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ABSTRACT This paper proposes an adaptive primal-dual dynamics for distributed optimization in multi-

agent systems. The proposed dynamics incorporates an adaptive synchronization law that reinforces the

interconnection strength between the coupled agents. By strengthening the synchronization between the

primal variables of the coupled agents, the given law accelerates the convergence of the proposed dynamics

to the saddle-point solution. The resulting dynamics is represented as a feedback-interconnected networked

system that proves to be passive. The passivity properties of the proposed dynamics are exploited along with

the LaSalle’s invariance principle for hybrid systems, to establish asymptotic convergence and stability of

the saddle-point solution. Further, the primal dynamics is analyzed for the rate of convergence and stronger

convergence bounds are established, it is proved that the primal dynamics achieve accelerated convergence

under the adaptive synchronization. The robustness of the proposed dynamics is quantified using L2-gain

analysis and the correlation between the rate of convergence and robustness of the proposed dynamics are

presented. The effectiveness of the proposed dynamics is demonstrated by applying it to solve distributed

least squares and distributed support vector machines problems.

INDEX TERMS Adaptive synchronization, distributed optimization, passivity, primal-dual dynamics.

I. INTRODUCTION

Distributed optimization remains a subject of substantial

research over recent years. Their applications include wire-

less sensor networks [1]–[3], power networks [4], large scale

support vector machines [5], [6] etc. An exhaustive survey

of these techniques can be found in [7]. Mainly, distributed

optimization techniques are categorized as either decom-

position based distributed optimization (see, [8] and refer-

ences therein) or consensus-based distributed optimization.

The consensus based distributed optimization techniques are

significantly explored lately [4]–[6], [9]–[12], which is the

prime subject of this paper.

Many algorithms are proposed to solve consensus-based

distributed optimization problems arising in networked

systems, such as the seminal work on distributed sub-

gradient methods [13], distributed primal-dual dynamical

The associate editor coordinating the review of this article and approving
it for publication was Florin Pop.

algorithms [4], distributed gradient descent algorithms

[10], [14] etc. Out of these, the distributed primal-dual

dynamics based algorithms deserve special attention because

of their rich systems and control theoretic properties

[15]–[19] and ability to obtain simultaneously both primal

as well as dual optimal solutions. The seminal work on the

primal-dual dynamics or the saddle point dynamics dates

back to late 1950s [20], [21]. Its application for solving

optimization problems over a network first appeared in [15]

with the focus on asymptotic convergence and stability of

these algorithms. This framework is later extended to dis-

tributed optimization over a network of communicating nodes

in [4], [22]. The primal-dual dynamics in [22] combine the

decomposition and the consensus-based methods to propose

proportional-integral distributed optimization for equality

constrained optimization problems and achieves a globally

asymptotically stable saddle-point solution. The primal-dual

gradient-based algorithm proposed in [4] achieves asymptotic

convergence for a consensus-based distributed optimization
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problem with local inequality constraints and implements

the algorithm for load-sharing control in power networks.

The notion of asymptotic convergence and stability of the

(distributed) primal-dual dynamics are well established.

From the perspectives of online optimization, the dis-

tributed algorithms must be certified based on not only the

stability but also the rate of convergence. The rate of con-

vergence of such algorithms quantifies how fast they con-

verge to the optimal solution. Recently, the algorithms such

as distributed gradient (sub-gradient) methods are widely

studied with the objective of improvement in the rate of

convergence, see [10], [14], [23]–[25]. However, the dis-

tributed primal-dual dynamics are not yet explored with the

same objective which could limit their application to large-

scale distributed optimization problems. While the existing

methods on improving the rate convergence of the primal-

dual dynamics rely upon increasing the convexity of the

objective function by using quadratic penalty terms (aug-

mented Lagrangian techniques) [18], their usage for solving

distributed optimization problems will destroy the distributed

structure of the objective function. Thus, increasing convexity

by using quadratic penalties may not pose as a suitable way of

improving the rate of convergence of the distributed primal-

dual dynamics. The alternative route to this could be to exploit

the graph-Laplacian properties of the underlying network and

use adaptive coupling gains between the nodes to improve the

convergence results. Addressing this issue, the present work

primarily contributes to the accelerated convergence of the

distributed primal-dual dynamics.

A. RELEVANT LITERATURE AND CONTRIBUTIONS

The work proposed in this paper is in the same spirit with

the recent articles [4], [19]. In [4], the framework of primal-

dual dynamics for network utility maximization [26] which

uses Krasovskii type Lyapunov function to derive asymptotic

convergence, is extended for distributed optimization with

application to load sharing control in power systems. Our

contribution significantly differs from [4] in the sense that the

proposed dynamics is first analyzed using passivity tools of

dynamical systems which then lead to its asymptotic stability

when combined with the LaSalle’s invariance principle of

hybrid systems [27]. The advantage of passivity-based sta-

bility analysis is that the proposed dynamics can be realized

as a feedback interconnection of the primal and the dual

subsystems. This also facilitates to understand the interaction

between the primal and the dual dynamical subsystems using

port variables [19]. Thus each subsystem also enjoys L2 sta-

bility properties of feedback connected dynamical systems.

This feature later comes to the aid of robustness analysis

of the proposed dynamics using L2-gains. The fundamental

results on passivity-based stability analysis of the primal-dual

dynamics are established in [19]. Our work, in a way, extends

these results for the consensus-based distributed optimization

problems.

The central theme of the paper, that is the adaptively

coupled primal-dual dynamics is derived by integrating the

consensus protocol in the distributed primal-dual dynamics

with the adaptive coupling laws motivated from the results

in [29]. In [29], the adaptive synchronization technique is

proved to guarantee the synchronization between the trajec-

tories of diffusively coupled agents of a multiagent system.

This technique is essentially based on modifying the cou-

pling weights of the diffusively coupled agents as a function

of the synchronization error between them. Larger values

of synchronization errors result in increasing the coupling

weights and vice-a-versa. In this paper, it is shown that the

adaptation in the coupling weights strengthens the synchro-

nization of the primal variables of the coupled agents. With

this, the proposed work establishes results on an accelerated

convergence of the proposed dynamics to the saddle point

solution. While the adaptive synchronization proves to accel-

erate the convergence, it is shown that it affects the robustness

of the proposed dynamics. By introducing exogenous inputs

in the interconnected network dynamics of the primal-dual

subsystems, the L2-gain of the proposed dynamics is analyzed

and worst-case L2-gain is quantified in correlation with the

rate of convergence. Although it is well known that the inter-

connected network of passive dynamical systems is inher-

ently robust to exogenous inputs [30], our results quantify the

L2-gain margins and establish a relation between these mar-

gins and the rate of convergence.

To summarize, the proposed work envelopes the following

key points:

1) The proposed algorithm, designated hereafter as

the adaptively synchronized distributed primal-dual

dynamics (ADPDD), ensures synchronization of the

network-wide primal variables to a common trajectory

which is then driven to the optimal solution.

2) The ADPDD is posed as a negative feedback intercon-

nection of the primal dynamical subsystem and the dual

dynamical subsystems. It is proved that these subsys-

tems remain individually passive, which subsequently,

ensures the passivity and the asymptotic stability of the

proposed dynamics.

3) The convergence rate of the ADPDD is derived and

it is proved that the ADPDD has an accelerated con-

vergence than the distributed primal-dual dynamics

(DPDD).

4) The L2-gain analysis of the proposed dynamics against

the exogenous disturbances is presented to show the

correlation between the rate of convergence and the

robustness of the proposed algorithm.

In the end, an application of the proposed algorithm to solve

distributed least-squares distributed support vector machines

problems along with numerical examples are discussed.

B. NOTATIONS AND PRELIMINARIES

The set R (respectively R≥0 or R>0) is the set of real

(respectively non-negative or positive) numbers. In is the

n × n identity matrix. 0 is a zero vector of appropriate

dimensions. For a square matrix A ∈ R
n×n, eig(A) =

{λ1(A), λ2(A), . . . , λn(A)} ∈ R represents eigenvalues of A
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in an ascending order. The smallest eigenvalue of A is given

by λ1(A). If B ∈ R
m×n and C ∈ R

p×q are real matrices, then

B⊗C ∈ R
mp×nq is a block matrix that defines the Kronecker

product of B and C .

