
1

Adaptive CSMA under the SINR Model: Efficient
Approximation Algorithms for Throughput and

Utility Maximization
Peruru Subrahmanya Swamy, Radha Krishna Ganti, Member, IEEE, Krishna Jagannathan, Member, IEEE

Abstract—We consider a Carrier Sense Multiple Access
(CSMA) based scheduling algorithm for a single-hop wireless
network under a realistic Signal-to-interference-plus-noise ratio
(SINR) model for the interference. We propose two local opti-
mization based approximation algorithms to efficiently estimate
certain attempt rate parameters of CSMA called fugacities. It is
known that adaptive CSMA can achieve throughput optimality
by sampling feasible schedules from a Gibbs distribution, with
appropriate fugacities. Unfortunately, obtaining these optimal
fugacities is an NP-hard problem. Further, the existing adap-
tive CSMA algorithms use a stochastic gradient descent based
method, which usually entails an impractically slow (exponential
in the size of the network) convergence to the optimal fugacities.
To address this issue, we first propose an algorithm to estimate
the fugacities, that can support a given set of desired service
rates. The convergence rate and the complexity of this algorithm
are independent of the network size, and depend only on the
neighborhood size of a link. Further, we show that the proposed
algorithm corresponds exactly to performing the well-known
Bethe approximation to the underlying Gibbs distribution. Then,
we propose another local algorithm to estimate the optimal fugac-
ities under a utility maximization framework, and characterize its
accuracy. Numerical results indicate that the proposed methods
have a good degree of accuracy, and achieve extremely fast
convergence to near-optimal fugacities, and often outperform the
convergence rate of the stochastic gradient descent by a few
orders of magnitude.

Index Terms—CSMA, Gibbs distribution, Bethe approxima-
tion, Distributed algorithm, Wireless ad hoc network

I. INTRODUCTION

The problem of link scheduling for maximum throughput
has been widely studied, particularly with emphasis on the
maximum-weight scheduling framework, developed in [2], [3].
In spite of its throughput maximizing property, maximum-
weight scheduling requires centralized control, and necessi-
tates the solution of an NP-hard problem for each schedul-
ing decision. Several works have attempted to modify the
maximum-weight algorithm, so as to make it more amenable
to simple, distributed implementation [4]–[6]. However, these
greedy algorithms do not achieve full throughput.

In a series of recent papers [7]–[9], a class of distributed
link scheduling algorithms called adaptive CSMA algorithms
have been proposed and proven to be throughput optimal,
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i.e., they can support any achievable service rate vector. The
central idea behind these algorithms lies in using a reversible
Markov chain to sample feasible schedules from a product
form distribution called the Gibbs distribution [10, Chapter
7]. Specifically, each link adaptively adjusts its transmission
attempt rate (also known as its fugacity) in order to ensure
sufficient average service rate.

In order to support a given feasible service rate vector
using CSMA, the corresponding fugacities have to be com-
puted. Unfortunately, determining the appropriate fugacities
corresponding to the desired service rates is an NP-hard
problem [7]. In [7], the optimal fugacities are computed as
a solution to an optimization problem (here after referred to
as the Gibbsian problem), using a stochastic gradient descent
algorithm. Each iteration of the gradient descent requires
estimating the average service rates under the current iterate of
the fugacities, which in turn entails waiting for the underlying
Markov chain to reach steady-state. This ‘mixing time’ of the
underlying Markov chain could be very large (exponential in
the size of the network), depending on the network load and
topology [11], [12]. Therefore, the existing adaptive CSMA
algorithms [7] do not provide a practical way to estimate the
fugacities, although they effectively support the desired service
rates once the optimal fugacities are estimated [13]. The main
focus of this paper is in proposing efficient methods to estimate
the fugacities, under a realistic SINR (signal-to-interference-
plus-noise ratio) model for the interference. Specifically, we
consider the following two scenarios under which fugacities
are to be computed:

• The service rate requirements of the links are known. The
objective is to support these average service rates.

• The service rate requirements are not known, but each
link has a utility function of its average service rate. The
objective is to maximize the sum utility of the network.

A simple conflict graph based interference model [7]–[9]
is widely used in the wireless context due to its simplicity and
tractability, although it does not adequately capture the com-
plex nature of the wireless interference [14]. More specifically,
a conflict graph based interference model ignores the fact that
whether or not two links can transmit simultaneously, depends
on the transmission state of the other links and their spatial
locations. Some recent papers extend the adaptive CSMA
framework to a more realistic interference models like the
SINR model [15], [16], and Rayleigh faded channels [17].
However, these papers also essentially employ stochastic gra-
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dient descent on a Gibbsian function to estimate the fugacities,
and hence suffer from impractically slow convergence rates.

For the conflict graph based interference model assumed
in [7], approximate but efficient methods to compute the
fugacities have been proposed [18], [19] using a popular
variational technique called the Bethe approximation [20].
However, the solutions given in [18], [19], cannot be directly
extended to SINR based interference model. This is because
the conflict graph based interference model corresponds to
a simple pair-wise interaction model [20], while the SINR
model involves higher order interactions. The presence of these
higher order interactions makes the extension non-trivial. Even
for graphical models with higher order interactions, there are
well known algorithms like Belief propagation (BP) [20] for
solving the Bethe approximation problem. However, in the
context of adaptive CSMA under the SINR model, they can
directly be used only to estimate the service rates given the
fugacities, but not the other way around.

We start with the Gibbsian optimization problem corre-
sponding to the optimal fugacities, and approximate this global
problem by decoupling it into local optimization problems
at each link. The local problems are identical in structure to
the global problem, and are referred to as the local Gibbisan
problems. The dimension of the local problem at a link is equal
to the size of its immediate neighbourhood and hence typically
small, and independent of the network size. Therefore these
local Gibbsian problems can be efficiently solved in a scalable
fashion. The local solutions are then suitably combined to
obtain an approximate solution to the global problem.

We prove that the solution of our local Gibbs optimization
method corresponds exactly to the celebrated Bethe approxi-
mation [20] to the global Gibbsian optimization problem. The
accuracy of the Bethe approximation has been empirically
evidenced in various fields [21]. Therefore, it is reasonable
to expect a fair degree of accuracy in the context of CSMA
as well. In fact, numerical results indicate that in order to
obtain the level of accuracy in the fugacities obtained by
using our proposed method, the stochastic gradient descent
method [7] takes an inordinately long time, often running
into tens of millions of time units even for fairly small
networks. Therefore, in practical terms, our algorithm will
operate with substantially smaller convergence time, compared
to the original implementation of adaptive CSMA.

It is worth noting that our algorithm is robust to gradual
changes in the desired service rates, as well as to changes
in the network topology, since the local solutions can be
efficiently re-computed for the new set of requirements. On
the other hand, the stochastic gradient descent is likely to take
a very long time to converge to its new operating point.

The impractically slow mixing time of the CSMA Markov
chain is also known to result in poor delay performance [11],
[12]. Recent works like [13], [22] have shown improved delay
performance by employing several parallel instances of this
Markov chain. However, the result in [13] assumes that the
required optimal fugacities can be pre-computed and given to
their algorithm. Our local algorithms which efficiently estimate
these fugacities can be used in conjunction with the techniques
in [13], [22] to obtain a practical CSMA algorithm with good

throughput and delay properties.
The remainder of this paper is organized as follows. In

Section II, we describe the SINR based interference model,
and review the adaptive CSMA algorithm. In Section III,
we introduce the local Gibbsian problems and propose our
algorithm for computing the fugacities for a given service rate
requirements. Section IV provides a brief review of the Bethe
approximation, as relevant to adaptive CSMA. In Section V,
we derive our main result which establishes the equivalence
between the local Gibbs optimization, and the Bethe approx-
imation. In Section VI, we consider the conflict graph model
as a special case of the SINR model and derive closed-form
expressions for the local Gibbsian problems. In Section VII,
we propose a local algorithm to solve the utility maximization
problem and quantify its performance. In Section VIII, we
present numerical results to confirm the fast convergence, and
Section IX concludes the paper.

II. MODEL AND PRELIMINARIES

We consider a single-hop wireless network and model the
links using a bipole model, introduced in [23]. In a bipole
model, each transmitter is associated with a receiver on the
Euclidean plane. A transmitter and its corresponding receiver
are referred to as a link. Let N denote the set of all the links
in the network. Let |N | = N be the total number of links. Let
rii denote the distance between the transmitter and receiver
of link i. For simplicity, we assume1 that a link distance rii
is much smaller than the distances of the transmitter and the
receiver from the other links. With this assumption, we can
think of links as points in the Euclidean space R2. Let rji
denote the distance between the links i, j. We assume a time
slotted model.

Interference model: We consider the standard path-loss
model ‖d‖−α, α > 2, where d is the distance between a
receiver and a transmitter, and α is the path loss exponent.
Let Pi denote the transmit power of link i. We assume white
Gaussian thermal noise at all the receivers with variance w.
Let x(t) = [xi(t)]

N
i=1 denote the schedule of the network at

time t. Specifically, xi(t) = 1 denotes that the link i is active
(transmitting) in time slot t. If there is no ambiguity, we will
also use x to denote x(t).

