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Given a Lorentzian spacetime (M, g) and a non-vanishing timelike vector field u(λ) with level
surfaces Σ, one can construct on M a Euclidean metric g−1

E
= g

−1+2u⊗u [Hawking & Ellis, 1973].
Motivated by this, we consider a class of metrics ĝ−1 = g

−1
−Θ(λ)u⊗u with an arbitrary function

Θ that interpolates between the Euclidean (Θ = −2) and Lorentzian (Θ = 0) regimes, separated
by the codimension one hypersurface Σ0 defined by Θ = −1. Since ĝ can not, in general, be
obtained from g by a diffeomorphism, its Euclidean regime is in general different from that obtained
from Wick rotation t → −it. For example, if g is the k = 0 Lorentzian de Sitter metric corre-
sponding to Λ > 0, the Euclidean regime of ĝ is the k = 0 Euclidean anti-de Sitter space with Λ < 0.

We analyze the curvature tensors associated with ĝ for arbitrary Lorentzian metrics g and
timelike geodesic fields u, and show that they have interesting and remarkable mathematical
structures: (i) Additional terms arise in the Euclidean regime Θ → −2 of ĝ. (ii) For the simplest
choice of a step-profile for Θ, the Ricci scalar Ric[ĝ] of ĝ reduces, in the Lorentzian regime Θ → 0,
to the complete Einstein-Hilbert lagrangian with the correct Gibbons-Hawking-York boundary
term; the latter arises as a delta-function of strength 2K supported on Σ0. (iii) In the Euclidean
regime Θ → −2, Ric[ĝ] also has an extra term 2 3R of the u-foliation. We highlight similar foliation
dependent terms in the full Riemann tensor.

We present some explicit examples for FLRW spacetimes in standard foliation and spheri-
cally symmetric spacetimes in the Painleve-Gullstrand foliation. We briefly discuss implications of
the results for Euclidean quantum gravity and quantum cosmology.

PACS numbers: 04.60.-m

I. INTRODUCTION

Euclidean manifolds play an important role in the path-
integral approach to quantum gravity, which forms the
basis of the Euclidean quantum gravity program [1]. In
the standard approach, the Euclidean metrics that are
considered are obtained from the Lorentzian one by the
process of Wick rotation, t → −it. However, while this
works well in flat/static spacetime, it is ambiguous when
arbitrary coordinates are used, and even more so in a
general curved spacetime. Moreover, the physical sig-
nificance of Wick rotation used to analytically continue
the action is not entirely clear – the gravitational case
presents issues which do not arise when a similar proce-
dure is applied to other gauge theories. In addition, there
is no straightforward way of doing the analytic continua-
tion while still keeping the metric g real when the metric
components depend on time explicitly, and/or the met-
ric contains cross terms such as dt ⊗ dxa. Of all the is-
sues that Euclidean quantum gravity faces, these are the
most fundamental, and they are basically related to the
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problem of performing Wick rotation in a generic curved
spacetime.

Observer dependence:

But the problem, in a sense, indicates a possible solution
as well. The key idea of Euclidean QG of Wick rotating
the time coordinate t could itself suggest the resolution.
Perhaps one should focus not on t itself but rather on a
set of timelike curves along which t measures the proper
time. The set of curves which can correspond to a sensi-
ble definition of t would define a foliation Σ, characterised
by the tangent u to the curves. And indeed, as pointed
out by Hawking & Ellis [2], given a non-vanishing time-
like vector field u, one can construct a Euclidean metric
g−1
E = g−1 + 2u ⊗ u. Condition under which a given

Euclidean manifold admits a Lorentzian metric (or the
converse, which is more relevant for our case) therefore
reduces to that of existence of a smooth, nowhere van-
ishing vector field u. Such a vector field always exists for
non-compact manifolds, while compact manifolds admit
one iff their Euler number is zero.

