the x and z directions respectively, as

Oty xx + Ossit, - +(Q12 + Oss)w, - =0
(Q12+ Oss)u, - + Os5W, «, + 00w, .- =0 3

Selection of displacement functions

u(x,z) = Z U(z) cos ( )

m=

W, z) = i W(z)sin (%x)

m=1
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ensure that the shear-diaphragm type simple support conditions
atx=0,a;, w=0, o,=0

for all z are satisfied a priori.

Substitution of the above displacement functions into (8) reduces them to a 4th
order system of linear ordinary differential equations in z. Following the standard
procedure of seeking solutions for U(z) and W(z) as

HIREaS

one gets the auxiliary equation as

AsS+BsP+C =0 )

where A, B, C" and D’ are functions of the harmonic m and the material properties
Q;; of the web.

The nature of the roots of this equation dictates the final solution. For example,
in the case of real and distinct roots, the final solution is of the form

o)

cEHfedaz)

Of the eight constants Cy;, C,; (for each harmonic m), only four are independent.
The inter-relationships are established by substituting the above displacement field
into the ordinary differential equations and equating the coefficients of e%* (i=1
to 4) in each equation to 0.

The four independent constants for each m can be determined by enforcing the
conditions:

a. at the top surface z = —g,

o.(x) =103, and tT.(x)='S>,

b. at the bottom surface z =%,

bnS ., boS
0.(x) =705, and 7. (x)=7S;,
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and are thus obtained in terms of 7Q5 and 7SS (see equations (1) and (2)).

Lateral bending of the web. The analysis of the lateral bending of the web, due to
lateral loads ?¢/(x) per unit length and distributed moments ?m,(x) per unit length,
is carried out using the classical beam theory.

The effect of these loads can be captured by starting with a displacement field as

vo(x, ) = vp(X)
ub(X,y) = —VVb, x
The corresponding equations of equilibrium are
Viex = (a1 —{qi (11)
My, 4 Coy—=mp)+ V=0 (12)
where V; and M, are the shear force and bending moment respectively, at any
section of the beam.
Eliminating ¥, from (11) and (12) yields
My, s+ Cog =2y, + g =g =0 (13)
Using o= E &, = — E..y v, and obtaining the moment-curvature relations by
appropriate integrations over the cross-sectional area A4, the governing equation
can be derived from (13) as
Ex-Iszbs xxxx T (fml - ?ml)’ x T+ ;ql - f’ql =0 (14)
where 7. is the area moment of inertia of the cross-section about the neutral axis
passing through the centroid.
For simply supported boundary conditions at the ends given by
at x=0,a, v,=M;=0
ie. Vo =V, xx = 0,
a solution can be sought as

= . (mm
vp(x) = Vpm SIN [ — X
/ a

m=
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Substitution of this in equation (14) yields vy, in terms of 7V and 754
(see equations (6) and (7)).

Torsion of the web. The torsional analysis of the web is carried out using Saint-
Venant’s assumption that cross-sections of the web rotate as rigid bodies and
warp freely. It needs to be noted that the web is subject to variable torques
along its length, so this is a case of non-uniform torsion; however, since the

warping constant is quite small for the open section webs considered here, it is
neglected and the torque-twist relationship is simply taken as

T ~Gy-.J.0,« (15)

where T, is the the torque stress resultant, 0(x) is the rotation of a cross-section
about its centre of twist and J is the torsional constant of the rectangular cross
section given by [20]

1 64B & 1 rH
J=HB(--== —tanh [ —
(3 715HrZ s (2B ))

=1,3,5..