Although all the active links in the network can poten-
tially contribute to the interference, the aggregate interference
from the transmitters beyond a certain distance can be safely
neglected [24], [25]. This approximation is standard in the
literature [15] and this distance, referred to as the close-
in radius is denoted by RI . Let Ni := {k | rik ≤ RI}.
For convenience, let link i be also included in the set Ni.
We refer to the links in Ni \ {i} as the neighbors of link
i. The neighborhood relationship can be represented by an
interference graph G(V,E). V is the set of links in the
network and two links share an edge if they are within a

1The results in this paper do not require this assumption. This is just to
keep the expressions concise.
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distance RI . Then the total interference power at link i is
given by

Ii(x) =
∑

{j∈Ni | j 6=i, xj=1}

Pjr
−α
ji . (1)

Then, the SINR at link i is given by

γi(x) =
Pir
−α
ii

Ii(x) + w
. (2)

Reception model: We assume that, in each time slot, a single
packet of data is transmitted from each active transmitter. If
the received SINR at the corresponding receiver exceeds a
pre-determined threshold T, i.e., γi(x) ≥ T , the packet is
successfully received.

Rate region: A schedule x ∈ {0, 1}N is said to be feasible,
if all the active links in the schedule meet the required SINR
constraint, i.e., γi(x) ≥ T, ∀i such that xi = 1. The set of all
the feasible schedules is denoted by I. In our scenario, since
each link transmits one data packet whenever it is successful,
the long-term service rate of a link is equal to the fraction
of time the link is successful. The rate region Λ, which is
defined as the set of all the possible service rates is given
by the convex hull of the feasible schedules in I. Hence,
Λ = {

∑
x∈I αxx |

∑
x∈I αx = 1, αx ≥ 0, x ∈ I}. If a

link scheduling policy can support any rate vector in the rate
region, then the scheduling policy is said to be rate-optimal.

Adaptive CSMA: We briefly review the adaptive CSMA
algorithm [7], [16]. In this algorithm, each link i is associated
with a fugacity λi > 0 which defines the underlying Gibbs
distribution. In each time slot, a randomly selected link i is
allowed to update its schedule xi(t) based on the information
in the previous slot:
• If its SINR is inadequate, i.e., γi(x(t − 1)) ≤ T , then
xi(t) = 0.

• If γi(x(t − 1)) ≥ T , then link i exchanges control
messages with its neighbors, to find if they can meet their
SINR requirements if link i gets activated. If any of its
neighbors cannot meet its requirement, then xi(t) = 0.

• If all the neighbors can meet their SINR requirements
even if link i gets activated, then xi(t) = 1 with
probability λi

1+λi
, and xi(t) = 0 with probability 1

1+λi
.

Remarks on Implementation: A challenge in the second step
of the above algorithm is to ensure that a newly scheduled
link does not alter the SINR requirements of its transmitting
neighbours. This problem is typically addressed by introducing
a control subslot during which nodes exchange control packets
to determine the feasibility of transmissions. More specifically,
[16] proposed a control protocol which includes a three-way
handshake of control packets: Ready-To-Send (RTS), Clear-
To-Send (CTS), and REJECT. In this protocol, if a link is
selected to update its status, its transmitter sends an RTS in
the control subslot. If any active neighbouring link in the
previous schedule x(t − 1) fails to meet the required SINR,
the neighbour broadcasts a REJECT signal and disapproves
the transmission request. If no REJECT signal is broadcasted,
the selected link proceeds to transmit. Detailed descriptions of
this handshake protocol can found in [16, Section III-C].

It can be shown [9, Proposition 1] that the adaptive CSMA
algorithm induces a Markov chain on the state space of
the schedules {0, 1}N . Further, the stationary distribution
of the Markov chain, parametrized by the fugacity vector
λ = [λi]

N
i=1, is given by:

p(x) =
1

Z

∏
j : xj=1

λj 1(x ∈ I), ∀x ∈ {0, 1}N , (3)

where 1(x ∈ I) is an indicator of x being a feasible schedule,
and Z is the normalizing constant. Then, due to the ergodicity
of the Markov chain, the long-term service rate of a link i
denoted by si is equal to the marginal probability that link
i is active, i.e., pi(xi = 1). Thus, the service rates and the
fugacities are related as follows:

si = pi(1) =
∑

x : xi=1

Z−1
∏

j : xj=1

λj , ∀i ∈ N , (4)

where pi(1) denotes pi(xi = 1). The adaptive CSMA algo-
rithm can support any service rate in the rate region provided
appropriate fugacities are used for the underlying Gibbs dis-
tribution [12, Theorem 5] .

If the desired service rates are known, these fugacities can
be obtained by solving the system of equations in (4). In [26,
Section 3.3], it is shown that solving this system of equations
can be posed as a convex optimization problem. The main
idea is explained as follows. Given a set of service rates from
the rate region, by the definition of rate region, there should
exist some distribution α(x) on the state space of feasible
schedules I which would support the required service rates.
Note that the definition of rate region does not impose that
the distribution α(x) is a Gibbs distribution. In [26, Section
3.3], the authors find a Gibbs distribution that is close to
this distribution α(x). It is achieved by minimizing the KL
divergence [26, Section 3.3] between α(x) and the family
of Gibbs distributions parameterized by the fugacity vectors.
Further it has been shown [26, Section 3.3] that the resulting
minimization problem is equivalent to the following Gibbsian
optimization problem referred to as the global problem.
The global Gibbsian problem:

lnλ = arg max
r∈RN

G(r), (5)

where G(r) :=
∑
k∈N

skrk − ln
(∑
y∈I

exp
( ∑
k∈N

ykrk

))
.

Here {si}i∈N ∈ Λ are the desired service rates.
Remark: To understand that the global Gibbsian problem (5)
solves the system of equations in (4), we can simply set
∂G(r)
∂ri

= 0 to obtain

si −

∑
y∈I:yi=1 exp

(∑N
k=1 ykr

∗
k

)
∑
y∈I exp

(∑N
k=1 ykr

∗
k

) = 0, ∀i ∈ N .

Observe that for λi = er
∗
i , the above equations essentially boil

down to the desired equations in (4).
A distributed stochastic gradient descent algorithm was

proposed in [7] to solve (5). However, estimating the gradient
of G(r) in a distributed manner entails the underlying Markov
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chain of the CSMA algorithm to converge to steady-state,
which takes an impractically long time in general [13].

In the next section, we consider this scenario where the
links know their target service rates. We provide an efficient
and scalable approximation to this problem, by proposing the
following local Gibbsian problems. The solutions of these
local problems are appropriately combined to estimate the
solution to the global problem.

III. THE LOCAL GIBBSIAN PROBLEMS

We now introduce some definitions required for the descrip-
tion of the local Gibbsian problems.

Local schedule: Let x(j) ∈ {0, 1}Nj , be the set of variables
corresponding to the transmission status of the link j and its
neighbors, i.e., x(j) := {xk | k ∈ Nj} . We refer to x(j) as the
local schedule at j. Further, from (1), it can be observed that
the SINR of a link depends only on the local schedule. Hence
the SINR at a link j can be viewed as a function of x(j),
i.e., γj(x) = γj(x(j)). Also, recall that a schedule x is said to
be feasible, if all the active links in the schedule meet their
required SINR threshold. Thus, 1(x ∈ I) can be factorized
over the local schedule variables {x(j)}Nj=1 as 1(x ∈ I) =∏
j : xj=1

1(γj(x(j)) ≥ T ). Then, (3) can be written as

p(x) =
1

Z

∏
j : xj=1

λj1(γj(x(j)) ≥ T ), ∀x ∈ {0, 1}N . (6)

Local feasiblity: A local schedule y = [yk]k∈Nj ∈ {0, 1}
Nj

at link j is said to be feasible, if either the link j is inactive
(i.e., yj = 0), or it is active and meets the required threshold
SINR i.e., (yj = 1 and 1(γj(y) ≥ T )). The set of all
the feasible local schedules at j is denoted by Ij . It can
be observed from (6) that p(x) assigns zero probability to a
schedule x if any of its local schedule is infeasible.

Local service rate vector: Let {si}Ni=1 be the set of service
rates of all the links in the network. Then the local service
rate vector at link j denoted by s(j) be defined as the set of
all the service rates corresponding to link j and its neighbors,
i.e., s(j) := {sk | k ∈ Nj} .

Local capacity region: The local capacity region at link j
is defined as the convex hull of the local feasible schedules at
link j given by

Λj = {
∑
z∈Ij

αzz |
∑
z∈Ij

αz = 1, αz ≥ 0, z ∈ Ij}. (7)

Now, we define the local Gibbsian problem at link j as follows:

βj = arg max
r∈RNj

F (r), (8)

where βj := [βjk]k∈Nj , and the function F : RNj → R is

F (r) :=
∑
k∈Nj

skrk − ln
( ∑
y∈Ij

exp
( ∑
k∈Nj

ykrk

))
.

Observe that, the local problems are structurally similar to the
global problem, except that I in the global problem is replaced
by Ij , and N is replaced by Nj . In particular, the dimension
of the local problem at link i is just |Ni|. The solutions to

these local problems are referred to as the local fugacities. In
particular, at each link j ∈ N , there is a local fugacity vector
βj := [βjk]k∈Nj .