The interaction topology in a multi-agent system is rep-

resented using an undirected graph G = (N , E) with N =

{1, 2, . . . , n} as the set of agents and E ⊆ N × N as the

set of edges. The neighbor set of the ith agent is Ni = {q ∈

N |(q, i) ∈ E}, where i ∈ N . The number of agents n is

the cardinality of G. Let D ∈ R
n×n be the degree matrix

of G and A ∈ R
n×n be the adjacency matrix of G, with

elements aiq = aqi > 0, ∀(i, q) ∈ E , then L = D − A

is the Laplacian matrix of G. By definition, L ∈ R
n×n is

a symmetric positive semidefinite matrix that encodes the

connectivity of the agents and their interaction topology in G.

If f : Rn → R is continuously differentiable in x ∈ R
n,

then ∇x f : R
n → R

n is the gradient of f with respect

to x. If f is twice continuously differentiable and strictly

convex in x then H = ∇2
x f ∈ R

n×n
>0 is a symmetric positive

definite matrix of second-order partial derivatives of f with

respect to x.

Consider the following dynamical system

ẋ = F(x, u), y = G(x, u), (1)

where state x ∈ R
n, input u ∈ R

m, and output y ∈ R
m,

with F,G (of appropriate dimensions) sufficiently smooth

and satisfying F(0) = G(0) = 0.

Definition 1 ( [31]): The system (1) is said to be passive

if there exists a positive semidefinite storage function (Lya-

punov function) V : Rn → R, continuously differentiable in

x such that V̇ ≤ uT y.

In line with Definition 1, if V̇ = uT y strictly holds, then

the system (1) is said to be lossless.

For scalars x, y, [x]+y := x if y > 0 or x > 0, and [x]+y := 0

otherwise.

The remainder of the paper is mainly divided into two

sections. Section II discusses the main results of the paper

and Section III presents examples to validate the proposed

work. Subsection II is divided as follows: Section II-A

describes the consensus-based distributed optimization prob-

lem. In Subsection II-B1 the adaptive synchronization tech-

nique is elaborated. Subsection II-B2 formulates the adaptive

distributed primal-dual dynamical algorithm to solve dis-

tributed optimization problem proposed in Subsection II-A.

Subsections II-C and II-D present passivity and stability anal-

ysis of the proposed dynamics. In Subsection II-E the conver-

gence bounds of the proposed algorithm are obtained and the

proof for an accelerated convergence of the same is provided.

Subsection II-F provides L2-gain analysis of the proposed

dynamics and establishes a correlation between both robust-

ness and rate of convergence of the same. Section III presents

the application of the proposed dynamics to the distributed

least squares and the distributed support vector machines

problems. Some numerical examples of academic interests

are also discussed. Section IV concludes the paper.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. DISTRIBUTED OPTIMIZATION

Consider the following distributed optimization problem

min
x∈Rln

f (x) =

n
∑

i=1

fi(xi)

subject to xik = xqk , ∀lk=1, ∀i, q ∈ N ,

gj(xik ) ≤ 0, ∀
mikg
j=1, ∀lk=1, ∀i ∈ N , (2)

where xi = [xi1, . . . , xil]
T ∈ R

l and x = [xT1 , . . . , xTn ]
T ∈

R
ln. It is assumed that the functions fi : R

l → R is twice

differentiable and strictly convex, and gj : R → R is convex.

The optimization problem (2) can be decomposed into n sub-

problems wherein each subproblem minimizes the cost fi(xi)

subject to the consensus constraint xik = xqk and inequality

constraints gj(xik ) ≤ 0. The problem (2) can not be fully

decoupled into a set of n subproblems because of the con-

sensus constraints, but it can be addressed as a network-based

multiagent optimization problem using graph theory as a tool.

Let an undirected and connected graph G(N , E) describe the

communication topology of the underlying network, where

N denotes the set of agents or subproblems, and E denotes

the set of communication links. Each agent minimizes a

local cost function fi(xi) subject to the consensus constraints

xik = xqk , ∀
l
k=1, ∀q ∈ Ni and the local inequality constraints

gj(xik ) ≤ 0, ∀lk=1. The global consensus corresponds to the

optimal solution of (2), when x∗
1 = x∗

2 = . . . = x∗
n = x∗. The

index mikg is the number of inequality constraints associated

with the scalar xik .

The strong duality of (2) is subject to the convexity of f

and the constraint satisfaction given by the Slater’s condition

(see, [32]), which is as follows: Assuming that there exists

an x ∈ relintD such that gj(xik ) < 0, xik = xqk , ∀
l
k=1, ∀q ∈

Ni, ∀
n
i=1, then x is strictly feasible, where D is the domain

of (2) defined as D = domf . The strict convexity of f

implies that there exists at most one global optimal solu-

tion x∗. The Lagrangian function L of the problem (2) is

given by:

L(x, α, θ )= f (x)+αT (L ⊗ Il)x+

n
∑

i=1

l
∑

k=1

mikg
∑

j=1

θ ikj gj(xik ), (3)

where αik ∈ R is a Lagrange multiplier associated with the

consensus constraint xik = xqk and θ ikj ∈ R+ = {θ ikj ∈

R|θ ikj ≥ 0, ∀lk=1, ∀
mikg
j=1, ∀i ∈ N } is a Lagrange multiplier

associated with the inequality constraint gj(xik ) ≤ 0. The

vector notations of the respective Lagrange multipliers are

θ ∈ R
mikg ln

+ and α ∈ R
ln.

Remark 2: Assuming that the Slater’s condition is satis-

fied and a strong duality holds, the saddle-point (x∗, α∗, θ∗)

satisfies the Karush-Kuhn-Tucker (KKT) conditions derived
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the Lagrangian (3), as follows:

∇x∗
ik
fi(x

∗
ik ) +

∑

q∈Ni

aiq(α
∗
ik − α∗

qk )

+

mikg
∑

j=1

(θ ikj )∗∇x∗
ik
gj(x

∗
ik ) = 0, ∀lk=1, ∀i ∈ N ,

gj(x
∗
ik ) ≤ 0, (θ ikj )∗ ≥ 0, ∀lk=1, ∀

mikg
j=1, ∀i ∈ N ,

(θ ikj )∗gj(x
∗
ik ) = 0, ∀lk=1, ∀

mikg
j=1, ∀i ∈ N ,

x∗
ik = x∗

qk , ∀lk=1, ∀(i, q) ∈ N . (4)

In order to ensure the global consensus of the states xi,

∀i ∈ N , the Lagrangian function defined in (3) is augmented

with the term xT (L ⊗ Il)x. The augmented Lagrangian func-

tion is defined below:

L̄(x, α, θ ) = L(x, α, θ ) + xT (L ⊗ Il)x. (5)

Remark 3: Note that augmenting the Lagrangian (3) with

xT (L⊗ Il)x does not affect its convexity-concavity properties.

This owes to the fact that xT (L ⊗ Il)x is a positive semidefi-

nite function of the primal variable x. Thus the saddle-point

satisfying (4) also satisfies the following KKT conditions for

the Lagrangian (5):

∇x∗
ik
fi(x

∗
ik ) +

∑

q∈Ni

aiq(x
∗
ik − x∗

qk ) +
∑

q∈Ni

aiq(α
∗
ik − α∗

qk )

+

mikg
∑

j=1

(θ ikj )∗∇x∗
ik
gj(x

∗
ik ) = 0, ∀lk=1, ∀i ∈ N ,

gj(x
∗
ik ) ≤ 0, (θ ikj )∗ ≥ 0, ∀lk=1, ∀

mikg
j=1, ∀i ∈ N ,

(θ ikj )∗gj(x
∗
ik ) = 0, ∀lk=1, ∀

mikg
j=1, ∀i ∈ N ,

x∗
ik = x∗

qk , ∀lk=1, ∀(i, q) ∈ N . (6)

Using the augmented Lagrangian (5), the primal-dual

dynamics is derived as follows:

ẋik = −∇xik L̄(x, α, θ ), α̇ik = ∇αik L̄(x, α, θ ),

θ̇ ikj = [∇θ ikj
L̄(x, α, θ )]+

θ ikj
, ∀lk=1; ∀

mikg
j=1; ∀i ∈ N . (7)

With the primal-dual dynamics derived as given in (7), the fol-

lowing subsection develops the ADPDD.

B. ADAPTIVELY SYNCHRONIZED DISTRIBUTED

PRIMAL-DUAL DYNAMICS

The following subsection presents the adaptive synchroniza-

tion mechanism which is later integrated with the dynamics

defined in (7) to arrive at ADPDD.