With respect to the torsional loads given by (4) and (5), the equation of motion
for this system is

Ton='T\+' T, -t T4+ T,

Using (15), the governing equation can be derived as

Geod Oy n = TV + T =0 Ty +0 T (16)

Corresponding to the shear-diaphragm boundary conditions
atx=0,a: 6=0

a solution can be sought in the form
. . ((mnx
0(x) = mEzl O,y sin <T>

Substitution of this in equation (16) yields 0, in terms of Q4 and 7V5
(see equations (4) and (5)).
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The displacement components along the y and z directions due to twisting are
given by

vi(x,y,2) = —z.6(x)
wi(x,y,z) = y.6(x)

The shear strain 7., (required later for enforcing compatibility between the
face-plates and the webs) is found out using

Yy = @2/ Gxy (17)

where ¢ is the Prandtl stress function given by [20]

_8G,B,, 1 cosh(rmz/B) , Ty
¢(X,y, Z) —T.r:;:i'ﬁ. 1 —m .Sln(rj'[/2).COS 7

This concludes the analysis of the web. By virtue of the principle of superposition,
the total displacement field is simply a sum of the displacement contributions from
each of the three-deformation modes of the web. While the web also undergoes
warping displacement u due to torsion, this displacement is not of any interest in
this analysis. This is because the displacement continuity between the plate and webs
will be enforced (see section Analysis of the overall structure) only along the centre
line of the interface patch, and along this line the warping displacement u is zero.

3D elasticity formulation for the face-plates

The simply supported face-plate of dimensions a x b x /i,is taken to be orthotropic
with respect to the x—y—z axes and governed by the following constitutive law:

Oy C11 C12 C13 0 0 0 €y
Oy Cip Cypn (O 0 0 0 €x
oo | _|Cizn Cn Gz 0 0 0 €x
[T 0 0 0 Cu 0 0 []w
Txz 0 0 0 0 C55 0 Vxz
Txy 0 0 0 0 0 Ceo Vxy

For each face-plate the origin of the z coordinate is taken at its mid-plane. The 3D
equations of equilibrium in terms of the displacements u, v and w along the x, y and
z directions respectively are

Critt, yx + Cestty yy + Cssit, o2 + (Cra + Co6) v, vy + (C13 + Css)w, - =0
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Co6V, xx + Co2v, py + Cagv, o2 + (Cr2 + Cop)t, xp + (Caz 4+ Cag)w, - =0

(18)
Cssw, xx + Cagw, yp + C33w, oo + (Cr13 + Css)u, o + (Coz + Cag)v, - =0

The displacement functions

u(x,y,z) = Z Z U(z) cos (nzr x) sin (%y)

m=1 n=

v(x,y,z) = Z Z V(z) sin ( ) cos (%y)

m=1 n=

w(x,y,z) = Z Z W(z) sin ( ) sin (I%ny)

m=1 n=
satisfy the shear-diaphragm conditions of both face-plates
atx=0,a;, w=0, v=0, o,=0
aty=0,b; w=0, u=0, o0,=0
a priori, and reduce the problem to a 6th order system of linear ordinary differen-

tial equations.
Proceeding as done for the web by starting with

U Uy
V = Vo 652
w Wy

one gets the auxiliary equation as

A +Bs*+Cs>+D=0 (19)

where 4, B, C and D are functions of m, n and the material properties C;.
The nature of the roots of this auxiliary equation dictates the form of the final
solution. For the case of real and distinct roots, the final solution is given by:

;;(Z& >cos(%x)sin(%y)
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m=1 n=1 (20)
;;(Z&, )sm( x>s1n(%y

wherein only six constants (for each harmonic set {m, n}) are independent.

For the purpose of enforcing lateral surface conditions, the interface tractions
?Qints ¥ Sine and ? Vip, acting over any i’ strip 0 < x <a and (b* — H=<y=@®+H
need to be expressed in double series as

! Qi = 22( Oy sin (—x) sin (fy)) @1

m=1 n=1

f’Sint = i i (i‘]S’”” cos (HZTX> sin (nljty>> 22)
and

DY = i i (f’ Vinn S (nznx) cos <nbrry>) (23)
where

5 [b*+D)
fom =4 [ €05 +108 = pysin ()
b (b*—g) b

7 b +D)