Let us highlight two key advantages of this simple modi-
fication. First, it helps define a Euclidean geometry cor-
responding to a given Lorentzian geometry, at least in
regions of the Lorentzian manifold which admit a non-
vanishing timelike vector field. There is no ambiguity
about this procedure, in particular, the metric compo-
nents remain real. Of course, the catch is that one now
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has to choose a particular vector field u, and the Eu-
clidean geometry obtained would depend on this choice.
This, however, turns out to be a feature rather than a
problem, and brings us to the second advantage. The
dependence on u in fact lets us introduce the notion of
observer dependence, a notion that has repeatedly as-
serted its significance in the study of thermal effects as-
sociated with spacetime horizons. Indeed, since quan-
tum description is inherently observer dependent, it is
extremely plausible that any fundamental framework of
quantum gravity would need to have this observer depen-
dence built into it structure (implicitly or explicitly) if it
has to correctly reproduce the results from semiclassical
gravity [3] in appropriate limit. Of course, it is also pos-
sible that such a limit is non-trivial and the semiclassical
results simply disappear in the final theory of quantum
gravity, rendered merely as artefacts of certain approx-
imations made. However, most of these results really
only require basic principles of free field theory and gen-
eral relativity that have been tested to a great accuracy,
and hence it is more likely that these results will hold
in the full theory of quantum gravity as well. In fact, it
was pointed out long back by Calzetta and Kandus that
quantum cosmology inherits the observer dependence of
vacuum in quantum field theory, through the choice of
Wick rotation [4].

Therefore, the dependence of the Euclidean metrics as-
sociated with a Lorentzian spacetime (M, g) on a vector
field u serves to introduce the important notion of ob-
server dependence, a notion that is inherent to quantum
field theory and hence to the full framework of quantum
gravity as well. The relevant field space for quantum
dynamics now becomes Fu = {(M, g,u) |g(u,u) = −1}.
Of course, this raises important conceptual points. For
instance, one may ask: Is the spacetime “really” Eu-
clidean rather than Lorentzian at small scales? Though
a subtle point [5], as far as the key aim of this paper
is concerned it is somewhat secondary to the more rele-
vant aspect: the form of the action in the domain where
the metric ĝ has Euclidean signature – the domain usu-
ally attributed to quantum phenomenon such as tun-
nelling. However, the Lorentzian metric still plays the
key role, and I will express the Euclidean action in terms
of Lorentzian quantities. Another pertinent question is:
Are there observables insensitive to the choice of u? This
can be addressed by careful inspection of the curvature
tensor for ĝ (given below), but more work is needed to
give a satisfactory answer [6, 7].

II. METRICS DESCRIBING EUCLIDEAN TO
LORENTZIAN TRANSITION

However, gE itself is not of much use. The spacetime at
large scales is not Euclidean but Lorentzian, so what we

really need is a family of metrics that interpolate between
a Euclidean geometry at small scales and a Lorentzian
one at larges scales. What do we mean by scale here?
Since gE depends on u, the only sensible operational
notions of small and large scales is through the affine
parameter λ along u that satisfies

u · ∇λ = 1 (1)

Here, λ is essentially the proper time along u, but instead
of conventional Wick rotation, we now characterise the
Euclidean to Lorentzian transition by considering a class
of metrics

ĝ−1 = g−1 −Θu⊗ u (2)

where Θ(λ) is a transition function who precise details
we will not need here. The metric tensor itself is given
by

ĝ = g +
Θ

1 + Θ
t⊗ t (3)

where t = g (u, ·) is the one form associated with u. 1

As expected, ĝ is degenerate and is singular at Θ = −1;
as we shall see, the hypersurface Σ0 corresponding to
this is the boundary between the Euclidean and the
Lorentzian regimes described by ĝ. There is no reason for

FIG. 1: Euclidean to Lorentzian transition described
by ĝ.

the metrics described by ĝ to be equivalent to either g or
to the ones obtained from it via Wick rotation t → −it.
This will be immediately evident form the curvature ten-
sors associated with ĝ that we discuss in Section III. Be-
fore proceeding to do this, we first discuss an example
which is simple to visualize, and might also be impor-
tant for understanding the role, in quantum cosmology,
of spaces with Λ < 0 in yielding a universe with Λ > 0.