1) ADAPTIVE SYNCHRONIZATION

The adaptive synchronization mechanism is widely used in

multi-agent systems to guarantee synchronization between

the agents with respect to their state variables [29], [33],

which is explained subsequently.

The primal variables associated with each agent evolve

according to

ẋik = −∇xik L̄(x, α, θ ) (8)

as described in (7).

By performing gradient descent on (5), the primal dynam-

ics (8) can be further derived as:

ẋik = −∇xik f (x) −
∑

q∈Ni

aiq(xik − xqk )

−
∑

q∈Ni

aiq(αik − αqk ) −

mikg
∑

j=1

θ ikj ∇xikgj(xik ). (9)

Let uxik ∈ R corresponds to the following term in (9):

uxik = −
∑

q∈Ni

aiq(xik − xqk ), ∀q ∈ Ni, (10)

where the interconnection strength or the coupling weight aiq
belongs to the adjacency matrix A such that

aiq = aqi =

{

a positive scalar, for (q, i) ∈ E,

0, for (q, i) /∈ E .

The equation (10) is regarded widely as the consensus proto-

col or the consensus law [29], [34]. Define further uxi ∈ R
l ,

the consensus protocol (10) can be modified to accommodate

xi ∈ R
l as given below:

uxi = −
∑

q∈Ni

aiq(xi − xq), ∀q ∈ Ni, (11)

Similarly,

ux = −(L ⊗ Il)x (12)

is a compact form representation of (11).

If i and q are neighbors in G with eiq = xi − xq defined

as the local synchronization error, then the coupling weight

can be represented as a function of eiq, i.e. ȧiq = hi(eiq),

where hi : Rl → R monotonically increases in eiq. It yields

a stronger synchronization between the primal variables of

the coupling agents which motivates to incorporate adaptive

synchronization to address the convergence rate of the dis-

tributed primal-dual dynamics. In line with this, the following

coupling weight update rule is proposed:

ȧiq = diq(e
T
iqeiq + ėTiqėiq), (13)

where diq = dqi > 0 is the adaptive gain constant.

Remark 4: Represent (13) in the form ȧiq = hi(eiq, ėiq),

throughout the rest of the paper it is assumed that the real

valued function hi : Rln → R is Lipschitz continuous.

The dynamics (13) incorporates two aspects of synchro-

nization, viz. the Euclidean distance between the diffusively

coupled primal variables and its derivative at a given time t .

The quadratic appearance of eiq and ėiq in (13) ensures that it

is monotonically increasing in R.
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FIGURE 1. Interconnected networked dynamics of H1, H2 and H3.

2) INTEGRATING THE ADAPTIVE COUPLING LAW (13) WITH

THE PRIMAL-DUAL DYNAMICS (7)

By integrating the adaptive coupling law (13) with the

PDD (7) and partitioning the resulting dynamics into three

interconnected subsystems i.e., H1 (primal partition), H2

(consensus dual partition), and H3 (inequality dual partition)

as shown in Fig. 1, yields:

H1 :











ẋ = −∇x f (x) + ux + uH1
,

ȧiq = diq(e
T
iqeiq + ėTiqėiq), ∀i ∈ N , ∀q ∈ Ni,

yH1
= x.

(14)

H2 :

{

α̇ = uH2
,

yH2
= α.

(15)

The system H3 represents the θ ikj dynamics in the stacked

vector form with uH3
and yH3

as its input and output respec-

tively, as given below:

H3 :



















θ̇ ikj = [gj(xik )]
+

θ ikj
, ∀lk=1; ∀

mikg
j=1; ∀i ∈ N ,

yH3
=

∑mikg
j=1 θ ikj ∇xikgj(xik ), ∀lk=1; ∀

mikg
j=1;

∀i ∈ N ,

(16)

where yH1
, yH2

, yH3
∈ R

ln and uH1
= −(L ⊗ Il)yH2

−

yH3
, uH2

= (L ⊗ Il)yH1
, and uH3

= yH1
.

The ADPDD (14)-(16) is characterized as the feedback

interconnected networked system as shown in Fig. 1. Each

agent in the underlying network is diffusively coupled with

its neighboring agents under the communication topology

that defines the interaction between such agents on the graph

G(N , E). It can be noted that the network representation

in Fig. 1 is independent of the graph parameters such as

communication topology, number of agents, and interaction

links. Irrespective of such parameters, if the graph G(N , E)

is connected, one can arrive at the stability results of the

underlying network by only verifying its passivity properties.

Towards this end, the following subsection first motivates the

passivity analysis of the network shown in Fig. 1 which fur-

ther leads to its closed-loop stability and robustness analysis.

C. PASSIVITY BASED STABILITY ANALYSIS OF ADPDD

This section begins with passivity analysis of the subsystems

H1, H2, H3 and their feedback interconnection as shown

in Fig. 1 and then moves towards the stability and robustness

analysis of the said feedback interconnection. The Krasovskii

type storage function is defined for each subsystem (see, [15])

which leads to a new passivity property with differentiation

at both ports [35, Proposition 2]. The intuition behind this

proposition is to define the Krasovskii type storage function

V (x) for the dynamical system defined in (1), such that V̇ ≤

u̇T ẏ, where u̇ and ẏ are considered as port variables. This

inequality shows that the map from the port input u̇ to the port

output ẏ is passive. Motivated by this result, subsequently it

is shown that the ADPDD is a passive system.

1) H1 IS PASSIVE

Proposition 5: Assuming that the graph G is connected

and f is strictly convex in x, if there exists xeq ∈ R
ln that

satisfies (4), then the subsystem H1 is passive with port

variables (ẏH1
, u̇H1

).

Proof: Let

ãiq = aiq − a∗
iq (17)

with a∗
iq > 0 defined as follows:

a∗
iq =

{

a∗ if i and q are neighbors in G,

0 if i and q are not neighbors in G,
(18)

where a∗ is a constant parameter to be selected. Consider the

following storage function for the update law (13) [29].

W =
1

2

p
∑

i=1

p
∑

q=1

1

diq
ã2iq. (19)

Differentiating (19) with respect to time yields the following:

Ẇ =

p
∑

i=1

p
∑

q=1

ãiq(e
T
iqeiq + ėTiqėiq). (20)

Acknowledging the graph symmetry and substituting for

eiq = xi − xq, (20) modifies to

Ẇ = ẋT (L ⊗ Il)ẋ − a∗ẋT (L ⊗ Il)ẋ

+xT (L ⊗ Il)x − a∗xT (L ⊗ Il)x,

= (1 − a∗)ẋT (L ⊗ Il)ẋ + (1 − a∗)xT (L ⊗ Il)x. (21)

Now, consider the following storage function forH1, which

is a sum of Krasovskii-type storage function of x and (19):

VH1
(x) =

1

2
ẋT ẋ +W . (22)

Differentiating (22) with respect to time and using (21)

yields,

V̇H1
(x) = −ẋTHẋ − ẋT (L ⊗ Il)ẋ + (1 − a∗)ẋT (L ⊗ Il)ẋ

+(1 − a∗)xT (L ⊗ Il)x + ẋT u̇H1
,

= −ẋTHẋ − a∗ẋT (L ⊗ Il)ẋ + (1 − a∗)xT (L ⊗ Il)x

+ẋT u̇H1
,

≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

+(1 − a∗)λ2(L ⊗ Il)‖yH1
‖2 + ẏTH1

u̇H1
. (23)
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Notice that yH1
= x and choosing a∗ > 1 makes the

term (1 − a∗)λ2(L ⊗ Il)‖yH1
‖2 in (23) negative definite.

Since λmin(H) + a∗λ2(L ⊗ Il) > 0 for a non-negative value

of a∗, the inequality (23) implies that the subsystem H1 is

output strictly passive (‘‘OSP’’ [30]) with respect to the port

variables u̇H1
and ẏH1

. �

Assumption 6: Throughout the rest of the paper, it is

assumed that a∗ > 1.