Local algorithm: Here, we propose a simple and dis-
tributed algorithm (Algorithm 1) to solve the local Gibbsian
problems and subsequently compute the approximate global
fugacities by combining the local solutions using (9). These
approximate global fugacities can be directly used in the
CSMA algorithm instead of adapting the fugacties using
a stochastic gradient descent on the global problem which
usually doesn’t converge in practical time scales. Each link
in the network executes the following algorithm in parallel.

Algorithm 1: Local Gibbsian method at link j

Input: (sk, k ∈ Nj); Output: λ̃j .
1) Obtain the service rates (sk, k ∈ Nj) from the neigh-

bours.
2) Compute the local fugacities (βjk, k ∈ Nj) by solving

the local problem (8) using the Newton’s method.
3) From each neighbour k ∈ Nj , obtain the local fugacity

βkj .
4) Compute the approximate global fugacity λ̃j as

λ̃j =

(
1− sj
sj

)|Nj |−1 ∏
k∈Nj

eβkj . (9)

Information exchange: The algorithm requires only two
steps of information exchange with the neighbours. Once
in the first step, to obtain the service requirements of the
neighbours, and again in the third step to obtain the local
fugacities computed at the neighbours. Except for these two
information exchanges, the algorithm is fully distributed and
can be executed independently at each link.

Computational complexity: The implementation of the New-
ton’s method [27, Section 9.5] in the second step of our
algorithm is feasible. This is because the gradient and the
Hessian of the local objective function F (r) can be analyt-
ically computed since the dimension of the problem is small.
The exact expressions for the gradient and Hessian at link j
can be computed using certain marginals of the distribution
b̂j(x(j)) = Z−1

j exp(
∑
k∈Nj xkrk),∀x(j) ∈ Ij , where Zj is a

normalization constant.
For k ∈ Nj , let mk(r) represent the probability P(xk = 1)

under the distribution b̂j . Similarly, for i, k ∈ Nj , let mik(r)
denote the probability P(xi = 1, xk = 1) under the same
distribution b̂j . Then, the gradient and Hessian of the function
F (r) are given by

[∇(F (r))]k = sk −mk(r), k ∈ Nj ,

[∇2(F (r))]ik =

{
mik(r)−mi(r)mk(r), i, k ∈ Nj , i 6= k

mk(r)−mk(r)2, i = k.

The computation of the gradient and the Hessian requires
the information about the local feasible schedules at a link.
Specifically, this information is required to compute the
normalization constant Zj . These computations are feasible
because the O(2|Nj |) complexity involved in this computation
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scales only with the size of the local neighborhood, and is
independent of the total size of the network which could be
substantially large. In particular, in spatial networks where the
neighborhood size does not scale with the network size, our
algorithm is order optimal.

In Section V, we prove that the approximate global fu-
gacites {λ̃j}Nj=1 obtained using the local Gibbsian method
(9) correspond exactly to performing the well known Bethe
approximation to the global Gibbsian problem. In the next
section, we review the Bethe approximation technique.

IV. REVIEW OF THE BETHE APPROXIMATION

We now introduce some terminology required to describe
the Bethe approximation technique [20].

A. Product form distribution

Let S be a finite set, and let Xi, i = 1, 2, . . . , N , be random
variables each taking values in S. The joint PMF (probability
mass function) of the random variables is succinctly denoted as
p(x), where x = {x1, x2, . . . , xN}. Suppose that p(x) factors
into a product of M functions and is given by,

p(x) =
1

Z

M∏
j=1

fj(x(j)), x ∈ SN . (10)

The function fj(·) has arguments x(j) that are some non-empty
subset of x = {x1, x2, . . . , xN}. Here Z is a normalization
constant. Further, the product form distributions are generally
represented using a graph called factor graph [20] that has
two sets of nodes namely variable nodes and factor nodes
corresponding to the variables and the functions in (10)
respectively. An edge is drawn between a variable node and
a factor node if the variable is an argument of that factor
function.

For the product form distribution considered in (10), we are
interested in certain marginal probabilities called the variable
marginals and the factor marginals.
Variable node marginals: The marginal probability distribu-
tion pi(xi) corresponding to a variable node i, is obtained
by summing p(x) over the variables corresponding to all
other variable nodes, i.e., pi(xi) =

∑
x\xi p(x), xi ∈ S,

i = 1, . . . , N.
Factor node marginals: Corresponding to each factor node,
j = 1, . . . ,M , the marginal probability function p̂j(x(j)), is
obtained by summing p(x) over all the variables in x\x(j). Let
Nj denote the number of arguments in fj , i.e., Nj = |x(j)|.
Then, p̂j(x(j)) =

∑
x\x(j) p(x), x(j) ∈ SNj .

Let pv := {pi}Ni=1, pf := {p̂j}Mj=1 denote the collection of
all the variable node marginals and the factor node marginals
corresponding to the distribution p(x) respectively.

The computation of these marginal probability distributions
requires the computation of the normalization constant Z,
which is an NP-hard problem [20]. Next, we discuss the
notions of Gibbs free energy (GFE) and the Bethe free energy
(BFE) which provide a variational characterization of the
normalization constant and the marginal distributions.

B. Gibbs free energy
Consider a probability distribution p(x) of the form (10) for

which we are interested in finding the normalization constant
Z, and the marginals. Let b(x) be some distribution on SN .
Here, p(x) is referred to as the true distribution, and b(x) is
referred to as the trial distribution as it will be used to estimate
the true distribution p(x). We now introduce the notion of
energy function which is required to define the Gibbs free
energy [20]. For a given distribution p(x) in the form of (10),
the energy function E(x) : SN → R is defined as E(x) =
−
∑M
j=1 ln fj(x(j)). Observe that the energy function E(x)

completely specifies the distribution p(x) in (10), as p(x) =
1
Z e
−E(x). Using the definition of the energy function, the GFE

can be defined as follows.

Definition 1. Consider an energy function E(x) which cor-
responds to a true distribution p(x). Let b(x) be a trial
distribution. Then the Gibbs free energy FG(b) is defined
as FG(b) = UG(b) − HG(b), where the term UG(b) =∑

x∈SN b(x)E(x) is called the average energy, and HG(b) =
−
∑

x∈SN b(x) ln b(x) is the entropy of the distribution b(x).

The GFE provides a variational characterization of the
normalization constant Z of p(x) as − lnZ = minb FG(b).
Further, if the minimum of FG(b) is achieved at b∗, then
p(x) = b∗(x), ∀x ∈ SN .

Here, the optimization is over all the possible distributions
on SN . However, as N becomes large, this procedure is
intractable, as the optimization variables take exponentially
large memory to store. Moreover, this method only computes
the partition function, but doesn’t explicitly compute the
marginals. We hence take recourse to the Bethe approximation,
which is an approximate, but a more practical technique
to estimate the marginals explicitly. In particular, the Bethe
approximation does two approximations: First, the GFE FG(b)
is approximated using the BFE FB(b) defined in (11). Second,
the optimization of the BFE is performed over a restricted set
of distributions, which will be described in (13).

C. Bethe approximation
1) Bethe free energy (BFE): We first define the Bethe

entropy of a distribution b(x), which is a function of the factor
and variable marginals of b(x). The Bethe entropy is given by

HB (bf ,bv) =

M∑
j=1

Ĥj(b̂j)−
N∑
i=1

(di − 1)Hi(bi).

Here, di is the degree of the variable node i in the factor
graph, and Ĥj(b̂j) = −

∑
y∈SNj b̂j(y) ln b̂j(y), Hi(bi) =

−
∑
y∈S bi(y) ln bi(y) denote the entropies of the factor

marginal b̂j(x(j)), and the variable marginal bi(xi) respec-
tively.

Definition 2. Consider a true distribution p(x) of the form
(10). Let b(x) be a trial distribution with factor and variable
marginals given by bf = {b̂j}Mj=1 and bv = {bi}Ni=1. Then, the
Bethe free energy FB(b) corresponding to the true distribution
p(x) is defined as

FB(b) = FB (bf , bv) = UB(bf , bv)−HB(bf , bv), (11)
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where UB(bf , bv) = −
M∑
j=1

∑
x(j)∈SNj

b̂j(x(j)) ln fj(x(j)).

(12)

2) Bethe optimization (BO): The following optimization
problem is referred to as the Bethe optimization.

arg min
bf ,bv

FB(bf ,bv), subject to (13)

bi(xi) ≥ 0, i = 1, . . . , N, xi ∈ S,∑
xi

bi(xi) = 1, i = 1, . . . , N,

b̂j(x(j)) ≥ 0, j = 1, . . . ,M, x(j) ∈ SNj ,∑
x(j)

b̂j(x(j)) = 1, j = 1, . . . ,M,∑
x(j)\{xi}

b̂j(x(j)) = bi(xi), j = 1, . . . ,M, i ∈ Nj , xi ∈ S,

where Nj is the set of indices of all the variable nodes
associated with the factor node j.

Note: A feasible collection (bf ,bv) of the Bethe optimiza-
tion problem does not necessarily represent the marginals of
any coherent joint distribution over SN , and are therefore
referred to as pseudo-marginals [20]. In spite of performing
the optimization over a relaxed set, the solution of the Bethe
optimization (b∗f ,b

∗
v) exactly coincides with the marginals of

the true distribution (p∗f ,p∗v), if the underlying factor graph is
a tree. Further, for factor graphs with loops, the solution leads
to very good estimates of the true marginals [20], [21]. In
many applications, solving for the global minimizer of (13) is
not feasible because of its non-convexity. Hence, a stationary
point of the BFE satisfying the constraints in (13) is considered
as a good estimate of the true marginals [20], [21].