1 Feynman propagator for a free scalar field with a similar one-
parameter class of metrics was discussed by Candelas & Raine,
and Visser [8]. In their work, Θ was assumed to be a constant
parameter, while we require it to be a function.
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A. Maximally symmetric space(time)s

Consider the de Sitter spacetime (Λ > 0) with flat slic-
ing, given by ds2 = −dt2 + exp (2t/ℓ)δµνdx

µdxν , with
the geodesic timelike vector field u = ∂t. In this case, it
is trivial to see that the line element corresponding to ĝ

is given by d̂s
2
= −(1 +Θ)−1dt2 + exp (2t/ℓ)δµνdx

µdxν .
This is clearly different from what one would obtain from
Wick rotation (which in this case would yield a complex
metric). For this particular case, the geometric nature
of ĝ is best described by considering the embedding of ĝ
in D = 5 Minkowski spacetime for Θ = 0 and Θ = −1.
These describe, respectively, the D = 4 de Sitter space-
time (dS4) and D = 4 Euclidean anti-de Sitter space
(the hyperbolic space H4), which are hyperboloids in the
ambient space given by

FIG. 2: Embedding space description of transition
between Euclidean anti-de Sitter and de Sitter

described by ĝ. The thick white lines describe the
transition hypersurface Σ0.

ǫUV +

3∑

1

Xµ2 = ℓ2 (4)

with ǫ = −1 for dS4 and ǫ = +1 for H4. U =
T − Z, V = T + Z are the standard null coordinates

on Minkowski spacetime in standard flat coordinates
(T, Z,X1, X2, X3). The embedding is given by

V = ℓet/ℓ

U = ǫℓe−t/ℓ + (1/ℓ)et/ℓ
3∑

1

xµ2

Xµ = (V/ℓ)xµ (5)

The induced metric is then given by

ds2 = ǫdt2 + exp (2t/ℓ)δµνdx
µdxν

which is equivalent to ĝ with 1/(1 + Θ) = −ǫ.

The t = constant slices correspond to the null plane
V =constant of the Minkowski space, and the transi-
tion hypersurface Σ0 in this case is connected by a null
plane in the ambient space. As expected, the metric is
therefore generate on this hypersurface.

In this particular example, our proposed transforma-
tion maps a maximally symmetric spacetime (dS) to
another maximally symmetric spacetime (EAdS) in the
Euclidean regime (Θ → −2), with curvature changing
sign [9]. However, this only happens in the k = 0 (flat)
foliation of dS. We will revisit the k 6= 0 case below after
deriving the full expression for the Riemann tensor of ĝ.

III. THE GEOMETRY DESCRIBED BY ĝ

It is straightforward, although lengthy, to write down
the curvature tensor associated with ĝ in terms of
the quantities associated with g and those describing
the intrinsic and extrinsic geometry of u foliation,
on which the induced metric is (the projection of)
ha

b = δab + uatb. Some simplications happen upon using
the Gauss-Codazzi and Gauss-Weingarten equations ,
and the final form turns out to be

R̂ab
cd = Rab

cd + 2Θ

[
tmR

m[a
cd ub] +K

[a
[cK

b]
d]

]
+ 2

(
dΘ

dλ

)
u[aK

b]
[c td] (6)
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from which the following can be derived in a straightforward manner

R̂a
b = (1 + Θ)Ra

b −Θ

[
(3)Ra

b − tbCa

]
+

1

2

(
dΘ

dλ

) [
πa

b +Kδab

]
(7)

Ĝa
b = (1 + Θ)Ga

b −Θ

[
(3)Ga

b +
1

2
(3)R uatb − tbCa

]
+

1

2

(
dΘ

dλ

)
πa

b (8)

where Ca = Rm
nq

nha
m = DmKma − DaK and πa

b =
Ka

b −Kha
b . The Ricci scalar is given by [10]

R̂ = (1 + Θ)R−Θ (3)R+

(
dΘ

dλ

)
K (9)

Before we discuss the implications of the above expres-
sions, we highlight their behaviour on the hypersurface
defined by Θ = −1. The metric expectedly becomes de-
generate here. However, the following limit holds:

lim
Θ→−1

R̂ab
cd e

(µ)
a e

(ν)
b ec(ρ)e

d
(σ) =

(3)Rµν
ρσ (10)

yielding similar limits for all the other tensors; in partic-

ular, lim
Θ→−1

R̂ = (3)R.