PSm=2 [ @SS +051 (v — 5 sin (””y) dy
b s b

2 (b*JrB) .
W=y [ trasin (%) o

and b* =i*b/(n,, + 1)
The lateral boundary conditions for the top face-plate are:

h
a. at the top surface (z = —3),

o-(x,y) = —"q0(x, ), Te(x,»)=0 and 7.(x,»)=0
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b. at the bottom surface (z = %),

ny,

0:(60) =Y 1O Te(n)) =Y iSm  and T.(x,p) =Y Ve (24)
i=1 i=1 i=1

and for the bottom face-plate are:

i
a. at the top surface (z = —3),

My My My

O'Z(X, y) = Z?Qinta ‘L'X;(X, y) = Z?Sim and tyz(xa y) = Zf int
i=1 i=1

i=1

b. at the bottom surface (z = %’),

0.(6,0) ="q0(x,»), Tty =0 and 7.(x,y) =0 (25)

where ‘qo and “qq are the applied transverse loads on the top and bottom face-
plates respectively, which are taken to be positive when applied downward in the
positive z direction. The above equations yield the six unknown constants of the
top and bottom face-plates in terms of 7QS5, 704 7SS PS4 7S and the applied
transverse loads.

Analysis of the overall structure

With the continuity of interface tractions already satisfied as explained above, the
only step left is to enforce the displacement continuity along the interface patch at
the top and bottom of each web. Consistent with the approximate models
employed for the webs, the following interface continuity conditions are
appropriate:

1. Continuity of the u, v and w displacements along the centre line of each interface
patch of width B.

2. Continuity of the rotations w,, of the face-plate and —v,. of the web along the
centre line of each interface patch of width B (see Figure 3).

3. Continuity of the inplane rotation u,, of a small linear element oriented along
the y-direction in the plane of the interface patch for both the face-plate and the
web; the small element is located at the centre of the patch (see Figure 3).

The continuity conditions 2 and 3 are necessary in order to maintain the integral
nature of the web-core sandwich structure. It is convenient to enforce condition 3
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Figure 3. Displacement continuity at the interface.

by ensuring continuity of the shear strain v,, of the face-plate and the web along
the centre line of the interface patch; this is because v, =u,, + v,, and continuity
of v,, is already enforced by virtue of condition 1. The limitation of enforcing the
continuity conditions only along the centre line of the interface patch is shown later
to be quite satisfactory and one that yields good agreement with the results of full
3-D modelling of both the face-plates and the webs.

Imposing the above continuity conditions and comparing the corresponding
Fourier terms results in a set of linear equations in 7Q3, 704 785 7§54 and 7S

m?>

A simpler model based on classical assumptions

In order to study the importance of capturing non-classical effects like transverse
shear deformation and thickness stretch in the face-plates, the above rigorous
model needs to be compared with one based on the kinematic assumptions of
the classical plate theory, namely the hairbrush hypothesis for the face-plates;
while doing so, it is important to shift the interface tractions to the mid-plane of
the face-plates, as explained below. It should be noted that the webs continue to be
analysed as explained earlier, because the transverse shear deformation of the core
should always be accounted for in sandwich plate analysis.

Shifting the interface tractions to the mid-plane of the plate results in two add-
itional distributed moments ?m,(x, y) and ¥m,,(x, y) per unit area, acting over the
interface area a x B between the i web and the face-plate, besides ” P Oini(x, ),

P Sint(x,») and ' Vin(x, ) (see equations (21), (22) and (23)). These are given by

}; Sine(x, ) = ?ZZ( mnCOS< aﬂ )Sin<n;y>)

m=1 n=1

mpx(x y)
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hy 0 00
mp}(x y) = D) 'i Vin'(x, ) = 5/"2:: X:: < mn SN ( anx) €08 <%y>>

A displacement field given by
w(x, y,z) = w(x, )
u(x,y,z) = up(x,y) — z.w, x
v(x,p,2) = vo(x,y) — z.w,,,
where ug, vo and w are mid-plane displacements, is sufficient to capture the effect of

the loading system.
The corresponding equations of equilibrium for the top face-plate are

My

Ny, v+ ny,y + Z ,['Sint =0 (26)
i=1
Ngrs+ Nyy+ Y Win =0 27)
i=1
My
M, + Mxy,y + Z ;I’l’l[,x =0, (28)
i=1
1y
My, x + My, + Z iMpy = Qy (29)
i=1
f”"v
Qx: x Tt Qy,y + Z ;Qim +t qo = 0 (30)
i=1

wherein N;, M; and Q; are the usual stress resultants of plate theory and ‘qy is the
transverse load applied on the top face-plate.
Eliminating Q. and Q, from (30) using (28) and (29), we have
ny,