Remark 7: If E is defined as the incidence matrix of the

undirected graph G, then the Laplacian matrices L0 ⊗ Il and

L ⊗ Il can be defined in terms of E as:

L0 ⊗ Il = EET (24)

L ⊗ Il = EC(t)ET (25)

where C(t) is a diagonal matrix containing the coupling

weights aiq. Using (17), equation (25) can be modified as

given below:

L ⊗ Il = a∗(L0 ⊗ Il) + EC̃(t)ET (26)

where C̃(t) is a diagonal matrix containing ãiq. Equation (26)

establishes a relation between the Laplacian matrices L0 ⊗ Il
and L⊗Il wherein L0⊗Il is a Laplacianmatrix whose weights

are constant. This leaves the right hand side of (26)with only

one variable term that is C̃(t)whose coupling weights are ãiq.

The Lyapunov function in (19) is defined in terms of ãiq, which

leads to the output strictly passivity of H1 as stated in (23).

In order to ensure that the inequality (23) holds, the input

uH1
= −(L ⊗ Il)yH2

− yH3

= −[a∗(L0 ⊗ Il) + EC̃(t)ET ]yH2
− yH3

(27)

to the primal subsystem defined in (14), must be designed

such that Assumption 6 is satisfied.

2) H2 IS LOSSLESS

Proposition 8: Assuming that the graph G is connected

and f is strictly convex in x, if there exists αeq ∈ R
ln satisfying

(4), then the subsystem H2 is passive with port variables

(ẏH2
, u̇H2

).

Proof: Consider a Krasovskii-type storage function for

H2 as given below:

VH2
(α) =

1

2
α̇T α̇. (28)

Differentiating (28) with respect to time yields,

V̇H2
(α) = α̇T (L ⊗ Il)ẋ,

= ẏTH2
u̇H2

. (29)

Hence, the subsystem H2 is lossless with respect to port

variables u̇H2
and ẏH2

. �

3) H3 IS PASSIVE

In the following, H3 is modeled as a switched dynamical

system.

The dynamics in (16) becomes discontinuous when θ ikj =

0 and gj(xik ) < 0. The value of gj(xik )
+ switches from gj(xik )

to 0. To further clarify that, (16) is reformulated below as

given in Kose [20].

θ̇ ikj =

{

gj(xik ), if θ ikj > 0 or gj(xik ) > 0,

0.
(30)

From (30), the projection is seen to be active for the second

case. Let Ii = {1, . . . , lmikg } and σi : [0, ∞) → Ii, ∀k =

1, . . . , l; j ∈ Ii be an arbitrary switching signal. Then

σi(t) = {j|θ ikj = 0, gj(xik ) ≤ 0, ∀k; ∀j ∈ Ii}, (31)

represents the switching time instances when there is an

active projection. Considering (31), the inequality constraint

dynamics given in (16) takes the form of a switched system:

θ̇ ikj =

{

gj(xik ), ∀k; j /∈ σi(t),

0, ∀k; j ∈ σi(t),
(32)

where σi(t) ⊂ σ (t), ∀ni=1. Let VH3
be the Lyapunov function

associated with H3. It is defined as given below:

VH3
(θ ) =

1

2

n
∑

i=1

l
∑

k=1

∑

j/∈σi(t)

(θ̇ ikj )2. (33)

Proposition 9: The subsystemH3 is passive with port vari-

ables u̇H3
, and ẏH3

for each pair of switching time instances

(τ+
σi

, τ−
σi
) corresponding to (32) where τ−

σi
< τ+

σi
such that

σi(τ
+
σi
) = σ (τ−

σi
) = σi ∈ Ii and σi(τ

′) 6= σi for

τ−
σi

< τ < τ+
σi
.

Proof: Differentiating (33) with respect to time yields,

V̇H3
(θ ) =

n
∑

i=1

l
∑

k=1

∑

j/∈σi(t)

θ̇ ikj θ̈ ikj ,

=

n
∑

i=1

l
∑

k=1

∑

j/∈σi(t)

θ̇ ikj ∇gj(xik )ẋik ,

≤

n
∑

i=1

l
∑

k=1

mikg
∑

j=1

θ̇ ikj ∇gj(xik )ẋik ,

≤

n
∑

i=1

l
∑

k=1

ẋik

mikg
∑

j=1

θ̇ ikj ∇gj(xik ). (34)

Using uH3
and yH3

from (16) in (34),

V̇H3
(θ ) ≤ ẏTH3

u̇H3
. (35)

Thus,

n
∑

i=1

l
∑

k=1

∑

j/∈σi(t)

Vk (θ
ik
j (τ+

σi
))−Vk (θ

ik
j (τ

−
σi
))≤

∫ τ+
σi

τ−
σi

ẏTH3
u̇H3

dt. (36)

(36) ensures that the switched system (32) represents a finite

family of passive systems. However, it must be ensured that

the Lyapunov function VH3
does not increase during the

switching events. In line with this, the following two cases

are considered:
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1) It may happen for some xik in (32), that the func-

tion gj(xik ) goes from negative to positive through 0.

This will cause the Lyapunov function to change

from Vk (θ
ik
j (τ−

σi
)) to Vk (θ

ik
j (τ+

σi
)). If that happens,

the Lagrangian multiplier θ ikj > 0 will add a new

term to Vk (θ
ik
j (τσi )). Since, Vk (θ

ik
j (τσi )) is continuous

in time, (36) holds for τ > τ−
σi

as well as τ < τ+
σi
.

Hence, Vk (θ
ik
j (τ+

σi
)) = Vj(θ

ik
j (τ−

σi
)).

2) In this case the projection of k th constraint for a given

j becomes active, i.e., θ ikj reaches to 0 from a positive

value for the k th constraint of the ith machine. Hence,

the corresponding k th term of the Lyapunov function

Vk (θ
ik
j ) will disappear. In turn, the following inequality

will be satisfied. Vk (θ
ik
j (τ+

σi
)) < Vk (θ

ik
j (τ−

σi
)).

Hence, in both the cases, the Lyapunov function Vk (θ
ik
j (τ ))

will be non-increasing. �

D. STABILITY ANALYSIS

Proposition 10: The interconnected network dynamics

(14)-(16) is stable.

Proof: Let V be the Lyapunov function for the intercon-

nected system represented in Fig. 1 such that

V = VH1
+ VH2

+ VH3
. (37)

Differentiating (37) and using (23), (29), (35) yields

V̇ = V̇H1
+ V̇H2

+ V̇H3
,

≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

+(1 − a∗)λ2(L ⊗ Il)‖yH1
‖2 + ẏTH1

u̇H1
+ u̇TH2

ẏH2

+u̇TH3
ẏH3

(38)

≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

+(1 − a∗)λ2(L ⊗ Il)‖yH1
‖2

≤ 0. (39)

It verifies that the interconnected network dynamics of

passive subsystems (14)-(16) is passive and thus stable.

The following result establishes the boundedness of the

trajectories of (14)-(16).

Proposition 11: The trajectories of (14)-(16) are bounded

for all bounded initial conditions.

Proof: To show that the trajectories of (14)-(16) are

bounded, consider the following storage function:

V̄ =
1

2
‖x − x∗‖2+

1

2
‖α − α∗‖2 +

1

2
‖θ − θ∗‖2 +W . (40)

whereW is the storage function defined in (19). Differentiat-

ing (40) with respect to time yields

˙̄V = −∇xL̄(x, α, θ )T (x − x∗) + ∇αL̄(x, α, θ )T (α − α∗)

+(θ − θ∗)T∇θ [L̄(x, α, θ )]+θ + Ẇ ,

≤ −∇xL̄(x, α, θ )T (x − x∗) + ∇αL̄(x, α, θ )T (α − α∗)

+
∑

i

∑

k

∑

j

(θ ik − (θ ikj )∗)[gj(xik )]
+

θ ikj
+ Ẇ ,

≤ −∇xL̄(x, α, θ )T (x − x∗) + ∇αL̄(x, α, θ )T (α − α∗)

+(θ − θ∗)T g(x) + Ẇ . (41)

Note that (θ ikj − (θ ikj )∗)gj(xik ) ≥ 0, ∀j ∈ σi(t) because

gj(xik ) < 0 and θ ikj = 0 as confirmed by (32). Using

first order condition of convexity-concavity of the Lagrangian

function (5) and replacing Ẇ by right-hand side of (21), (42)

modifies to the following:

˙̄V ≤−[L̄(x, α, θ )−L̄(x∗, α, θ )]+[L̄(x, α, θ ) − L̄(x, α∗, θ)]

+[L̄(x, α, θ ) − L̄(x, α, θ∗)]

+(1 − a∗)ẋT (L ⊗ Il)ẋ + (1 − a∗)xT (L ⊗ Il)x. (42)

Since (x∗, α∗, θ∗) is the saddle-point of (5), with a∗ > 1

yields the following

˙̄V ≤ 0. (43)

which is sufficient to ensure that the trajectories of (14)-(16)

are bounded. �

In what follows, the asymptotic stability of the saddle-point

solution of (14)-(16) is established. To this end, the under-

lying networked dynamics is represented as a hybrid sys-

tem wherein H1, H2 are represented as continuous-time

dynamical systems and H3 is represented as a system with

right-hand side discontinuity. The framework of LaSalle’s

invariance principle for hybrid dynamical systems (see, [27])

as stated below, provides a useful result on the convergence of

(14)-(16) to the saddle point solution that satisfies (4).