Let me briefly comment on the above expressions vis-a-
vis the 3+1 split g = −N2

dt⊗ dt+ hµν(dx
µ +Nµ

dt)⊗
(dxν + Nν

dt). In terms of h = g + t ⊗ t, we have ĝ =
h− (1 +Θ)−1 t⊗ t, which makes evident the degenerate
nature of ĝ at Θ = −1. Further, the usual Gauss-Codazzi
decomposition involves terms quadratic in Kab, while the
Θ dependence here leads also to terms linear in Kab.

IV. A STEP PROFILE FOR Θ(λ)

The expressions given above for the curvature tensor and
its concomitants display some remarkable characteristics,
manifest in particular from the terms related to intrin-
sic geometry of Σ that couple to Θ and Θ̇ = dΘ/dλ.
To investigate further, we must discuss the profile of the
transition function Θ(λ). Of course, we can not be too
restrictive about the form of this function a priori. The
only requirement we can put on it is that, being dimen-
sionless, it depends only on the ratio x = (λ/ℓ0), where ℓ0
is some fundamental length scale that characterises the
transition. There might be another length scale w0 that
characterises the “width” of the transition, we ignore it
here. Further, to effect the transition from Euclidean to
Lorentzian, it must satisfy the following limits

lim
x→0

Θ(x) = −2

lim
x→∞

Θ(x) = 0 (11)

A typical profile of this form is depicted in Fig. 3.

FIG. 3: A typical profile for the transition function
Θ(λ). The dashed curve is an approximation by a step

profile, the case discussed in detail in this paper.

As an aside, let us point out that the above profile for
Θ(x) is reminiscent of soliton solutions in classical field
theory, and, in fact, if one can find such soliton like so-
lutions in a curved background, these could trigger the
transition from Euclidean to Lorentzian spacetimes dis-
cussed in this paper.

In what follows, we shall focus on the sharp transition
and describe the function in terms of the Heaviside step
function θ(x) as

Θ0(λ) = 2θ(λ− ℓ0)− 2 (12)

which is essentially the w0 → 0 limit of the form dis-
cussed above. We then have Θ̇0(λ) = 2δ(λ− ℓ0), and the
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various expressions for curvature tensors simplify consid-
erably. For simplicity, we shall write δ(λ − ℓ0) as δΣ0

in
the expressions below.

R̂ab
cd = Rab

cd + 2Θ0

[
tmR

m[a
cd ub] +K

[a
[cK

b]
d]

]

+ 4δΣ0
u[aK

b]
[c td]

R̂a
b = (1 + Θ0)R

a
b −Θ0

[
(3)Ra

b − tbCa

]

+ δΣ0

[
πa

b +Kδab

]

(13)

Of particular interest are the forms of the Ricci scalar

R̂ = (1 + Θ0)R−Θ0
(3)R+ δΣ0

(2K) (14)

and the Einstein tensor

Ĝa
b = (1 + Θ0)G

a
b −Θ0

[
(3)Ga

b +
1

2
(3)R uatb − tbCa

]

+ δΣ0
(Ka

b −Kha
b )

(15)

which have the limiting forms

Lorentzian regime (Θ0 = 0):

R̂ = R+ (2K)δΣ0

Ĝa
b = Ga

b + (Ka
b −Kha

b ) δΣ0

(16)

Euclidean regime (Θ0 = −2):

R̂ = −R+ 2 (3)R+ (2K)δΣ0

Ĝa
b = −Ga

b + 2

[
(3)Ga

b +
1

2
(3)R uatb − tbCa

]

+ (Ka
b −Kha

b ) δΣ0

(17)

The above analysis highlights several non-trivial points
concerning gravitational dynamics associated with Eu-
clidean metrics that might arise naturally while studying
quantum aspects of gravity and the associated small scale
structure of spacetime. We summarise the key ones be-
low:

• The terms involving Θ̇ in curvature tensors have
a natural interpretation in terms of known quan-
tities; for the Ricci scalar depends, this term pre-
cisely yields the correct GHY boundary term, while
for the Einstein tensor, it gives the canonical mo-
mentum associated with the u foliation.

• In the Lorentzian regime, the Ricci scalar for ĝ is
equivalent to the full Einstein-Hilbert lagrangian
with the correct surface term.