M’Ca xx T 2Mxy, xy + My, »y + Z(;Qim + ;Wlpx; x T+ ;Wlpyay) +I qo = 0 (31)

i=1
Using the plane stress-reduced constitutive law for the plate as given by

Ox On On O €x
(Iy = Q 12 Q22 0 Ey
Txy 0 0 Oss Vxy



16 Journal of Sandwich Structures and Materials 0(00)

and obtaining the generalized force displacement relations by appropriate integra-
tion over the thickness of the plate, the governing equations of the top face-plate
can be derived as

Ny

t
Aritig, xx + A12v0, vy + Ass(Uo, yy + V05 1) = — E Sint

i=1

Ty

t
Ao, xy + V0, xx) + A12Uo, xp + A22V0, yy = — E Vint

i=1

n,

DllW, xxxx T D22W7 yyyy + (2D12 + 4D66)Wa xxyy — Z(;Qint + ;mpx’ x+ ?m[)_\’» ,V) +t q0
i=1

=

where 4;; and Dj; are defined as

12
(4, Dy) = 0;(1,2)dz
/2

—h

Similarly, the governing equations of the bottom face-plate are derived as

Ty

b
Ay, xx + A12vo, xy T A66(u0,yy + vo, xy) = ZiSim

i=1

ny,

b
Ags(uo, xy T V0, xx) + Araug, xy T Ao, = Z,’ Vit

i=1

Ty
Dl W, xxxx D22Wa yyyy + (2D12 + 4D66)Wa xxyy = Z(_?Qint + ?mp.\‘a Xt ?mpya y) + bQo
i=1
where g, is the transverse load applied on the bottom face-plate. In the above
equations, 4;; and D;; correspond to the stiffness coeflicients Q;; of the bottom face-
plate.
A solution of the form

W(x’y) = Z Z W sin <%X> sin (%Ty)

m=1 n=1

S

up(x, y) = Z Z U, COS (?x) sin (%y)

m=1 n=1
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vo(x,y) = Z Z Vo SIN <%x> cos (%y)

m=1 n=1

ensures that the shear-diaphragm type simple support conditions for both the face-
plates:

atx=0,a; w=0, M,=0, N, =0, v=0

aty=0,b; w=0, M, =0, N, =0, u=0
are satisfied a priori.

Substitution of the displacements in the governing equations yields U,,,, V.
and W,,, in terms of 7Q3, 704 755 IS4 7S and the applied transverse loads for
each face-plate.

Subsequent steps involving enforcement of displacement continuity along the
web-face-plate interfaces to determine the unknown traction coefficients are similar
to the ones explained earlier in section 2.4.

Results and discussion

Before proceeding with numerical studies, the acceptability of the assumptions
made in the above analytical formulation (denoted by 3D-PS, 3D elasticity for
the face-plates and plane stress for the webs) is verified by comparison with a
full three-dimensional finite element study (denoted by 3D-3D). The face-plates
and the webs are discretized using 20-noded Solid 186 elements in ANSYS. A mesh
involving four elements across the web depth, two elements across the web breadth
and two elements across the face-plate thickness is found to yield convergent
results. The problems considered are simply supported square web-core sandwich
plates with five equally spaced webs, subjected to a uniform downward load dis-
tributed equally on the top and bottom face-plates. Two materials are considered —
one isotropic with v=0.3, and the other a unidirectional fibre composite with
the fibres and webs running along the x direction and with properties given by
E;/Er=25, G 7/Er=0.5, Grr/E7+=0.2 and v;r=v77=0.25, typical of graphite-
epoxy.