Proposition 12: Consider the hybrid networked dynamics

(14)-(16) and let z = [xT , αT , θT ]T ∈ X ⊆ R
ln(2+mikg ),

and 9 ⊆ X be compact and positively invariant. Assuming

that the Lyapunov function V defined in (37) is continuously

differentiable and V̇ ≤ 0 along the trajectories of z(t) ∈ 9,

every trajectory in 9 converges to ǫ, where ǫ ⊂ 9 is a

maximal positive invariant set of 9 such that

1) V̇ = 0 for a fixed σ .

2) Vk (θ
ik
j (τ+

σi
)) = Vk (θ

ik
j (τ−

σi
)) for a switching instance τ

between τ−
σi
and τ+

σi
.

�

Proposition 12 gives the next result on the convergence

of (14)-(16) to the saddle point solution that satisfies the

conditions in (4).

Proposition 13: The hybrid network dynamics (14)-(16)

converges to the saddle point solution x∗, α∗, θ∗

satisfying (4).

Proof: From Proposition 12, for a fixed σ , V̇ = 0.

Thus the primal as well as dual dynamics in (14)-(16) con-

verge to the saddle point solution contained within the set ǫ.

If gj(x
∗
ik ) < 0 then (θ ikj )∗ = 0. However, if gj(x

∗
ik ) > 0, then

(θ ikj )∗ will penalize the constraint violation by rising to a large

value. Since all trajectories are bounded, it contradicts the

continuity of V , thus θ̇ ikj = 0. To this end, the solutions of

(14)-(16) also satisfy the KKT conditions (4) and yield the

saddle point solution (x∗, α∗, θ∗). �

Choosing a∗ > 1 and using (12), (39) modifies to

V̇ ≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

+(1 − a∗)λ2(L ⊗ In)‖yH1
‖2 ≤ 0. (44)

120430 VOLUME 7, 2019



P. A. Bansode et al.: Accelerated Distributed Primal-Dual Dynamics Using Adaptive Synchronization

Proposition 14: The saddle point solution of (5) is asymp-

totically stable.

Proof: The proof is straightforward from Proposition 10

and Proposition 13 and (44). �

In the recent article, [36] the global asymptotic stability

of the primal-dual dynamics is proved by using the Lya-

punov function similar to that of the sum of Krasovskii-type

Lyapunov function (37) and the Lyapunov function defined

in (40). This result can be extended to the globally asymptotic

stability of the saddle-point of (5).

Remark 15: Let Ṽ : Rln × R
ln × R

lnmikg → R denote the

Lyapunov function for the ADPDD (14)-(16), given as sum of

the Lyapunov functions (37) and (40) as follows:

Ṽ = V + V̄ . (45)

If f is strictly convex and continuously differentiable then

the trajectories of (14)-(16) converge to the saddle-point

(x∗, α∗, θ∗) which is globally asymptotically stable. The

proof of the Remark would be similar to proof the of

[36, Theorem 5.1]. Hence it is omitted from here to avoid

repetition.

With the global asymptotic stability of the proposed

dynamics (14)-(16) established, the subsequent section

addresses its rate of convergence and its comparison with the

rate of convergence with the primal-dual dynamics without

adaptive weights.

E. ACCELERATED CONVERGENCE USING ADPDD

Let A ⊆ R
|E |
>0 define the set of coupling weights, and |E |

define the cardinality of the edge set E . Given its definition,

the Laplacian matrix L ⊗ Il is a parameter varying, real

and symmetric matrix, which is differentiable and uniformly

continuous on A. As a consequence, the following hold:

Statement 16: There exists 3 > 0 such that the spectral

norm ‖L ⊗ Il‖ < 3,∀aiq ∈ A, ∀q ∈ Ni, ∀i ∈ N .

Statement 17: The gradient of L ⊗ Il with respect to aiq is

bounded above by some scalar η, ‖∇L ⊗ Il‖ ≤ η, aiq ∈ A.

Let L0 ⊗ Il be the Laplacian matrix of G whose coupling

weights are constant parameters, then L0 ⊗ Il results in a

constant matrix.

Proposition 18: If the coupling weights evolve according

to the law (13), then the following holds ∀t > t0 :

λ2(L ⊗ Il) > λ2(L0 ⊗ Il). (46)

Proof: To prove (46), it is first proved that

xTEC(t)ET x ≥ xTEET x.

xTEC(t)ET x − xTEET x = xT (EC(t)ET − EET )x

= xT [E(C(t) − I )ET ]x. (47)

For an undirected graph G, aiq(t0) ≥ 1, ∀q ∈ Ni, ∀i ∈ N .

Then ∀(q, i) ∈ E , C(t) ≥ I|E |. Hence,

C(t) − I ≥ 0, (48)

in fact, C(t0) is a diagonal matrix with the coupling weights

aiq(t0), thus C(t) ≥ C(t0), ∀t > t0. Thus from the above

reasoning, and (48),

xTEC(t)ET ≥ xTEET x

From (24) and (25),

xTL ⊗ Ilx ≥ xTL0 ⊗ Ilx. (49)

Let λi be the i
th eigenvalue in the ordered-pair of eigenvalues

represented below:

λ2 ≤ . . . ≤ λi ≤ . . . ≤ λn. (50)

Then according to Courant-Fischer theorem [37],

λi(EE
T ) = min

x 6=0,x⊥v1

xTEET x

xT x

≤ min
x 6=0,x⊥v1

xTEC(t)ET x

xT x
= λi(EC(t)E

T ) (51)

where v1 is the eigenvector (vector of all ones) corresponding

to the eigenvalue λ1 = 0. Thus for i = 2,

λ2(EE
T ) ≤ λ2(EC(t)E

T )

λ2(L0 ⊗ Il) ≤ λ2(L ⊗ Il)

λ2(L ⊗ Il) > λ2(L0 ⊗ Il), ∀t > t0. (52)

�

Proposition 19: If the coupling weights evolve according

to (13), then the following always hold:

λ2(L ⊗ Il) ≤
λn(L ⊗ Il)

λn(L0 ⊗ Il)
λ2(L0 ⊗ Il). (53)

Proof: The proof simply follows from the inequality

(50). Taking the ratio of the ordered pair of eigenvalues of

L ⊗ Il and L0 ⊗ Il , yields the following:

λ2(L ⊗ Il)

λ2(L0 ⊗ Il)
≤

λn(L ⊗ Il)

λn(L0 ⊗ Il)
, (54)

But, for t > t0, the inequality (54) strictly holds. Thus

λ2(L ⊗ Il) ≤
λn(L ⊗ Il)

λn(L0 ⊗ Il)
λ2(L0 ⊗ Il). (55)

�

In what follows, Proposition 18 and 19 are used to quantify

the rate of convergence of the proposed algorithm.

QUANTIFYING THE RATE OF CONVERGENCE OF THE

PROPOSED ALGORITHM (14)-(16)

By enabling a timescale separation between the evolution of

trajectories of xi and aiq, the primal dynamical subsystem H1

can be written as,

ẋ = −∇x f (x) + ux + uH1
, (56)

ȧiq = ǫdiq(e
T
iqeiq + ėTiqėiq), ∀i ∈ N , ∀q ∈ Ni, (57)

with ǫ << 1 ensuring that the primal variable xi evolves

faster than the coupling weights aiq. The primal subsystem

has two control inputs ux , to study the primal dynamics with

respect to ux in (12), let us analyze the primal subsystem H1

when uH1
is at steady state or equal to 0. With the assumption
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that the coupling weight dynamics is much slower, the primal

dynamics is re-written as:

ẋ = −∇x f (x) − (L ⊗ Il)x + uH1
,

= −F(x) + uH1
, (58)

where F(x) = ∇x f (x) + (L ⊗ Il)x . Strict convexity of f

can be used to prove that the primal dynamics (58) is strictly

monotone for all x ∈ R
ln (by evaluating the Jacobian of F(x),

i.e. ∇F(x) = H + L ⊗ Il ≥ µI , where µ is the modulus of

convexity of f ). SinceH+L⊗ Il > 0 is a symmetric positive

definite matrix, the Jacobian∇F(x) is symmetric and positive

definite ∀x ∈ R
ln, it proves that F(x) is strictly monotone by

virtue of which the primal dynamics (58) converges to the

global optimizer x∗. With f being continuously differentiable

in x, the global solution is also the unique solution. Unique-

ness of the primal optimizer x∗ remains invariant under the

adaptive coupling law (13).