D. Bethe approximation for CSMA

We observe that the stationary distribution of the CSMA
Markov chain p(x) given by (6) is in product form (10) with
the factor functions {fj}Nj=1 defined as

fj(x(j)) =


λj , if xj = 1, γj(x(j)) ≥ T,
0, if xj = 1, γj(x(j)) < T,

1, if xj = 0.

(14)

where x(j) is the local schedule of the link j defined earlier.
By the definition of local feasibility, p(x) assigns zero

probability to a schedule x, if it is locally infeasible at any
link. Hence, the factor node marginals pf = {p̂j}Nj=1 have to
satisfy p̂j(y) = 0, ∀y /∈ Ij , ∀j ∈ N .

BFE for CSMA: We shall consider the product form
representation of the CSMA stationary distribution p(x) in (6)
and compute the BFE. As defined in (11), the BFE for a given
trial distribution b(x) has two terms UB(bf ,bv), HB(bf ,bv).
Now we compute the first term UB(bf ,bv). Specifically, we
show that the term UB(bf ,bv) which is in general a function
of the factor marginals bf , reduces to a function of just the
variable marginals bv , subject to the feasibility conditions
stated in the following lemma.

Lemma 1. Let (bf , bv) be a set of feasible factor and variable
marginals of the Bethe optimization problem (13). If the factor
marginals of a trial distribution bf , assign zero probabilities
to all the infeasible local schedules, i.e.,

b̂j(y) = 0, ∀y /∈ Ij , ∀j ∈ N , (15)

then UB(bf , bv) reduces to UB(bf , bv) = UB(bv) =

−
∑N
i=1 bi(1) lnλi. Moreover, if bf does not satisfy (15),

UB(bf , bv) =∞, which in turn implies FB(bf , bv) =∞.

Proof. Recalling the definition of local feasibility (introduced
in Section III), we obtain

Ij = {x(j) | xj = 0} ∪ {x(j) | xj = 1, γj(x(j)) ≥ T}.

Consider the inner summation of UB(bf ,bv) in (12), and
expand it into two terms as follows:∑
x(j)∈{0,1}Nj

b̂j(x(j)) ln fj(x(j))

=
∑

{x(j)∈Ij}

b̂j(x(j)) ln fj(x(j)) +
∑

{x(j) /∈Ij}

b̂j(x(j)) ln fj(x(j)).

(16)

Now, we evaluate the first term of (16).∑
{x(j)∈Ij}

b̂j(x(j)) ln fj(x(j))
(a)
=

∑
{x(j) | xj=0}

b̂j(x(j)) ln fj(x(j)) +
∑

{x(j) | xj=1,γj(x(j))≥T}

b̂j(x(j)) ln fj(x(j)),

(b)
=

∑
{x(j) | xj=0}

b̂j(x(j)) ln 1 +
∑

{x(j) | xj=1,γj(x(j))≥T}

b̂j(x(j)) lnλj ,

= lnλj
∑

{x(j) | xj=1,γj(x(j))≥T}

b̂j(x(j)). (17)

where (a) follows from the definition of local feasibility,
(b) follows from the defintion of factors in (14).

We now show that the second term of (16) evaluates to
zero. If x(j) /∈ Ij , then from (14) and the assumption (15),
we have fj(x(j)) = 0 and b̂j(x(j)) = 0 respectively. Hence
the summation corresponding to {x(j) /∈ Ij} in (16) is equal
to zero.

Now, we use the fact that (bf ,bv) is feasible for the
Bethe optimization problem (13). Specifically, we use the last
equality constraint in (13) for i = j case (recall from the
definition of Nj , that the link j is also included in the set Nj)
to obtain

bj(1) =
∑

{x(j) | xj=1}

b̂j(x(j)),

=
∑

{x(j) | xj=1,γj(x(j))≥T}

b̂j(x(j)) +
∑

{x(j) | xj=1,γj(x(j))<T}

b̂j(x(j)),

(15)
=

∑
{x(j) | xj=1,γj(x(j))≥T}

b̂j(x(j)) + 0. (18)

Substituting (17), (18) in (16), we obtain∑
x(j)∈{0,1}Nj

b̂j(x(j)) ln fj(x(j)) = bj(1) lnλj .

Using the above equation in the definition of UB(bf ,bv) in
(12) completes the proof of this Lemma.
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Using Lemma 1 and (11), the BFE for any (bf ,bv) that
satisfies the feasibility constraints in (13), (15) is given by

FB(bf ,bv) = FB

(
{b̂j}Nj=1, {bi}Ni=1

)
, (19)

=

N∑
i=1

−bi(1) lnλi − Ĥi(b̂i) + (di − 1)Hi(bi),

where di is degree of variable node i in the factor graph. We
refer FB(bf ,bv) (19) as the BFE corresponding to the set of
fugacities {λi}Ni=1. It essentially means that FB(bf ,bv) is the
BFE corresponding to p(x) in (6).

Remark: Since we are only interested in the Bethe opti-
mization problem (13), throughout this paper, we implicitly
assume that the factor and variable marginals (bf ,bv) satisfy
the feasibility conditions in (13), (15), and use the BFE
FB(bf ,bv) expression obtained in (19).

V. EQUIVALENCE OF LOCAL GIBBSIAN METHOD AND THE
BETHE APPROXIMATION

We first prove certain important structural properties of
the BFE, which we then use to establish an equivalence
between the local Gibbsian method (Algorithm 1) and the
Bethe approximation. In particular, the above equivalence
hinges on establishing the following two important properties,
which are formalized subsequently in Lemmas 2 through 4.
• At a stationary point of the BFE, the relation between the

factor and the variable marginals is captured by the local
Gibbsian problem.

• The factor and variable marginals corresponding to a
stationary point of the BFE uniquely determine the fu-
gacities.

Remark: The above properties are derived for the Bethe
approximation under the SINR model considered in this paper.
The Bethe approximation under general settings may not
satisfy these properties.

A. Characterization of the stationary points of the BFE

In this subsection, we characterize the stationary points of
the Bethe free energy FB(bf ,bv) (19) in Lemmas 2 and 4.
The following Lemma asserts that the stationary points of
FB(bf ,bv) satisfy a maximum entropy property.

Lemma 2. Let FB(bf , bv) (19) denote the BFE corresponding
to the fugacities {λi}Ni=1. Let (b∗f , b

∗
v) be a stationary point

of FB(bf , bv) that satisfies the feasibility constraints in (13),
(15). Then, for each i ∈ N , the factor marginal b̂∗i is
related to its corresponding variable marginals {b∗j}j∈Ni ,
through the following constrained entropy maximization prob-
lem, parametrized by the variable marginals {b∗j}j∈Ni :

b̂∗i = arg max
b̂i

Ĥi(b̂i), subject to (20)

b̂i(x(i)) ≥ 0, ∀x(i) ∈ Ii;
∑

x(i)∈Ii

b̂i(x(i)) = 1,

∑
x(i)\{xj}

b̂i(x(i)) = b∗j (xj), ∀j ∈ Ni, xj = 1. (21)

Proof. Proof is provided in Appendix X-A.

Further, it can be shown [26, Section 3.5] that there is
a unique solution to the maximum entropy problem (20).
Specifically, the variable marginals {b∗j}j∈Ni uniquely charac-
terize the corresponding factor marginal b̂∗i , through the local
Gibbsian problem (22); this is formalized in Lemma 3.

Lemma 3. Consider the following local Gibbsian problem
defined by the variable marginals {b∗j}j∈Ni :

vi = arg max
r∈RNi

∑
k∈Ni

b∗k(1)rk − ln
( ∑
y∈Ii

exp
( ∑
k∈Ni

ykrk

))
.

(22)

Then the corresponding factor marginal (optimal solution of
(20)) is given by

b̂∗i (x(i)) =
1

Zi
exp

( ∑
k∈Ni

xkvik

)
, ∀x(i) ∈ Ii, (23)

where vi = [vik]k∈Ni is the solution of (22), Zi is a
normalization constant.

Proof. Proof follows by considering the dual problem of (20).
The proof can be found in [26, Section 3.5].

Next, in Lemma 4, we prove that the factor and variable
marginals at a stationary point of the BFE uniquely character-
ize the fugacities.

Lemma 4. Let FB(bf , bv) (19) denote the BFE corresponding
to the fugacities {λi}Ni=1. Let (b∗f , b

∗
v) be a stationary point of

the FB(bf , bv). Then the fugacities are uniquely determined
by the factor and variables marginals (b∗f , b

∗
v) as follows:

λi =

(
1− b∗i (1)

b∗i (1)

)di−1 ∏
j∈Ni

evji , ∀i ∈ N , (24)

where vji is an element of the vector vj = [vjk]k∈Nj , that
characterizes the factor marginal b̂∗j of some j ∈ Ni.

Proof. Proof is provided in Appendix X-B.