The central deflections and critical inplane stresses (o and o,) of the top face-
plate are shown in Tables 1 and 2. Figure 4 shows the variation of the non-dimen-
sionalized deflections and inplane stresses along the span of the top face-plate. For
all cases, the breadth B of the webs are taken to be equal to the thickness /i, of the
face-plate. The number of terms taken (11,4, 11,,.4) in the Fourier series used in the
present formulation is of the order of (40, 400) to obtain good convergence of the
final results.

As can be seen from Tables 1 and 2, the deflections and stresses are predicted
quite accurately even for deep webs (a/H =15). The 3D-PS model is also able to
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Table I. Isotropic web-core sandwich plate with five webs.

3
Weenre E M7 105 100y(a/2,a/2, —hs /2)
G a* X

100,(a/2,a/6, —hs /2)

()’ a2’
alhy Hihe 3D-PS 3D-3D % Error® 3D-PS 3D-3D % Error 3D-PS 3D-3D % Error
60 4 8847 9034 2.1 —0.221 —-0.226 —-2.2 —0.320 —0.305 49
120 4 8239 8326 —1.0 —0.219 —-0.222 —14 —0.301 —-0.291 34
?Error of 3D-PS with respect to 3D-3D.
Table 2. Orthotropic web-core sandwich plate with five webs.
WemeEr 7 ) 08 1004(0/2,0/2,—hg/2) 100,(0/2./10,~hy/2)
G d 202’ 90’
alhy Hihe 3D-PS 3D-3D % Error 3D-PS  3D-3D % Error 3D-PS  3D-3D % Error
60 4 1873 1828 24 —0.543 —-0.540 0.6 —0.093 -0.090 33
120 4 13.25 13.01 1.8 —0.530 —-0.529 0.l —0.081 —-0.080 ~0
z/eor y/a
0 0.2 0.4 0.6 0.8 1
0.00
\ / Er it
.04 — a2 o 30-PS
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Figure 4. Displacement and stress fields for an orthotropic web-core sandwich plate with

alhy=60, Hihg=4, B/h;=1 and n,,=5.
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precisely capture the secondary bending of the face-plates between the webs, which
manifests as sudden changes in curvatures of the deflection field perpendicular to
the directions of the webs and waviness in the o, stress field (Figure 4). This indi-
cates that the plane stress idealization employed for the webs in the transverse x—z
plane and the simple one-dimensional lateral bending and torsion models are quite
adequate to model the kinematics of the webs and that enforcement of the asso-
ciated interface continuity conditions only along the centre line of each interface
patch is sufficient. Further, the assumed constant and linear components of the
interface tractions (see Figure 2) are also proved to be adequate.

Static flexure results derived from the present formulation are now generated for
simply supported isotropic and orthotropic square web-core plates of various
thicknesses. These are compared to results based on the classical approach denoted
by CPT-PS (i.e. Classical Plate Theory for the face-plates and plane stress for the
webs). The central deflections and critical inplane stresses (o and o, ) at the top
face-plate are tabulated while non-dimensionalized deflections and inplane stress
fields are plotted along the span of the top face-plate. The following cases are
considered:

1. Bare isotropic and orthotropic square plates (Table 3).

2. Isotropic web-core sandwich plates with five (Table 4 and Figure 5) and seven
(Table 5 and Figure 6) equally spaced webs.

3. Orthotropic web-core sandwich plates with five (Table 6 and Figure 7) and seven
(Table 7 and Figure 8) equally spaced webs oriented parallel to the fibers.

The material properties are taken as for Tables 1 and 2. Further, the breadth B of
each web is taken to be equal to the thickness /i, of the face-plates.

From these results, the following observations may be noted:
1. For all cases, the CPT-PS results of deflections are under-predictions as

expected.

Table 3. Bare plate.

Isotropic Plate Orthotropic Plate
WeenreE h3 3 Weente ET h° 4
T o x 10 q—gTa_4 x 10
alh CPT 3D % Error® CPT 3D % Error®
60 44.36 44.42 —0.1 64.97 65.82 —1.3
80 44.36 44.39 —0.1 64.97 65.45 -0.7
120 44.36 44.38 0.0 64.97 65.18 —0.3

?Error of CPT with respect to 3D elasticity.
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Table 4. Isotropic web-core sandwich plate with five webs.