The following result establishes the accelerated conver-

gence of (58) concerning the unique optimizer x∗. Let VH1

define the Lyapunov function as given below:

VH1
=

1

2
ẋT ẋ. (59)

Differentiating VH1
with respect to time t ,

V̇H1
≤ −(λmin(H) + λ2(L ⊗ Il))ẋ

T ẋ (60)

≤ −λmVH1
(61)

where λm = 2(λmin(H) + λ2(L ⊗ Il)). Therefor,

VH1
(x(t)) ≤ VH1

(x(t0)) exp{−λmt}, ∀t ≥ t0. (62)

or

‖x − x∗‖ ≤
√

2VH1
(x(t0)) exp{−0.5λmt}, ∀t ≥ t0. (63)

Further, since the primal-dual dynamics has a bounded

convergence with respect to the saddle point solution (see

Proposition 43), using Remark 15, every initial condition

x(t0) ∈ R
ln approaches the optimal solution x∗ faster than

the usual. Thus the accelerated convergence holds globally.

Considering the upper bound on λ2(L ⊗ Il) as given in

(55), let λ2(L ⊗ Il) =
λn(L⊗Il )
λn(L0⊗Il )

λ2(L0 ⊗ Il) and λm0
=

2(λmin(H)+λ2(L0⊗ Il)). Then it is seen that λm = λmin(H)+
λn(L⊗Il )
λn(L0⊗Il )

λ2(L0 ⊗ Il) ≫ λm0
.

Remark 20: It follows from Proposition 13 and Proposi-

tion 14 that the convergence of the primal optimizer x∗ and

the dual optimizers α∗, θ∗ is simultaneous.

The analysis presented below obtains a relation between

the convergence rate of the proposed dynamics and its

L2-gain.

F. ROBUSTNESS ANALYSIS OF THE NETWORK DYNAMICS

CONCERNING THE EXOGENOUS INPUTS

Before proceeding with the robustness analysis of this

section, it is worth noting the following remark on robustness

property of the passive dynamical systems.

Remark 21: From (23), (29), and (35), it is apparent that

the interconnected network dynamics comprising (14)-(16) is

passive, and inherently robust to the perturbations arising

in the primal and dual variables [see, Proposition 4.3.1,

Remark 4.3.3 of [30]].

Remark 21 states the qualitative behavior of the proposed

dynamics concerning the notion of robustness. In the fol-

lowing, the robustness of the proposed dynamics against

exogenous inputs is quantified in terms of the L2-gain.

Consider without loss of generality, the new inputs

to (14)-(16) as

H1 : ũH1
= uH1

+ 1uH1
,

H2 : ũH2
= uH2

+ 1uH2
,

H3 : ũH3
= uH3

+ 1uH3
, (64)

respectively, where 1u(.) corresponds to the perturbations in

the input u(.) ∈ R
ln. As discussed in [38], 1u(.) represent

additive uncertainties or disturbances such as the numerical

error accumulated in the corresponding variables. In what

follows, the robustness of the ADPDD is quantified using L2-

gain analysis of dynamical systems. Let ũ = [ũTH1
, ũTH2

, ũTH3
]T

and y = [yTH1
, yTH2

, yTH3
]T .

Proposition 22: The interconnected network dynamics

(14), (15), and (16) with aiq updated according to (13),

remains L2 stable with the L2-gain, γ ≤ 1
λmin(H)+a∗λ2(L⊗Il )

.

Proof: Replacing the inputs in (14)-(16) by the new

ones as defined in (64), the time differential of the Lyapunov

function (37) modifies to the following:

V̇ ≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

+(1 − a∗)λ2(L ⊗ In)‖yH1
‖2 + ẏTH1

˙̃uH1

+ẏTH2
˙̃uH2

+ ẏTH3
˙̃uH3

. (65)

Acknowledging that yH1
= x and using (12) in (65) further

yields

V̇ ≤ −
(

λmin(H) + a∗λ2(L ⊗ Il)
)

‖ẏH1
‖2

− (1 − a∗)yTH1
ux + ˙̃uT ẏ, (66)

where λmin(H)+a∗λ2(L⊗Il) > 0 sinceH is positive definite.

With a∗ > 1, the L2-gain of the interconnected network

dynamics, from the port input ˙̃u to the port output ẏ can be

calculated by setting ux to 0. From inequality (66), the map

from the input ˙̃u to the output ẏ remains finite L2-gain stable

around the saddle point x∗, α∗, θ∗, when the corresponding

L2-gain, satisfies

γ ≤
1

(

λmin(H) + a∗λ2(L ⊗ Il)
) . (67)

�

The inequality (67), clearly indicates that the L2 gain cor-

responding to the adaptive distributed primal-dual dynamics

reduces in margin as compared to the L2 gain corresponding

to the distributed primal-dual dynamics (without adaptive
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synchronization). Using (55), one can obtain the following

expression for the L2-gain in the worst case:

γ =
1

(

λmin(H) + a∗ λn(L⊗Il )
λn(L0⊗Il )

λ2(L0 ⊗ Il)
)
. (68)

Comparing (67) and (68), it can be found out that the

L2-gain for the ADPDD has a reduced margin than that of

the DPDD. Thus the algorithm calls for trade-off between the

robustness and the accelerated convergence of the proposed

dynamics. While the adaptive synchronization improves the

rate of convergence of the primal-dual dynamics, it simul-

taneously degrades the robustness of the proposed algo-

rithm wherein the worst-case L2-gain is quantified by

γ (< γ ) in (68).

III. APPLICATIONS AND NUMERICAL EXAMPLES

This section discusses the application of the proposed dynam-

ics to the distributed optimization problems concerning least

squares [7], [39] and support vector machines [40]. These

problems are solved online over a network of wireless sen-

sors or computing devices, in such premises the rate of

convergence is a vital factor. In the following, the proposed

dynamics (14)-(16) is employed to solve the distributed least

squares [41] and distributed support vector machines [5], [6]

problems.

A. DISTRIBUTED LEAST SQUARES

Distributed least squares problems are widely studied over

recent years [12], [42], [43]. These techniques find appli-

cations in parameter estimation over wireless sensor net-

works [44], estimation of electro-mechanical oscillation

modes of large power system networks [41], [45] etc. Each

agent in the network is given a task to simultaneously and

iteratively compute the same least squares solution to the

linear equation Ax = b where A ∈ R
r1×r2 with r1 > r2 and

b ∈ R
r1×1.

Formally, the least squares problem is defined as given

below [46]:

min
x

1

2
‖Ax − b‖2. (69)

The objective function of the least squares problem given

in (69) is not necessarily a strictly convex function, thus the

existence of a global solution can not be guaranteed. In this

case, the primal trajectories may synchronize and converge

to a local optimizer. In order to achieve the convergence

to the global optimizer, the objective function in (69) can

be modified to 1
2
‖Ax − b‖2 +

ϕ
2
‖x‖2, where the quadratic

term with ϕ > 0 ensures strictly convexity of the objective

function.

1) DATA PARTITIONING

It is assumed that each agent in the network adheres to

nr = r1/n consecutive rows of A and b. For the sake of

simplicity, equal partitioning of the rows of A is considered.

However, the proposed approach would hold even if the

partitioning is uneven.

A =











A1
A2
...

An











, b =











b1
b2
...

bn











. (70)

where Ai ∈ R
nr×l and Ai ∈ R

nr×1.