In Lemmas 2, 4 we have derived the necessary conditions
that a stationary point of the BFE should satisfy. In Appendix
X-C, we show that the conditions in these two Lemmas
together constitute a sufficient condition for a stationary point
of the BFE.

B. Local Gibbsian method gives the Bethe approximated fu-
gacities

We are now in a position to state a key result of this
paper, which asserts that the approximated global fugacities
(9) obtained by solving the local Gibbsian problems (8)
correspond exactly to the Bethe approximated fugacities. We
formalize this result through Definition 3, Theorem 1.

Definition 3. (Bethe approximated fugacities) For a given
set of service rates {si}Ni=1, a set of fugacities {λi}Ni=1 are
said to be Bethe approximated fugacities if the following
holds: “Consider the BFE FB(bf , bv) corresponding to the
fugacities {λi}Ni=1. Then there should exist a stationary point
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(b∗f , b
∗
v) point of the BFE such that the corresponding variable

marginals are equal to the given service rates, i.e., b∗i (1) =
si,∀i”.

Theorem 1. Let {si}Ni=1 be the desired service rates.

1. Then the global fugacities {λ̃i}Ni=1 estimated in (9) are
the Bethe approximated fugacities for {si}Ni=1.

2. For a given set of service rates, the Bethe approximated
fugacities are unique.

Proof. Consider the BFE (25) corresponding to the fugacities
{λ̃i}Ni=1. We show there exists a stationary point ({b̂j}, {bj})
of the BFE, given by (26)-(27), such that the corresponding
variable marginals {bj(1)} (26) are equal to the desired service
rates {si}Ni=1.

FB(bf ,bv) =

N∑
i=1

−bi(1) ln λ̃i − Ĥi(b̂i) + (di − 1)Hi(bi),

(25)
bj(1) = sj , bj(0) = 1− sj , ∀j, (26)

b̂j(x(j)) =
1

Zj
exp

( ∑
k∈Nj

xkβjk

)
, ∀x(j) ∈ Ij , ∀j, (27)

where βj = [βjk]k∈Nj is the local fugacity vector at link j
obtained from (8), and Zj is the corresponding normalization
constant.

Now we use the structural properties of the BFE derived
in Lemmas 2 through 4 to complete the proof. In particular,
recall from (8) that the local fugacity vector βj = [βjk]k∈Nj
is obtained by solving the local Gibbsian problem (8), which
is same as (22). Hence, due to Lemma 3, it is clear that the
set of marginals ({b̂j}, {bj}) in (26)-(27) satisfy the maximum
entropy property stated in Lemma 2.

Next, due to the definition (9) of the global fugacities
{λ̃i}Ni=1, the variable and factor marginals defined in (26)-(27)
immediately satisfy the condition (24) in Lemma 4.

Therefore, ({b̂j}, {bj}) given in (26)-(27) is a stationary
point of the BFE (25). Further, note that the corresponding
variable marginals {bj(1)} (26) at this stationary point are
equal to the desired service rates {si}Ni=1. Hence, the fugacities
{λ̃i}Ni=1 are the Bethe approximated fugacities for {si}Ni=1.

Next, we prove the uniqueness of the Bethe approxi-
mated fugacities. For the given service rates {si}Ni=1, let us
assume that two sets of fugacities {λ1

i }Ni=1, {λ2
i }Ni=1 sat-

isfy the definition of the Bethe approximated fugacities. Let
F 1
B(bf ,bv), F 2

B(bf ,bv) be the BFE functions corresponding
to the fugacities {λ1

i }Ni=1, {λ2
i }Ni=1 respectively. Then there

should exist stationary points ({b̂1j}, {b1j}), ({b̂2j}, {b2j}) of
their corresponding BFE functions such that the variables
marginals are equal to the service rates, i.e., {b1j (1)} =
{b2j (1)} = {sj}. Since the variable marginals are same, due
to Lemmas 2, 3, the factor marginals corresponding to these
stationary points should be the same. In other words, i.e.,
({b̂1j}, {b1j}) = ({b̂2j}, {b2j}). Then (24) from Lemma 4 asserts
that {λ1

i }Ni=1 = {λ2
i }Ni=1. Hence, for a given set of service

rates, the Bethe approximated fugacities are unique.

VI. SPECIAL CASE - CONFLICT GRAPH MODEL

Conflict graph model [19] is a special case of the SINR
interference model. In the conflict graph model, two links
cannot transmit simultaneously, if one link is within the
interference range of the other link. Under the conflict graph
model, we derive simple closed form expressions for the local
fugacities (8).

Theorem 2. For the conflict graph model, the local fugacities
i.e., solution of the local Gibbsian problem (8) at a link i is
given by

eβij =

si (1− si)|Ni|−2 ∏
k∈Ni\{i}

(1− si − sk)−1, if j = i,

sj(1− si − sj)−1, if j ∈ Ni \ {i}.
(28)

Proof. Proof is provided in Appendix X-D.

Comparison with the results in [19]:
The fugacities for the conflict graph model have been derived
in [19]. Here, we derive the global fugacities using our
approach and compare to the results in [19].

Corollary 4. For the conflict graph model, the global fugacity
at a link i is

λ̃i =
si(1− si)2|Ni|−3∏

k∈Ni\{i}
(1− si − sk)2

.

Proof. We obtain this result by substituting the local fugac-
ities obtained in (28) in the expression proposed for global
fugacities (9).

The expression for the global fugacities proposed in [19] is

λ̃i =
si(1− si)|Ni|−2∏

k∈Ni\{i}
(1− si − sk)

,

which is different from the expression derived in Corollary 4.
In essence, these expressions are different because, the factor-
izations considered in the two cases are different. Specifically,
it is well known that for a given product form distribution, the
Bethe approximation technique could lead to different results,
corresponding to different factorizations of the product form
distribution [28, Chapter 2, Page 10].

To elucidate this point, we consider the conflict graph
interference model, and present two natural factorizations that
lead to the same CSMA distribution (3). In the conflict graph
model, a schedule x is said to be feasible if it is an independent
set of the underlying graph G(V,E). Using this observation,
the term 1(x is feasible) in (3) can be factorized in two ways
as given below.
1. Edge-centric factorization: This factorization ensures that
for each edge, not more than one of its end vertices are active.

1(x is feasible) =
∏

(i,j)∈E

1(xixj = 0).

2. Vertex-centric factorization: In this factorization, whenever
a vertex is active, it ensures that all its neighbours are inactive.

1(x is feasible) =
∏
j∈V

fj(x(j)),
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where x(j) is the set of activation status of node j and its
neighbours, and fj is given by

fj(x(j)) =


1, if xj = 0,

1, if xj = 1 and {xk}k∈Nj\{j} = 0,

0, otherwise.

In [19], the authors use the edge-centric factorization, which
cannot be directly used to capture the SINR model. Hence we
use a more general factorization (14), which reduces to the
vertex-centric factorization for the conflict graph case.

Remark: The existing theory on the Bethe approximation is
not sufficient to conclude or prove that one of the factorizations
is always better than the other. However, the following can be
said under some special cases.
• For the conflict graph model, the formula derived in [19]

is provably exact if the conflict graph is a tree. Hence, if
there is prior knowledge that the conflict graph has tree
topology, the formula in [19] should be used.

• From the simulations that we have conducted, we have
the following observation for topologies with loops. For
the formula proposed in [19], we observed that the
achieved service rate is less than the target service rate
even for small load. However, for the formula obtained
using our approach, the achieved service rate is more than
the target service rate at smaller loads. Hence, if we have
prior knowledge that we are operating in the low load
regime, empirical evidence suggests that it is beneficial
to use the approach proposed in our paper.

VII. UTILITY MAXIMIZATION

In this section, we consider the utility maximization problem
and provide an approximation algorithm to solve the problem
in a distributed manner. The problem is defined as follows.
Suppose each link i in the network is associated with a concave
utility function of its service rate Ui : [0, 1] → R+. Our
objective is to find the service rates that maximize the system
wide utility, i.e.,

max
y∈Λ

N∑
i=1

Ui(yi), (29)

and subsequently compute the global fugacities that corre-
spond to these optimal service rates.

In [7], an iterative algorithm to update the global fugacities
is proposed. However, each iteration of the algorithm requires
an underlying slowly mixing Markov chain to reach steady
state. Hence it suffers from impractically slow convergence to
the optimal fugacities. To address this issue, we propose an
iterative algorithm which updates the local fugacities instead of
directly updating the global fugacities. These local fugacitiy
updates are computationally simple and do not require any
Markov chain to convergence. These local fugacities are then
used to obtain the approximate global fugacities using (9)
proposed in Section III.

Each link in the network executes Algorithm 2 in parallel.
The algorithm involves solving an one dimensional optimiza-
tion problem (30) related to the original optimization problem

(29). Here θ > 0, is a parameter of the algorithm that can
be tuned. The solution of this optimization problem sj(t) is
used in the subsequent steps of the algorithm to update the
local fugacities (31) and the global fugacities. We will later
show that the update equation (31) is inspired by a subgradient
descent algorithm for a related optimization problem. The term
α(t) in (31) corresponds to the step-size of the subgradient
descent algorithm. Any standard step-sizes that satisfy the
convergence criteria for a subgradient descent method can be
used [29, Chapter 2]. A typical example is α(t) = 1

t .