3
Weentre E hi | 05 100,(a/2,a/2, —h /2)
7 X Ry}
qo @ qo(g)

100y(a/2,a/6, —hs/2)
900G’

alhe Hlhe CPT-PS 3D-PS % Error® CPT-PS 3D-PS % Error

CPT-PS 3D-PS % Error

60 4 80.76 8847 -—-87 —0.208 —-0.221 -58
80 2 1577 166.1 5.0 —03I15 -0325 -3.0
120 4 78.18 8239 5.1 —-0.212 -0219 -32

—0.350 -0.320 9.3
—0.612 —0.602 1.6
—0.324 —0.301 7.6

Error of CPT-PS with respect to 3D-PS.
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Figure 5. Displacement and stress fields for an isotropic web-core sandwich plate with

alhy=60, Hih;=4, B/h;=1 and n,,=5.

Table 5. Isotropic web-core sandwich plate with seven webs.

3
weeneE M7 | 05 100,(a/2,a/2,—h¢ /2)
q df qo(ﬁ)z

100,(a/2,a/10,—h¢ /2)

2
%(hf)

alhy Hlhe CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error

CPT-PS 3D-PS % Error

60 4 6271 7155 —124 —-0.175 —-0.193 -93
80 2 1248 1323 —-57 —0.268 -0277 -3.2
120 4 61.79 6674 —-74 —-0.180 —-0.191 =57

—0.403 —-0.356 3.1
—0.578 —0.565 2.3
—0.381 —-0353 79
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. The central deflection error of CPT-PS with respect to
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Figure 6. Displacement and stress fields for an isotropic web-core sandwich plate with
alhg=60, H/hf=4, B/hf=1 and n,,=7.
Table 6. Orthotropic web-core sandwich plate with five webs.
o @ x 10 qo(ﬁ)z qo(ﬁ)z
alhg Hihe CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error
60 4 1731 1873 —-7.6 —0.565 —0.543 4.1 —0.095 —-0.093 2.1
80 2 29.17 3201 -89 —0.972 —0.957 1.5 —0.123 —0.124 —1.0
120 4 1253 1325 -54 —0.541 —0.530 2.0 —0.081 —0.081 0
2

3D-PS (fifth column in

Tables 4 to 7) is a combination of the effects of non-classical phenomena,
namely transverse shear deformation and thickness stretch. It has been shown
(see, for example, [20]) that the effect of shear deformation is always more sig-
nificant than thickness stretch, so this error will be referred to hereafter as the
shear deformation effect. This error is clearly significant (around 7%) even in
web-core sandwich plates with thin face-plates (a/h,=120) and seems equally
pronounced in isotropic as well as orthotropic web-core plates. This has to be
contrasted with the results of the bare plate with the same a/h in Table 3 where
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Figure 7. Displacement and stress fields for an orthotropic web-core sandwich plate with

alhg=60, H/hg=4, B/hf=1 and n, =>5.

Table 7. Orthotropic web-core sandwich plate with seven webs.

3
chmreEThi % 10° 100x(a/2,a/2, —h¢ /2)
9o

100,(a/2,a/10, —h; /2)

at 902’ 90(2)”
alhe Hihe CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error CPT-PS 3D-PS % Error
60 4 1349 1461 —-7.6 —0.457 —0.442 34 —0.085 —-0.074 14.9
80 2 235l 25.69 -85 —0.801 —0.789 1.5 —0.123 —-0.121 1.8
120 4 9.87 1043 53 —0.440 —0.433 1.6 —0.062 —0.058 7.0

the errors are less than 0.3%. Thus, while the plate can be modelled as “thin”
when used alone, such an idealization leads to significant errors when the same
plate is part of the sandwich construction. This is an important observation that
should be kept in mind while developing discrete models for sandwich plates.
3. The deflection plots perpendicular to the direction of the webs in Figures 5 to 8
reveal the prominent secondary bending effects of the face-plates between the
webs. This is characterized by abrupt changes in the curvature of the deform-
ations between the webs, with the waviness increasing as the number of webs
increases. This effect is more severe in the case of orthotropic web-core sandwich
plates because of the low bending stiffness of the plate in the direction perpen-
dicular to the webs. For such cases, it is further observed that the point of
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Figure 8. Displacement and stress fields for an orthotropic web-core sandwich plate with
alhy= 60, H/h=4, Blh=1| and n,,=7.

maximum deflection shifts away from the centre of the plate to a point between
the webs. While the CPT-PS model is able to capture the qualitative aspects of
the secondary bending of the face-plates, it is evident that accounting for the
shear deformation of the face-plates is important to get accurate estimates of
deflections at specific points.