• More importantly, in the Euclidean regime, the
Ricci scalar is not simply (−R), even ignoring for
the moment the boundary term. It involves an ad-
dition term involving (3)R. Similarly, the Einstein
tensor also has additional terms involving quanti-
ties defined on Σ. The relevance of this becomes
evident when g is such that R = 0 = Ga

b (that is,
any vacuum solution), and the additional terms are
all that remain.

V. EXAMPLES

In this section, we apply the expressions derived above to
study the Euclidean regimes of some relevant spacetimes
in physically interesting foliations.

A. Maximally symmetric foliations of Maximally
symmetric space(time)s

Using the above expressions, it is easy to obtain results
for maximally symmetric (t = constant in the metric
given below) foliations of maximally symmetric space-
times (M, g) described by

ds2 = −dt2 + a(t)2dΩ2
(k) (k = −1, 0, 1) (18)

which are of obvious relevance to cosmology. We already
studied one example of this case in IIA (the case of
flat foliation of de Sitter spacetime). We now present
the general case. For these spacetimes, Ka

b = H(t)ha
b,

where H(t)ȧ/a, and Rab
cd = ℓ−2

(
δac δ

b
d − δadδ

b
c

)
where ℓ

is the curvature scale of the spacetime, and a(t) is a spe-
cific function depending on k; for example, for k = 0,
a(t) = a0e

t/ℓ. It is then straightforward to show that

Euclidean regime (Θ0 = −2):

R̂ab
cd =

(
1− 2H2ℓ2

)
Rab

cd − 8(1−H2ℓ2)

ℓ2
t[cδ

[a
d]q

b]

(19)
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It is evident that only for flat slicing (k = 0), H(t) = con-
stant = 1/ℓ, and the resultant spacetime is again maxi-

mally symmetric with R̂ab
cd = −Rab

cd+ (surface term).
For the other slicings, the metric in the Euclidean regime
is no longer maximally symmetric.

The structure of Ĝa
b is also interesting to note. Since

the slicing is maximally symmetric, one has (3)Ga
b =

−(1/6) (3)R and Ca = 0. Therefore, using Eq. (8), we
obtain

Ĝa
b = (1 + Θ)Ga

b +Θ

(
1

6
(3)R

)[
ha

b − 3uatb

]

+ (1/2)Θ̇ πa
b (20)

B. Foliation by radial timelike geodesics in
Spherically symmetric space(time)s

Another case of interest are foliations by radially ingoing
timelike geodesics in spherically symmetric spacetimes.
The coordinate system best suited for this purpose is
the Painleve-Gullstrand (PG) coordinate system, which
has been studied extensively for a large class of spher-
ically symmetric spacetimes. We will consider spher-
ically symmetric spacetimes with metric g, such that
ds2 = −f(r)dt2 +(1/f(r))dr2 + r2dΩ2, and focus on the
one-parameter class of radially ingoing timelike geodesics
u characterized by a real number

0 < p ≤ 1

This parameter is related to the conserved energy at in-

finity by p = 1/E2
∞

= 1 − v2
∞
. The case p = 1, corre-

sponding to E∞ = 1, v∞ = 0, yields a family of geodesics
which all start from rest at infinity, the case usually dis-
cussed in textbooks. The other limit, p → 0, corresponds
to E∞ → ∞, v∞ = 1, and corresponds to a family of
geodesics starting from infinity with the speed of light.
In this case, it can be shown that the above coordinates
reduce to the Eddington-Finkelstein ingoing coordinates
[11].

The vector field u is given by u = (1/f
√
p)∂t −

(
√
1− pf/

√
p)∂r. In PG coordinates, the metric is given

by

ds2 = −fdT 2 + 2
√

1− pfdTdr + pdr2 + r2dΩ2 (21)

where dt = dT − f−1
√
1− pfdr defines the PG time

coordinate T .