Algorithm 2: Local utility maximization at link j

1) At t = 0, initialize βjk(t) = 0, ∀k ∈ Nj .

Computing global fugacities:

2) From each neighbour k ∈ Nj , obtain the local fugacity
βkj(t).

3) Compute sj(t) as

sj(t) = arg max
q∈[0,1]

θUj(q)− q
∑
k∈Nj

βkj(t). (30)

4) Compute the approximate global fugacity λ̃j(t) from
local fugacities (βkj(t), k ∈ Nj) and sj(t) using (9).

Updating the local fugacities:

5) Consider the distribution

b̂j(x(j); t) = Z−1
j exp

( ∑
k∈Nj

xkβjk(t)
)
,∀x(j) ∈ Ij ,

and for each k ∈ Nj , let mjk(t) :=∑
x(j):xk=1 b̂j(x(j); t) represent the marginal probability

corresponding to xk under this distribution.
6) For each k ∈ Nj , obtain sk(t) computed at the neigh-

bour k, and update the local fugacity at j using

βjk(t+ 1) = βjk(t) + α(t) (sk(t)−mjk(t)) . (31)

Complexity: The computational complexity of the above
algorithm is O(2|Nj |), which depends only on the size of the
local neighbourhood, and is independent of the total size of
the network.

Accuracy: The accuracy of the above algorithm can be
understood by splitting the error into two parts. The first part
is the error involved in estimating the optimal service rates
in (29). The second part is the error involved in estimating
the global fugacities corresponding to these service rates.
We characterize the first part of the error in Theorem 3,
which states that the gap to the optimum utility is O( 1

θ ).
In other words, the local algorithm provides a good estimate
of the optimal service rates when θ is large. The second
part of the error depends only on the accuracy of the Bethe
approximation. The Bethe error is evidenced to be reasonably
small in many applications [21].
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Theorem 3. In Algorithm 2, the service rates s(t) =
[sj(t)]

N
j=1 (30) converge to some s = [sj ]

N
j=1 ∈ [0, 1]N , such

that the limit s satisfies

N∑
j=1

Uj(sj) ≥ max
y∈Λ

N∑
j=1

Uj(yj)−
∑
j log |Ij |
θ

. (32)

Proof. We prove this theorem in the following steps:
1. First, we define a new optimization problem (34) that is

related to the original utility maximization problem (29).
2. Then, we prove that the proposed local utility maxi-

mization algorithm corresponds to a subgradient descent
algorithm for the new optimization problem (34).

3. Finally, we complete the proof by showing that the
solution of the new optimization problem (34) satisfies
the inequality (32) stated in this theorem.

Step 1: Firstly, we relax the constraints of (29) by replacing
the actual capacity region Λ, with the Bethe approximated
capacity region defined below:

ΛB := {y ∈ [0, 1]N | y(j) ∈ Λj , ∀j ∈ N}. (33)

From Section III, recall that y(j) = [yk]k∈Nj is the local
service rate vector, and Λj defined in (7) is the local capacity
region which is nothing but the convex hull of the local feasible
schedules Ij . In other words, a local service rate vector y(j)

belongs to Λj , if and only if there exists a distribution b̂j
on the local feasible schedules Ij , that supports the service
rates y(j), i.e., yk =

∑
{x(j)∈Ij |xk=1} b̂j(x(j)), k ∈ Nj . As

this definition of ΛB imposes only local feasibility of service
rates, it is easy to argue that the Bethe capacity region is a
relaxation of the actual capacity region, i.e., Λ ⊆ ΛB .

Secondly, we scale the objective function (29) by a factor θ,
and add local entropy terms. The resulting new optimization
problem is given by

max
y,{b̂j}

θ

N∑
j=1

Uj(yj) +

N∑
j=1

H(b̂j), subject to (34)

y ∈ [0, 1]N ; b̂j(x(j)) ≥ 0, x(j) ∈ Ij , j = 1 . . . N ;∑
x(j)∈Ij

b̂j(x(j)) = 1, j = 1 . . . N ;

yk =
∑

{x(j)∈Ij |xk=1}

b̂j(x(j)), k ∈ Nj , j = 1 . . . N. (35)

Here, the constraint set is specified by explicitly expanding
the definition of Λj involved in description of ΛB (33). For a
large θ, this new objective function (34) closely approximates
the original objective (29) since the entropy is bounded from
above and below. The advantage of defining this new optimiza-
tion problem is that it is amenable to a distributed solution
[7]. In particular, our local algorithm solves this problem in a
distributed fashion.
Step 2: In the following Lemma, we show that Algorithm 2
solves the new optimization problem (34).

Lemma 5. Let (s, {b̂j}) be the solution of the optimization
problem (34). Then the service rates {sj(t)} (30) in Algorithm
2 converge to the limit s = {sj}.

Proof. The outline of the proof is to show Algorithm 2
corresponds to the dual subgradient method for (34). The proof
is provided in Appendix X-E.

Step 3: We now show that the solution of the optimization
problem (34) achieves the performance guarantee claimed in
(32). In other words, we show that s = {sj} satisfies (32).

Recollect that we have added the local entropy terms to
the actual objective function to obtain a new problem (34).
Here, we shall evaluate the effect of these entropy terms
on the optimal utility. To that end, let us consider (s, {b̂j}),
the solution to the maximization problem (34). Let us also
consider the following optimization problem which does not
have the local entropy terms. s∗ := arg maxy∈ΛB

∑
j Uj(yj).

Note that s∗ could be different from s. Also, from the
definition of ΛB , for every y ∈ ΛB there exists some {b̂j}
such that (y, {b̂j}) is feasible for the problem (34). Hence
for s∗ ∈ ΛB , there exists some {b̂∗j} such that (s∗, {b̂∗j}) is
feasible for (34). Then,

θ
∑
j

Uj(s
∗
j ) ≤ θ

∑
j

Uj(s
∗
j ) +

∑
j

H(b̂∗j ),

(a)

≤ θ
∑
j

Uj(sj) +
∑
j

H(b̂j),

(b)

≤ θ
∑
j

Uj(sj) +
∑
j

log |Ij |, (36)

where (a) follows from the fact that (s, {b̂j}) maximizes (34),
(b) follows from the fact that entropy H(b̂j) ≤ log |Ij |. Next,
using the fact that Λ ⊆ ΛB , we have

max
y∈Λ

∑
j

Uj(yj) ≤ max
y∈ΛB

∑
j

Uj(yj) =
∑
j

Uj(s
∗
j ). (37)

Using (37) in (36) completes the proof of Theorem 3.

We conclude this section by contrasting our utility maxi-
mization algorithm with a prior work [7] which is also a sub-
gradient descent based algorithm. The key difference between
these works is in the complexity involved in computing the
subgradients. Specifically, in our algorithm, the complexity of
computing the subgradient is independent of the total size of
the network. On the other hand, it could be exponentially large
in the network size, for the algorithm given in [7].

VIII. NUMERICAL RESULTS

In this section, we present simulations to evaluate the
performance of our algorithms. We consider three topologies
namely random graphs, complete graph, and grid graph.

A. Bethe error

Simulation setting for random graphs: We generate a spatial
random network by uniformly placing the transmitter nodes on
a two dimensional square plane of length 8. Each transmitter
is associated with a receiver at a distance of 0.5 in a random
direction. The path loss exponent α is set to 3, the close-in
radius RI is set to 2.4, and the threshold SINR is set to 15
dB. The transmit power of the links is set to 1. We consider
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(a) 15-link random topology
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(b) 20-link random topology
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(c) 4 × 4 grid topology

Fig. 1: Illustration of some interference graphs used: Each vertex represents a link in the network. An edge is present if two
links are in the interference range.
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Fig. 2: Comparision of errors due to SGD and our Bethe approximation based algorithms for random topologies in Figure 1
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Fig. 3: Bethe error for complete graph topology
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Fig. 5: Convergence of local utility maximization algorithm

equal service rate requirements for all the links. For a given
target service rate vector st = [sti]

N
i=1, we define the Bethe

approximation error as

e(st) =

∑N
i=1 |sti − sai |

N
,

where sa = [sai ]Ni=1 are the service rates that can be supported
by the approximated fugacities {λ̃}Ni=1.

Bethe error as function of target service rate: We generated
two random networks of sizes 15 and 20 links (shown in
Figure 1a, 1b). We compared the error of our approximation
algorithm with the residual error of the SGD algorithm [7]
after running the SGD for 108 time-slots of the CSMA
algorithm. In Figure 2a, we plot the approximation error as a
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function of the target service rate. Further, for the considered
SINR constraints, we numerically observed that for both the
random topologies in Figure 1, CSMA can support till a
service rate of 0.33 for all the links. Hence, we varied the
target service rate from 0 to 0.33. It can be observed from
Figure 2a, that for practical time-scales, our algorithm results
in better accuracy than the SGD for all the target service rates.