. Critical values of the bending stresses (o, and o,) as calculated by both models
are shown in Tables 4 to 7. For any particular configuration of webs, the errors
of the CPT-PS model for the stresses are comparable to those for the deflections.
These stress errors are significant even for fairly thin face-plates (a/h,=80),
indicating the importance of using thick face-plate kinematics for accurate
stress analysis.

. The stress fields plotted in Figures 5 to 8 depict the effect of secondary bending
of the face-plates on the bending stress o,. The sudden changes in curvature of
the deformations of the face-plates between the webs cause this stress to oscillate
between being tensile and compressive, with the point of maximum o, occurring
between the webs away from the centre of the plate. For orthotropic web-core
plates, this stress is not expected to be very important (because of the low
bending stiffness of the face-plate in this direction), but for isotropic web-core
plates, this stress is clearly significant and even dominates over o,. Again, while
the CPT-PS model is able to exhibit the general trends of the stress field well, it is
unable to accurately capture the peak values.
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Finally, a physical case study is presented to illustrate the difference in the flex-
ural behaviour of a web-core sandwich plate and a homogeneous bare plate; this
clearly shows the importance of employing discrete models for the accurate analysis
of web-core sandwich plates.

A simply-supported bare aluminium plate (£=70 GPa and v=0.3) of dimen-
sions 1000 mm x 1000 mm x 50 mm is subjected to a uniformly distributed load
¢o=100kPa on the top surface. The displacements and stress fields are computed
using the 3D equations of elasticity. The same load is also applied on the top face-
sheet of a web-core sandwich plate of the same total thickness (50 mm) as that of
the bare plate. The face-sheets have dimensions of 1000 mm x 1000 mm x 8.4 mm
while the webs have cross-section dimensions B=8.4mm and H =33.3 mm. Three
separate cases are considered with three, five and seven equally spaced webs.
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Figure 9. Comparison of displacement fields.
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The web-core sandwich plate is made of the same material as the bare plate.
Displacement and stress fields as determined by the 3D-PS model are plotted
along the midlines of the top-face plates and are compared with those of the
bare plate in Figures 9 and 10.

From these plots, it is observed that:

1. Since the total thickness of the homogeneous plate and web-core sandwich plate
are the same, the latter represents the case of material being removed from a
bare plate. Hence the displacement and bending stresses in the sandwich plate
are greater than those of the bare plate and are significantly influenced by
secondary bending effects, as explained below.

2. Due to the local secondary bending of the face-plates between the webs, the
deformation and stress fields of web-core sandwich plates are characteristically
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different from those of a homogeneous bare plate. Sudden changes of curvatures
of the transverse deflections perpendicular to the direction of the webs causes the
o, bending stress to oscillate between being tensile and compressive in web-core
sandwich plates. Further, the point of maximum o, shifts away from the centre
of the plate to a point between the support and the first web, and is much larger
in magnitude than the critical value of o,. On the other hand, the deflection and
stress fields of the homogenous plate in both the perpendicular directions show
no sudden variations, with the points of maximum deflection and stresses lying
in the centre of the plate as expected. This clearly indicates the importance of
using discrete models to capture the localized secondary bending effects in web-
core sandwich plates for accurate displacement and stress analysis.

3. As the number of webs increase, the maximum deflections in the sandwich plate
reduce and the effects of secondary bending or “waviness” of the face plates
between the webs become more localized. Interestingly, with an increase in the
number of webs, the maximum stresses do not reduce significantly despite the
decrease in amplitude of the oscillatory o, stress.