2) DISTRIBUTED FORMULATION OF LEAST

SQUARES PROBLEM

The consensus-based distributed optimization formulation of

(69) would require the local estimates x1, x2, . . . , xn to reach

consensus on the global optimizer x∗. With data partitioning

as defined above, the distributed version of the least squares

problem (69) [41] is defined as

min
x

n
∑

i=1

1

2
‖Aix − bi‖

2

subject to xi = xj, ∀j ∈ Ni. (71)

3) SOLUTION TO THE DISTRIBUTED LEAST

SQUARES PROBLEM (17) using ADPDD

The Lagrangian problem corresponding to (71) can be

defined as

L(x, α)=

n
∑

i=1

‖Aix − bi‖
2 + αTL ⊗ Ilx + xTL ⊗ Ilx. (72)

Similarly to (7), the proposed dynamics can be derived from

(72) as given below:

H1 :











ẋ = −AT (Ax − b) − (L ⊗ Il)x + uH1
,

ȧiq = diq(e
T
iqeiq + ėTiqėiq), ∀i ∈ N , ∀q ∈ Ni

yH1
= x.

(73)

H2 :

{

α̇ = uH2
,

yH2
= α.

(74)

where uH1
= −(L ⊗ Il)yH2

and uH2
= (L ⊗ Il)yH1

.

4) SIMULATIONS

The simulation parameters are randomly generated matrix

A ∈ R
100×80 and vector b ∈ R

100×1. The network with a

cyclic graph topology is assumed to comprise of 4 agents

wherein each agent holds Ai ∈ R
25×80 component of A as

well as the respective bi. Each agent in the network computes

x ∈ R
80 local estimates and reaches consensus over the

global solution x∗ as shown in the Fig. 2. The simulations

were carried out using diq = 0.1, the rate of convergence

of (73) is compared with that of the non-adaptive version

of the distributed primal-dual dynamics employed to solve

the problem (71). The rate of convergence is significantly

improved as shown in the Fig. 3. The global solution to (71)

is also compared with the solution of the least square solver

lsqlin inMATLAB. The global optimizer x∗
1 = x∗

2 = x∗
3 = x∗

4
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FIGURE 2. Convergence of (73) to the global solution x∗.

FIGURE 3. Eigenvalue comparison of L ⊗ Il and L0 ⊗ Il for the
problem (71).

FIGURE 4. Comparison of the global optimizers of (71) with the optimal
solution of the lsqlin solver.

obtained using the proposed algorithm coincides with the

optimal solution x∗ obtained using lsqlin as shown in

the Fig. 4.

B. QUADRATIC-INEQUALITY CONSTRAINED

DISTRIBUTED LEAST SQUARES

A box-constrained linear least squares problem is the one in

which the upper and lower bounds on the estimated values

are incorporated to handle limitations of the physical sys-

tem. These methods are studied with applications to GPS

positioning [47], geodesic applications [48]–[50] etc. The

box-constrained least squares problem is generally defined

as follows:

min
x

‖Ax − b‖2, subject to xl ≤ x ≤ xu, (75)

where xl and xu are the upper and lower bounds of the

variable x. It is known that a quadratic constraint formu-

lation of the box constrained least square problem is an

efficient approach to obtain the optimal solution of (75) [39].

The quadratic-constrained equivalent formulation of the box-

constrained least square problem (76) is given as:

min
x

‖Ax − b‖2, subject to (xi − x̄i)
2 ≤ ρ2

i , ∀ni=1. (76)

where x̄i is the midpoint of the interval [xl, xu]. It is computed

as x̄i = (xl + xu)/2 with ρi = (xu − xl)/2.

A distributed framework for the quadratic-constrained

least squares problem (76) can be obtained as:

min
x

n
∑

i=1

‖Aix − bi‖
2,

subject to (xik − x̄ik )
2 ≤ ρ2

ik , ∀lk=1, ∀ni=1

xi = xj, ∀j ∈ Ni. (77)

The ADPDD formulation of the problem (77) is similar to

that of the proposed dynamics (14)-(16). Hence, it is omitted

to avoid repetition of the equations.

1) SIMULATIONS

For the sake of simplicity and readability of the simulation

results, a small problem of the form (77) is taken as a proof

of concept with the parameters A ∈ R
20×4 and b ∈ R

20×1.

A network with a cyclic graph topology containing 4 agents

is considered wherein each agent holds on to Ai ∈ R
5×4

component of the matrix A. All agents iteratively reach the

global consensus of the optimizer value x∗ with diq = 2,

as shown in the Fig. 5. It can be observed that the trajec-

tories x1, x2, x3, and x4 synchronize to respective common

trajectories at around t ≅ 0.03 seconds. The result is also

compared with the solution of lsqlin and it can be seen from

the Fig. 6 that the global optimizer of (77) coincides with the

solution obtained using lsqlin. The accelerated convergence

of the proposed algorithm employed to solve (77) is evident

from the Fig. 7.

C. DISTRIBUTED SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are supervised learning-

based paradigms in the machine learning domain, used for

classification and regression analysis on raw data, (see [40]).

For applications with a huge amount of data, there are
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FIGURE 5. Convergence of the solutions of (77) to the global optimizer x∗.

FIGURE 6. Comparison of the global optimizers of (77) with the optimal
solution of the lsqlin solver.

FIGURE 7. Eigenvalue comparison of L ⊗ Il and L0 ⊗ Il for the
problem (77).

often limitations concerning bandwidth requirement, data

storage and processing capability of the computing machine,

response time, etc. As it turns out, a single computing

machine is inefficient in dealing with the SVM algorithm

with large datasets. Distributed versions of support vector

machines are proposed as an alternative method to overcome

these limitations, as discussed in [5], [6]. To enable accel-

erated convergence to the optimal solution, the distributed

SVM problem is formulated in terms of the adaptive primal-

dual dynamics. However, due to the complexity involved with

simulations of large-scale SVM problems, the present work

only considers the mathematical formulation and does not

provide the simulation results for the same.

A problem formulation of the support vector machines for

the case of non-separable data is given below:

min
w,b,ξ

1

2
‖w‖2 + pC

m
∑

j=1

ξj

s.t. yj(w
T xj + b) ≥ 1 − ξj, ∀mj=1, (78)

where the optimization variables are weight variable w, bias

variable b, and slack variable ξ . 1
‖w‖

is the margin that sep-

arates positive and negative observations, (xj, yj) ∈ S is a

paired observation sample, respectively. 1− ξj−yj(w
T xj+b)

is called as a hinge loss function. C is used to trade off the

sum over all slack variables ξ against the size of the margin.

p > 0 is the scaling factor.

1) DATA PARTITIONING

It is assumed that the set of observations S is horizon-

tally partitioned and distributed among computing nodes in

G(N , E) [6], where nowN = {1, . . . , n} represents the com-

puting nodes and the set of edges E describes communication

links between them. Assuming that the graph is connected

and enabling only one-hop neighborhood communication,

each node i communicates with its neighbors belonging toNi.

Each node i ∈ N stores a sample set of labeled observations,

denoted by Si = {(xi1, yi1), . . . , (ximi , yimi )}. Note that:

1) Si is a set of labeled observations allocated to ith com-

puting node, Si ∈ S, where S is a superset of the labeled

observations.

2) xi ∈ R
mi×1.

3) yij ∈ {−1,+1} is a class label.

In what follows, an adaptive primal-dual dynamics

based formulation of distributed support vector machines is

provided.

2) ADPDD FORMULATION OF DISTRIBUTED

SUPPORT VECTOR MACHINES

A distributed version of the support vector machines problem

(78) is formulated as given below (see, [5]):

min
w,b,ξ

1

2

n
∑

i=1

‖wi‖
2 + pC

n
∑

i=1

mi
∑

j=1

ξij

s.t.yij (wixij + bi) ≥ 1 − ξij, ξij ≥ 0, ∀i ∈ N , ∀
mi
j=1

wi = wq, bi = bq, ∀i ∈ N , q ∈ Ni. (79)

The objective function in (79) is a differentiable (C2) and

strongly convex in w. The decision (primal) variables are
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w, b ∈ R
m, where wi = wq, bi = bq are the consensus

constraints with q as a neighbor of i if and only if q ∈ Ni.

Let hij(ξij,wi, bi) = 1 − ξij − yij(wixij + bi).