Error as a function of time: In Figure 2b, for a fixed
target service rate of 0.25, we plot the approximation error
as a function of time, by using the time-averaged service
rates observed from CSMA algorithm. Here, our local Gibbs
algorithm computes the Bethe approximated fugacities, and
uses these static fugacities (i.e., they are not adapted during
the algorithm) in the CSMA algorithm. The SGD algorithm
starts with some initial fugacities, and adapts the fugacities
by observing the corresponding service rates. We simulated
two versions of the SGD algorithm (SGD-1, SGD-2) proposed
in [7], [30], whose details are as follows: The update rule of
SGD algorithm has two functions to be chosen, namely update
interval T (j), and step size α(j), for the jth iteration of the
gradient descent. The update rule for SGD-1 [7, Section II-
D] is given by α(j) = 1

(j+2) log(j+2) , T (j) = j + 2. The
update rule for SGD-2 [30, Scheduling Algorithm 1] is given
by α(j) = 1

j , T (j) = exp(
√
j).

Although the SGD algorithm will eventually converge to the
exact fugacities, from Figure 2b, it can be observed that for
practical time-scales of the order of 108 time slots, the residual
error is rather large compared to our approximation algorithm.
This is because, the CSMA Markov chain has to mix only
one time for the Bethe approximation based approach, as the
fugacities are static. However, in the SGD based approach, for
every update in the fugacities, the Markov chain tries to mix
to a new steady state distribution.

Complete graph and Grid graph: Here, we consider two
complete graph topologies with sizes 15 and 20, and two
grid topologies of sizes 16 and 25. A 4 × 4 grid topology is
illustrated in Figure 1c. The range of the target service rates
is chosen by numerically observing the maximum supportable
service rates for the respective topologies. We plot the Bethe
error for these two topologies as a function of the target service
rates in Figure 3, 4. As seen from the plots, the error is
considerably small for both the topologies.

B. Convergence of Utility maximization algorithm

Here, we consider the case of computing the fugacities for
the proportional fairness utility setting, i.e., Ui(si) = log si
for all the links. We update the fugacities using Algorithm 2
proposed in Section VII. In Figure 5, we plot the norm of
the subgradient corresponding to the maximization problem
(34), which indicates the convergence of the algorithm. The
convergence is plotted for the two random topologies of size
15 and 20. It can be observed that the proposed algorithm
converges within 200 iterations.

IX. CONCLUSIONS

We considered the adaptive CSMA algorithm under the
SINR interference model, which is known to be throughput

optimal. Under this model, we first proposed a distributed
algorithm, namely the local Gibbsian method to efficiently
estimate the fugacities, for a given service rate requirements.
The convergence rate and the complexity of the proposed
algorithm depend only on the maximum size of a link’s neigh-
bourhood. We proved that our approximation corresponds
exactly to performing the well known Bethe approximation
to the global Gibbsian problem. We also proposed an approx-
imation algorithm to estimate the fugacities under a utility
maximization framework. Our numerical results indicate that
the proposed approximation algorithms can lead to a good
degree of accuracy, and improve the convergence time by a
few orders of magnitude, compared to the existing stochastic
gradient descent methods.
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X. APPENDIX

A. Proof of Lemma 2

Let us consider the Bethe optimization for the BFE defined
in (19):

arg min
{b̂i}Ni=1,{bi}Ni=1

FB

(
{b̂i}Ni=1, {bi}Ni=1

)
, subject to (38)

∑
x(i)\{xj}

b̂i(x(i)) = bj(xj), i ∈ N , j ∈ Ni, xj = 1, (39)

∑
x(i)∈Ii

b̂i(x(i)) = 1, i = 1 . . . N, (40)

bi(1) + bi(0) = 1, i = 1 . . . N. (41)

As all the constraints of (38) are linear, they can be elimi-
nated by suitable variable transformation to get an equivalent
unconstrained problem [27, chapter 10]. Let us now look
at the optimization variables in (38). If we consider the
distribution bi(·), there are 2 optimization variables associated
with it, namely bi(0) and bi(1). If we consider the distribution
b̂i(·), there is an optimization variable corresponding to each
argument ρ ∈ Ii, i.e., there are |Ii| variables associated
with it, namely {b̂i(ρ)}ρ∈Ii . For convenience, we split the
arguments ρ ∈ Ii into two sets. We use A to denote the set
of arguments in which there is at most one non-zero element,
i.e., A = {ρ = [ρj ]j∈Ni ∈ Ii |

∑
j∈Ni ρj ≤ 1}, and use B

to denote the set of all the other arguments in Ii. Later, we
use the definition of these two sets, to propose some variable
transformations that eliminate the equality constraints.

Example: Before we proceed further, let us consider an
example which will be used to illustrate the variable trans-
formations. Consider an interference graph with 3-node line
topology as shown in Figure 6. For the ease of illustration,
let us assume that the SINR constraints are such that (1, 1, 1)
is the only infeasible local schedule. In other words, I1 =
{0, 1}2, I2 = {0, 1}3 \ (1, 1, 1), I3 = {0, 1}2.

Then for this example, let us consider node 2, and split
the arguments of b̂2(ρ) into sets A and B. As defined earlier,



13

1 2 3

Fig. 6: Illustration of a 3-node interference graph.

Variable marginals: b1(x1) b2(x2) b3(x3)

b1(0) = 1− y1 b2(0) = 1− y2 b3(0) = 1− y3
b1(1) = y1 b2(1) = y2 b3(1) = y3

Factor marginals: b̂1(x1, x2) b̂2(x1, x2, x3) b̂3(x2, x3)

b̂1(0, 0) = 1− y1 − y2 + z1(1) b̂2(0, 0, 0) = 1−
∑3

i=1 yi +
∑3

k=1 z2(k) b̂3(0, 0) = 1− y2 − y3 + z3(1)

b̂1(0, 1) = y2 − z1(1) b̂2(0, 0, 1) = y3 − z2(1)− z2(2) b̂3(0, 1) = y3 − z3(1)

b̂1(1, 0) = y1 − z1(1) b̂2(0, 1, 0) = y2 − z2(1)− z2(3) b̂3(1, 0) = y2 − z3(1)

b̂1(1, 1) = z1(1) b̂2(0, 1, 1) = z2(1) b̂3(1, 1) = z3(1)

b̂2(1, 0, 0) = y1 − z2(2)− z2(3)

b̂2(1, 0, 1) = z2(2)

b̂2(1, 1, 0) = z2(3)

b̂2(1, 1, 1) = 0

TABLE I: Illustration of the variable transformations used in the proof of Lemma 2, for the 3-node topology given in Figure 6

the set of arguments which contain at most one non-zero ele-
ment is given by A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The other set B containing feasible arguments with
more than one non-zero element is given by B =
{(0, 1, 1), (1, 0, 1), (1, 1, 0)}. Similarly, if we consider node 1,
the corresponding sets will be A = {(0, 0), (0, 1), (1, 0)} and
B = {(1, 1)}.

Variable transformations: Let us now perform the following
variable transformations to eliminate the constraint equations,
and thereby obtain an equivalent unconstrained optimization
problem. For each i ∈ N ,
(i) Replace the variable bi(1) by a new variable yi. Hence, by

expressing bi(0) = 1−yi, we can eliminate the constraint
bi(0) + bi(1) = 1 in (41).

(ii) Let a new variable zi = [zi(k)]
|B|
k=1 (which is a vec-

tor of length |B|) replace the optimization variables
corresponding to the arguments in B. For example, if
we consider the node 1, the set B = {(1, 1)} has
only one element. We use z1 = (z1(1)), a vector of
length one to replace b̂1(1, 1). Similarly if we consider
node 2, its set B = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} has 3
elements. We use the vector z2 = (z2(1), z2(2), z2(3)) to
replace {b̂2(0, 1, 1), b̂2(1, 0, 1), b̂2(1, 1, 0)} respectively.
This transformation is shown in Table I.

(iii) If an argument ρ ∈ A has the non-zero element in jth
position (i.e., ρj = 1), then its corresponding variable
b̂i(ρ) can be expressed only in terms of the vector
zi and variable yj . This transformation is to replace
the local consistency condition in (39). For example,
if we consider the 3-node graph, the argument of the
probability b̂2(1, 0, 0) has its non zero element at position
j = 1. Now consider the local consistency constraint
(39) for i = 2, j = 1 to obtain b̂2(1, 0, 0) + b̂2(1, 0, 1) +
b̂2(1, 1, 0) = b1(1). Then to capture the above constraint,
the transformation b̂2(1, 0, 0) = y1−z2(2)−z2(3) can be
used. Thus b̂2(1, 0, 0) is expressed only in terms of the
elements of the vector z2, and variable y1. It is shown in
Table I.

(iv) The variable b̂i(ρ) corresponding to ρ = (0, 0, . . . , 0) can
be expressed in terms of the vector zi and (yj , j ∈ Ni).

This is done to eliminate (40). For example, at node 1,
the constraint b̂1(0, 0) + b̂1(0, 1) + b̂1(1, 0) + b̂1(1, 1) = 1
can be eliminated by expressing b̂1(0, 0) in terms of the
vector z1 and (y1, y2) as shown in Table I.

By following the above steps, the distribution b̂i(x(i)) can be
expressed as a linear function of (zi, {yj}j∈Ni). Upon this
transformation, the free energy FB(bf ,bv) (19) is expressed
in terms of the new variables as

FB
(
{zi}i∈N , {yi}i∈N

)
(42)

=

N∑
i=1

[
−(lnλi)yi − Ĥi(zi, {yj}j∈Ni) + (di − 1)Hi(yi)

]
,

and the equivalent unconstrained optimization problem is
to minimize FB

(
{zi}i∈N , {yi}i∈N

)
over the new variables.