Conclusion

An accurate discrete model for simply supported web-core plates is presented
which completely accounts for the non-classical effects of transverse shear deform-
ation and transverse thickness-stretch in the face-plates and the webs. This model is
capable of accurately capturing the secondary local bending effects of the face-
plates between the webs on the displacement and stress fields. Further, it is shown
that the lateral bending and torsion of the webs can be satisfactorily modelled using
classical one-dimensional theories. Results obtained by this rigorous approach are
used to highlight the errors of the commonly used model based on the classical
hairbrush hypothesis for the face-plates. It has clearly been shown that even a plate
that can be modelled using the classical thin-plate theory when used as a bare plate
needs to be considered as thick when it is used as a sandwich face-plate.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication
of this article.

References

1. Zenkert D. The handbook of sandwich construction. Warrington: EMAS Publishing, 1997.
2. Frostig Y, Baruch M, Vilnay O, et al. High-order theory for sandwich-beam behavior
with transversely flexible core. J Eng Mech 1992; 118(5): 1026-1043.



Pydah and Bhaskar 27

10.

11.

14.

15.

16.

17.

18.

19.

20.

Frostig Y. Elastica of sandwich panels with a transversely flexible core- a high-order
theory approach. Int J Solids Struct 2009; 46(11): 2043-2059.

Meyer-Piening H. Application of the elasticity solution to linear sandwich beam, plate
and shell analyses. J Sandwich Struct Mater 2004; 6(4): 295-312.

Burton W and Noor A. Three-dimensional solutions for thermomechanical stresses in
sandwich panels and shells. J Eng Mech 1994; 120(10): 2044-2071.

Kapania R, Soliman H, Vasudeva S, et al. Static analysis of sandwich panels with square
panels with square honeycomb core. AIAA Journal 2008; 46(3): 627-634.

Nordstrand T, Carlsson L and Allen H. Transverse shear stiffness of structural core
sandwich. Composite Structures 1994; 27(3): 317-329.

Xia Y, Friswell M and Flores E. Equivalent models of corrugated panels. Int J Solids
Struct 2012; 49(13): 1453-1462.

Cheng Q, Lee H and Lu C. A numerical analysis approach for evaluating elastic con-
stants of sandwich structures with various cores. Composite Structures 2006; 74(2):
226-236.

Lok T and Cheng Q. Elastic deflection of thin-walled sandwich panel. J Sandwich Struct
Mater 1999; 1(4): 279-298.

Fung T, Tan K and Lok T. Elastic constants for z-core sandwich panels. J Struct Eng
1994; 120(10): 3046-3055.

. Bartolozzi G, Baldanzini N and Pierini M. Equivalent properties for corrugated cores of

sandwich structures: A general analytical method. Composite Structures 2014; 108:
736-746.

. Burton W and Noor A. Assessment of computational models for sandwich panels and

shells. Comput Meth Appl Mech Eng 1995; 124(1): 125-151.

Burton W and Noor A. Assessment of continuum models for sandwich panel honey-
comb cores. Comput Meth Appl Mech Eng 1997; 145(3): 341-360.

Romanoff J and Varsta P. Bending response of web-core sandwich plates. Composite
Structures 2007; 81(2): 292-302.

Liu J, Cheng Y, Li R, et al. A semi-analytical method for bending, buckling, and free
vibration analyses of sandwich panels with square-honeycomb cores. Int J Struct Stabil
Dyn 2010; 10(1): 127-151.

He L, Cheng Y and Liu J. Precise bending stress analysis of corrugated-core, honey-
comb-core and x-core sandwich panels. Composite Structures 2012; 94(5): 1656-1668.
Bhaskar K and Pydah A. An elasticity approach for simply-supported isotropic and
orthotropic stiffened plates. Int J Mech Sci 2014; 89: 21-30.

Pydah A and Bhaskar K. Accurate discrete modelling of stiffened isotropic and ortho-
tropic rectangular plates. Thin-Walled Structures, (under review).

Bhaskar K and Varadan TK. Theory of isotropic/orthotropic elasticity. Boca Raton, FL:
CRC Press, 2009.