It is evident that the T = constant slices are not flat

unless p = 1. It is easy to show that for these slices,

(3)R = − 2

r2
(
E2

∞
− 1

)

(3)Ga
b =

1

r2
(
E2

∞
− 1

)
δar δ

r
b (22)

Due to spherical symmetry, the extrinsic curvature cor-
responding to T = constant slices is given by

Kab = K1(r)σab +K2(r)nanb

K = 2K1(r) +K2(r) (23)

where

K1(r) = − 1

r3/2

√
a+ (E2

∞
− 1) r

K2(r) = +
1

2r3/2
a√

a+ (E2
∞

− 1) r
(24)

where na =
√
p∂ar are normals to r = constant surfaces

and σab = gab+uaub−nanb is the corresponding induced
metric. It is worth taking a pause here to discuss two
important limits of extrinsic curvature (we focus on K):

lim
E∞→1

K = −3

2

√
a

r3/2
(Painleve-Gullstrand)

lim
E∞→∞

K = −2E∞

r
(Eddington-Finkelstein) (25)

(The second expression clearly indicates that
lim

E∞→∞

(K/E∞) is equal to the expansion of the

ingoing null congruence.)

Coming back to the discussion of curvature tensors, for
vacuum solutions Ga

b = 0 = Ca, we have

Lorentzian regime (Θ0 = 0):

R̂ = (2K)δΣ0

Ĝa
b = πa

b δΣ0

(26)

Euclidean regime (Θ0 = −2):

R̂ = − 4

r2
(
E2

∞
− 1

)
+ (2K)δΣ0

Ĝa
b = +

2

r2
(
E2

∞
− 1

)
[
δar δ

r
b − uatb

]
+ πa

b δΣ0

(27)
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VI. IMPLICATIONS AND DISCUSSION

The results presented here bring to light several mathe-
matical aspects of Euclidean quantum gravity which have
not been noticed or discussed in the literature.

1. The Euclidean action usually considered in the
literature is based on the Ricci scalar as the la-
grangian. However, as our results show, this may
not be the correct choice in the Euclidean regime.
In fact, in the Euclidean regime Θ = −2, we obtain
(ref. Eqs. (17))

R̂ = −R+ 2 (3)R+ (2K)δΣ0

= +R+ 2
(
K2

ab −K2 + 2Rabu
aub

)
+ (2K)δΣ0

(28)

In particular, even if R = 0, R̂ 6= 0, and is given by
an action involving Kab and Rabu

aub. This point
may be important for several reasons.

In quantum cosmology, the Hawking-Hartle pre-
scription for the ground state wave function of the
universe is through the path integral over Euclidean
geometries that have Σ0 as their only boundary. It
is obvious that the additional terms above will af-
fect the exact details of the wave function so cal-
culated, since the on-shell value of the action itself
now depends on (3)R.

2. The partition function Z for quantum gravity,
based on the class of space(time)s described by ĝ,
can be written as the path integral

Z =

∫
Dg Du exp

[
−i

∫
R̂
√
−det ĝ

]
(29)

Note that, since

det ĝ = (1 + Θ)−1 det g

and det g < 0,
√
−det ĝ is imaginary for Θ = −2

(in general, for Θ < −1), and hence appropriate
branch cut must be chosen for the square root to
make the path-integral for Z convergent.

We might also highlight here a point emphasized
earlier by Visser (see the second reference in [8]).
By construction, our entire formulation is based on
a Lorentzian metric g and a suitable timelike vector
field u. The Euclidean regime of resultant metrics ĝ
therefore will comprise of only those manifolds that
are compatible with existence of a Lorentzian struc-
ture. Therefore, it makes sense that the functional
integral (in the Euclidean regime) is taken not over
all Euclidean manifolds, but only those compatible
with the existence of a Lorentzian structure.

3. The approach suggested here might also be relevant
for the discussion of small scale structure of space-
time. In particular, one may take motivation from
Euclidean quantum gravity applied to early uni-
verse, and ask if the same ideas can be applied to
(i) black hole singularities in particular (in this con-
text, the results for spherically symmetric space-
times discussed in Sec.VB might be of use), and
(ii) spacetime in general, when probed at very small
scales. For example, given any spacetime event p,
one might consider the set of points q ∈ I+(p) that
lie at the constant geodesic distance from p. Such a
foliation has recently been studied and used in the
investigation of the small scale structure of space-
time in presence of a minimal length [12], and it is
worth exploring the structure of ĝ for the same.
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