Technically, there should be additional inequality constraints
on these new variables to impose positivity constraints de-
scribed in (13). However, it can be shown that any stationary
point of the BFE given in (19) implicitly satisfies those
positivity constraints [28, Remark 4.1 in Page 85].

Now suppose
(
{z∗i }i∈N , {y∗i }i∈N

)
is a stationary point

of (42). Then the gradient of FB({zi}i∈N , {yi}i∈N ) at that
stationary point should be zero. In particular, if we take the
partial derivative of FB({zi}i∈N , {yi}i∈N ) (42) with respect
to the elements of the vector zi = {zi(k)}|B|k=1, all the terms
in (42) other than the term corresponding to Ĥi vanishes.

Therefore, setting
∂FB({zi}i∈N ,{yi}i∈N )

∂zi(k) = 0, we have for
k = 1 to |B|,

∂Ĥi (zi, {yj}j∈Ni)
∂zi(k)

∣∣∣∣∣
(zi,{yj}j∈Ni)=(z∗i ,{y∗j }j∈Ni)

= 0. (43)

Next, we consider the maximum entropy property (20) stated
in Lemma 2, and argue that it essentially boils to down to the
above system of equations (43). Firstly, since the constraints
of (20) are same as the constraints required for the Bethe
optimization problem (38), they can be eliminated using the
variable transformations used in this proof. From (21), it
can be observed that all the variable marginals are fixed at
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{b∗j}j∈Ni , and the optimization (20) is done only over the fac-
tor marginals b̂i. In terms of the transformed variables, it essen-
tially boils down to maximizing the entropy Ĥi (zi, {yj}j∈Ni)
subject to fixing the variable marginals at {y∗j }j∈Ni , which
is captured by (43). This observation essentially asserts that
the factor marginals b̂∗i , and the variable marginals {b∗j}j∈Ni
corresponding to a stationary point (b∗f ,b

∗
v) are related by the

maximum entropy problem defined in (20).

B. Proof of Lemma 4
This proof is a continuation of the proof of Lemma 2. By

interpreting the factor and variable marginals (bf ,bv) as linear
functions of the variables

(
{zi}i∈N , {yi}i∈N

)
, and setting the

partial derivative of FB
(
{zi}i∈N , {yi}i∈N

)
in (19) with yi to

zero, we obtain

lnλi =

∂
[
(di − 1)Hi(bi)−

∑
j∈Ni

Ĥj(b̂j)
]

∂yi

∣∣∣∣∣∣∣∣(
bi,{b̂j}j∈Ni

)
=
(
b∗
i
,{b̂∗
j
}j∈Ni

)
.

(44)
Observe the following from steps (ii)-(iv) of the variable

transformation in the proof of Lemma 2: The distribution
b̂j(ρ) depends on yi, if only if the argument is either the all
zero pattern, i.e., (0, 0, . . . , 0) or if ρi = 1, is the only non
zero element in that argument. Let us denote this argument as
e(i) := (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the ith position.
Hence, only two terms of the entropy Ĥj(b̂j) depend on yi.
(See Table I. For example, only two terms of b̂2, namely
b̂2(1, 0, 0) and b̂2(0, 0, 0) depend on y1.)

Using this observation in (44), and simplifying gives us

λi =

 (b∗i (0))di−1 ∏
j∈Ni

b̂∗j (e(i))

(b∗i (1))
di−1 ∏

j∈Ni
b̂∗j (0,0,0,...,0)

 . Then we conclude the

proof of this lemma by applying (23) from Lemma 3, which

gives us λi =
(
b∗i (0)
b∗i (1)

)di−1 ∏
j∈Ni

evji .

C. Sufficient condition for a stationary point of the BFE
The condition (43) in Lemma 2 is obtained when the partial

derivatives of FB
(
{zi}i∈N , {yi}i∈N

)
(42) with respect to the

elements of the variables {zi} are set to zero. Similarly, the
condition (44) in Lemma 4 are obtained when the partial
derivatives of FB

(
{zi}i∈N , {yi}i∈N

)
with respect to {yi} are

set to zero. Hence, the properties derived in Lemmas 2 and 4
together constitute a sufficient condition for a stationary point
of the BFE.

D. Proof of Theorem 2
As discussed in Section II, the global Gibbsian problem (5)

essentially solves a system of equations given in (4). From that
analogy, it suffices to show that βi = [βij ]j∈Ni , the solution
of the local Gibbsian optimization problem (8) at a link i, is
consistent with the following system of equations:

sj =
∑

x(i)∈Ii : xj=1

1

Zi

( ∏
k∈Ni : xk=1

eβik
)
, ∀j ∈ Ni,

(45)

where Zi =
∑

x(i)∈Ii

( ∏
k∈Ni : xk=1

eβik
)
. (46)

For the conflict graph model, the above equations can be
simplified as follows. In the conflict graph model, a link is
active if and only if all its neighbours are inactive. Hence,
there is only one local feasible schedule x(i) ∈ Ii in which
link i is active, namely x(i) = (0, . . . , 0, 1, 0, . . . , 0) where 1 is
in the ith position. Using this observation in (45) with j = i,
we obtain

si =
1

Zi
eβii . (47)

Recall the definition of local feasibility from Section III. Any
local schedule x(i) ∈ Ii at a link i, is feasible if that link
i is inactive. In other words, if xi = 0 in a local schedule
x(i) ∈ {0, 1}Ni , all the 2|Ni|−1 combinations of its neighbours
activations are allowed. This implies that for any j ∈ Ni \{i},
the set {x(i) ∈ Ii : xj = 1} has all the 2|Ni|−1 possible
schedules. Using this observation in (45) gives us

sj =
1

Zi
eβij

∏
k∈Ni\{i,j}

(1 + eβik), j ∈ Ni \ {i}. (48)

Similarly, the normalization constant Zi (46) can be simplified
to

Zi = eβii +
∏

j∈Ni\{i}

(1 + eβij ). (49)

Note that (47)-(49) characterize the relation between the local
fugacities, and the service rates under the conflict graph model.
Hence, it sufficient to prove that the local fugacities (28) stated
in Theorem 2, are consistent with the set of equations (47)-
(49). This step can be verified by simply substituting the local
fugacity expressions (28) in (47)-(49).

E. Proof of Lemma 5

The outline of the proof is to show that Algorithm 2
corresponds to the dual subgradient method for (34). First, we
compute the Lagrangian, and the dual problem for (34). Con-
sidering the equality constraints in (35), the partial Lagrangian
of (34) is given by

L(y, {b̂j};β)

= θ
∑
j

Uj(yj) +
∑
j

H(b̂j) +
∑
jk

βjk

 ∑
x(j):xk=1

b̂j(x(j))− yk

 . (50)

Here β := {βjk} is a short hand notation for the dual
variables {βjk, j = 1 . . . N, k ∈ Nj}. These dual variables
have an interpretation of local fugacities. Hence we abuse
the notation by using the same notation for both of them.
The dual function is given by D(β) = supL(y, {b̂j};β) over
y ∈ [0, 1]N and the distributions {b̂j} on the local schedules.
We require the following result (Lemma 6) for completing the
proof.

Lemma 6. The primal and dual solutions of the optimization
problem (34) satisfy strong duality. Further, the primal and
dual variables are related as follows. For a given dual
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value β = {βjk}, the Lagrangian L(y, {b̂j};β) attains its
supremum at primal values given by

yj(β) = arg max
q∈[0,1]

θUj(q)− q
∑
k∈Nj

βkj(t), ∀j, (51)

b̂j(x(j);β) = Z−1
j exp

( ∑
k∈Nj

xkβjk(t)
)
,∀x(j) ∈ Ij , j ∈ N .

(52)

Proof. The utility functions {Ui} are concave, and the entropy
is strictly concave. Hence, in (34) we are maximizing a strictly
concave function with affine constraints. Further, since the
rate region ΛB is non empty, there always exist some {bj}
and y such that they are feasible for (34). Hence, the Slater’s
condition for convex problems with affine constraints [27, Page
226] implies strong duality.

For a given dual variable β = {βjk}, let yj(β), b̂j(x(j);β)
be the corresponding primal variables that maximize the
Lagrangian. Then from the structure of the Lagrangian (50),
it follows that

yj(β) = arg max
q∈[0,1]

θUj(q)− q
∑
k∈Nj

βkj(t), ∀j.

Next, consider the following partial derivative of the La-
grangian (50) to obtain

∂L(y, {b̂j};β)

∂b̂j(x(j))
= − ln b̂j(x(j))− 1 +

∑
k∈Nj :xk=1

βjk.

Hence, the optimal value should satisfy

b̂j(x(j);β) α exp
( ∑
k∈Nj

xkβjk(t)
)
,∀x(j) ∈ Ij ,∀j.

The subgradient for a given dual variable is equal to the
residual error in the corresponding primal constraints (See
[29, Chapter 2] for details). Specifically, the subgradient at
β denoted by g(β) := {gjk(β)} is given by

gjk(β) =
( ∑

x(j):xk=1

b̂j(x(j);β)
)
− yk(β).

Hence the update rule (31) essentially corresponds to a dual
subgradient method for (34). This completes the proof of
Lemma 5.
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