The Lagrangian formulation of the problem (79) is

given by

L(w, b, ξ, θ, µ, α, β) =
1

2
‖w‖2 + pC

n
∑

i=1

mi
∑

j=1

ξij

+ αTLw+ βTLb

+

n
∑

i=1

mi
∑

j=1

θijhij(ξij,wi, bi)

+

n
∑

i=1

mi
∑

j=1

µijξij+
1

2
wTLw+

1

2
bTLb,

(80)

where θij, µij are the Lagrange multipliers associated with

inequality constraints hij(ξij,wi, bi) and ξij ≥ 0, of ith comput-

ing node, and αi, βi are the Lagrange multipliers associated

with coupling constraints of ith and qth, ∀q ∈ Ni nodes. L is

the Laplacian matrix of the undirected graph G.

Let z = [wT , bT ]T (with zi = [wi, bi], l = 2) then,

eiq = zi − zq. The interconnected network dynamics for the

distributed support vector machines problem (79) is repre-

sented as follows:

H1 :































ẇ = −w− Lw− Lα − ζ,

ḃ = −Lb− Lβ − η,

ȧiq = diq(e
T
iqeiq + ėTiqėiq), ∀i ∈ N , ∀q ∈ Ni,

uH1
= −(L ⊗ Il)yH2

− yH3
,

yH1
= z.

(81)

The subsystem H2 contains only consensus-dual variables,

with uH2
and yH2

as its input and output respectively, as given

below:

H2 :



















α̇ = Lw,

β̇ = Lb,

uH2
= (L ⊗ Il)yH1

,

yH2
= [αT , βT ]T .

(82)

The subsystem H3 contains the slack variable, and the dual

variables corresponding to the inequality constraints, with

uH3
and yH3

as its input and output respectively, as given

below:

H3 :































θ̇ij = [hij(ξij,wi, bi)]
+
θij

∀
mi
j=1, ∀ni=1,

µ̇ij = [ξij]
+
µij

∀
mi
j=1, ∀ni=1,

ξ̇ij = [−pC − µij + θij]
+
ξij

∀
mi
j=1, ∀ni=1,

uH3
= yH1

,

yH3
= [ζ T , ηT ]T ,

(83)

where ζ, η, µ ∈ R
n, and ζi =

∑mi
j=1 θij(−yijxij) with ηi =

∑mi
j=1 θij(−yij).

Thus, the proposed dynamics can be implemented for solv-

ing the distributed support vector machines problem (79) as

FIGURE 8. Convergence of the ADPDD (Example 1).

shown in (81)-(83). The solution of the underlying dynamics

will correspond to the saddle-point solution of (80), wherein

the primal solution is the optimal solution of (79).

In the following, two different formulations of (2) are

considered and the results of the proposed dynamics are com-

pared with that of the non-adaptive version of the distributed

primal-dual dynamics.

D. NUMERICAL EXAMPLE 1

Consider the following distributed optimization problem con-

sisting 3 agents having more than one variable and convex

inequality constraints.

min
x∈R6

3
∑

i=1

fi(xi),

subject to xi = xq, gi(xi) ≤ 0, ∀i, q ∈ N . (84)

where the objective function associated with each agent is

given below

f1(x1) = (x11 − x12)
2 + (x11 − 1)2, (85)

f2(x2) =
1

3
(x21 − x22)

2 + (x21 − 3)2, (86)

f3(x3) =
1

3
(x31 − x32)

2 + (x31 − 6)2, (87)

with the following local inequality constraints

g1(x1) = 6x211 + 3x212 − 11, (88)

g2(x2) = 7x221 + 11x222 − 7, (89)

g3(x3) = 2x231 + 9x232 − 20. (90)

The graph connectivity is assumed to be as follows:N1 = 1,

N2 = 2, andN3 = 1. The ADPDD algorithm is employed to

solve the problem (84), and the corresponding trajectories are

shown in Fig. 8. For diq = 0.001, the primal optimizers are

(0.8964, 0.3538). The eigenvalues of both L ⊗ Il and L0 ⊗ Il
are compared as shown in Fig. 9. From Proposition 18 and
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FIGURE 9. Eigenvalues of L0 ⊗ Il and L ⊗ Il (Example 1).

FIGURE 10. A random graph G containing 10 nodes (Example 2).

Proposition II-E, it can be seen that the adaptive synchro-

nization has sought to increase the rate of convergence of the

ADPDD.

E. NUMERICAL EXAMPLE 2

In this subsection, the local inequality constraints associated

with each agent are relaxed and the following optimization

problem is considered on a random graph with 10 agents

as shown in Fig. 10. Note that the degree of each agent is

selected randomly.

min
x∈R10

10
∑

i=1

fi(xi),

subject to xi = xq, ∀i, q ∈ N . (91)

with a randomly generated Hessian

H=diag([136, 439, 355,298, 302, 350, 327,398, 353, 294]).

The proposed dynamics is employed to solve the optimization

problem defined in (91) by first considering diq = 0.001 and

then diq = 0.01. For diq = 0.001, Fig. 11 and Fig. 12 show

the trajectories of primal-dual variables and the eigenvalues

FIGURE 11. Convergence of the ADPDD (diq = 0.001) (Example 2).

FIGURE 12. Eigenvalues of L0 ⊗ Il and L ⊗ Il (diq = 0.001) (Example 2).

FIGURE 13. Comparison of primal variable trajectories for ADPDD and
DPDD (Example 2).

of L0 ⊗ Il and L ⊗ Il respectively. Similarly, Fig. 13 and

Fig. 14 correspond to the trajectories of primal-dual variables

and the eigenvalues of L0 ⊗ Il and L ⊗ Il , for the case of
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FIGURE 14. Eigenvalues of L0 ⊗ Il and L ⊗ Il (diq = 0.01) (Example 2).

diq = 0.01. By comparison, it can be seen that the conver-

gence is faster for the latter case. This owes to the difference

between the resulting eigenvalues, i.e., for the case of diq =

0.001, the second smallest eigenvalue λ2(L ⊗ Il) yields to be

10.72 whereas the same for the case of diq = 0.01 increases

to 33310. The eigenvalue results for both values of diq are

shown in the Fig. 12 and the Fig. 14.

FIGURE 15. Comparison of distance to primal optimizer using ADPDD and
DPDD (Example 2).

The optimal solution for the problem (91) is x∗ = 0, where

0 ∈ R
10 is a vector containing all 0s. To show the effective-

ness of the proposed algorithm, its primal variable trajectories

(for diq = 0.01) are compared with that of the DPDD as

shown in Fig. 13. The zoomed-in plot in Fig. 13 (for the time

interval [0.1, 0.8]) depicts that the primal variable trajectories

of DPDD do not synchronize to a common trajectory that

will later converge to the optimal solution while for the

same interval the primal variable trajectories of the ADPDD

algorithm converge to the optimal solution. This result can

also be verified from the distance to equilibrium plots shown

in Fig. 15. A squared L2 norm of the convergence error, i.e.

1
2
‖xi − x∗‖22 is plotted against the time for both algorithms.

It shows that the ADPDD converges to x∗ before the sampling

time t = 0.2 secondswhereas theDPDD converges to x∗ after

t = 200 seconds. For both algorithms, the squared L2 norm

of the convergence error is observed to be within the band

10−10 to 10−30.

IV. CONCLUSION

In this paper, an adaptive distributed primal-dual dynamics

is proposed to solve inequality and consensus constrained

distributed optimization problems. The adaptive synchro-

nization of the primal variables is brought into play by

allowing the coupling weights to update according to the dif-

ference between the local trajectories (trajectories belonging

to the neighboring nodes or agents) as well as the difference

between the rate of change of the local trajectories respec-

tively. It is proved that the proposed dynamics represents a

network of feedback-interconnected passive dynamical sys-

tems which are asymptotically stable. Further, by allowing a

time-scale separation between the adaptive coupling law and

primal dynamics, stronger convergence bounds for the primal

dynamic are derived, and it is proved that the adaptively

coupled primal dynamics converges to the unique primal

optimizer.

The performance of the proposed dynamics is quantified in

terms of the induced L2-gain from the disturbance input to the

output. The effect of adaptive synchronization on the L2-gain

is discussed and it is established that the adaptive distributed

primal-dual dynamics are comparatively less robust to the

exogenous input disturbances than the distributed primal-

dual dynamics. On the other hand, the analysis also revealed

that to achieve accelerated convergence to the saddle-point

solution, the proposed algorithm must call for a trade-off

between the convergence and the robustness parameters. The

future scope of the work will be directed towards develop-

ing a robust version of ADPDD algorithm with application

to distributed least squares and distributed support vector

machines.
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