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Abstract

Abrupt transitions to the state of thermoacoustic instability (TAI) in gas turbine
combustors are a significant challenge plaguing the development of next-generation low-
emission aircraft and power generation engines. In this paper, we present the observation
of abrupt transition in three disparate turbulent thermoacoustic systems: an annular
combustor, a swirl-stabilized combustor, and a preheated bluff-body stabilized combus-
tor. Using a low-order stochastic thermoacoustic model, we show that the reported abrupt
transitions occur when an initially stable, supercritical limit cycle becomes unstable, lead-
ing to a secondary bifurcation to a large amplitude limit cycle solution. The states of
combustion noise and intermittency observed in these turbulent combustors are well cap-
tured by the additive stochastic noise in the model. Through amplitude reduction, we
analyze the underlying potential functions affecting the stability of the observed dynam-
ical states. Finally, we make use of the Fokker-Planck equation, educing the effect of
stochastic fluctuations on subcritical and secondary bifurcation. We conclude that a high
enough intensity of stochastic fluctuations which transforms a subcritical bifurcation into
an intermittency-facilitated continuous transition may have little effect on the abrupt
nature of secondary bifurcation. Our findings imply the high likelihood of abrupt tran-
sitions in turbulent combustors possessing higher-order nonlinearities where turbulence
intensities are disproportionate to the large amplitude limit cycle solution.

Keywords: Thermoacoustic instability, Abrupt transitions, Secondary bifurcation,
Fokker-Planck equation, Intermittency

1. Introduction

Thermoacoustic instability (TAI) manifests as large amplitude pressure oscillations
in gas turbine and rocket combustors. These large amplitude oscillations lead to loss
of structural integrity through mechanical vibrations and cause the failure of thermal
protection systems due to enhanced heat transfer [1]. TAI occurs through a feedback
coupling between the heat release rate fluctuations arising from the unsteady flame and
the acoustic field of the combustor [2, 3]. Such positive feedback leads to runaway growth
in the amplitude of pressure oscillations. The growth is counterbalanced by increased
acoustic losses, which leads to the state of limit cycle oscillations observed during TAI
[4, 5].

Limit cycle oscillations emerge due to underlying nonlinearities of thermoacoustic sys-
tems. The transition of a dynamical system from a fixed point to a limit cycle solution
owing to a change in the control parameter is termed as Hopf bifurcation [6]. If, during
the transition, the amplitude of the limit cycle increases gradually, then it is referred to as
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a supercritical Hopf bifurcation. If, on the contrary, the transition is abrupt, it is called a
subcritical Hopf bifurcation. Lieuwen [7] described the transition from the state of stable
combustor operation to the state of TAI as a Hopf bifurcation from a fixed point to a limit
cycle solution. Several experimental studies have since then reported supercritical and
subcritical bifurcation to the state of limit cycles [8–12]. Ananthkrishnan et al. [13, 14]
hypothesized the possibility of a secondary bifurcation from an initially stable primary
limit cycle to a large amplitude secondary limit cycle solution in thermoacoustic sys-
tems having higher-order nonlinearities. Secondary bifurcation was then experimentally
confirmed in laminar [15] and, very recently, in turbulent [16–18] thermoacoustic systems.

An aspect that is overlooked in approaching the problem of thermoacoustic transitions
in gas turbine combustors is that the state of stable combustor operation is seldom a fixed
point. This state is better characterised by aperiodic fluctuations arising due to turbu-
lence and is referred to as combustion noise [19, 20]. In fact, the aperiodic fluctuations
during combustion noise have chaotic and multifractal signatures [21–23]. Nair et al. [24]
reported that the change of the state of a system from combustion noise to limit cycle
oscillation takes place through the state of intermittency. The state of intermittency is
an intermediate state and is characterised by bursts of periodic high amplitude oscilla-
tions amidst epochs of aperiodic low amplitude fluctuations. Thus, intermittency has the
imprint of both combustion noise and TAI. Transition to TAI through intermittency has
been confirmed in many studies since [25–28]. The occurrence of intermittency leads to
a smooth variation of statistical measures of the system, such as the root-mean-squared
(rms) or Fourier amplitude, as the state of a system changes from a state of combustion
noise to TAI.

In modeling intermittent transitions, the state of combustion noise is often assumed to
be of stochastic origin [29, 30] in view of the difficulty in modeling pressure fluctuations
that have chaotic and multifractal characteristics. Thus, modeling studies incorporate
the fluctuations as additive [29–34] and multiplicative noise [29, 30, 35] in models of
supercritical and subcritical bifurcation. These stochastic models are then analyzed by
deriving the Fokker-Planck equation from which a stationary solution is obtained [32–34].
The solution of the Fokker-Planck equation yields the evolution of the probability density
function (PDF) of the envelope of the amplitude of fluctuations during the transition.
For instance, Gopalakrishnan et al. [34] showed that abrupt subcritical bifurcation in
a laminar thermoacoustic system becomes continuous at high enough noise intensity.
Other approaches have used phenomenological models of vortex shedding [36, 37] and by
incorporating explicit slow and fast time scales in lower-order models [38].

The occurrence of both abrupt and continuous transitions in thermoacoustic systems
makes apparent the significant challenge in their modeling. In addition, the observation
of abrupt secondary transition [16–18] in highly turbulent thermoacoustic systems is not
understood clearly. Specifically, the explanation of what makes a transition continuous
and another abrupt has been found lacking in the literature.

In this paper, we begin by presenting evidence of abrupt secondary bifurcation arising
in three different turbulent thermoacoustic systems: annular combustor, swirl-stabilized
dump combustor, and bluff-body stabilized dump combustor with preheated air. We
use a stochastic thermoacoustic model based on a modified Van der Pol oscillator con-
taining higher-order nonlinearities [13] to describe the secondary bifurcations to a very
high-amplitude TAI. Through the application of deterministic and stochastic averaging,
we obtain the evolution equations for the amplitude and the phase of the oscillations. Us-
ing the amplitude equation and its potential function, we explain the stability of different
dynamical states of the thermoacoustic systems during secondary bifurcation. Finally, we
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derive and solve the Fokker-Planck equation and explain the effect of stochastic fluctua-
tions on the evolution of the PDF of pressure fluctuations during the transitions.

The rest of the paper is categorized as follows. Section 2 describes the setup and
methods used for conducting experiments. The observations of abrupt transitions via
secondary bifurcations in the experiments are detailed in Sec. 3. The thermoacoustic
model describing secondary bifurcation is presented in Sec. 4.1. Section 4.2 describes the
role of higher-order nonlinear coefficients in obtaining primary and secondary limit cycles.
Section 4.3 describes the stochastic model from which the slowly varying amplitude and
phase equations are derived. The PDF of the amplitude envelope is obtained with the
help of the Fokker-Planck equation in Sec. 4.4. The effect of stochastic fluctuations on the
transition is explained in Sec. 4.5. The stability of different dynamical states is visualized
with the help of potential function in Sec. 4.6. Section 5 summarizes the conclusions from
the paper.

2. Experiments

We performed experiments in three different turbulent combustors to obtain abrupt
transitions to the state of TAI. The combustor setups are shown in Fig. 1 and detailed
below.

2.1. Annular combustor

Figure 1(a) depicts the swirl-stabilized annular combustor. The air/fuel inlet is con-
nected to the settling chamber containing a flow straightener for reducing flow non-
uniformity and a hemispherical flow divider. The settling chamber bolsters 16 burners
arranged in an annular arrangement. The diameter of the burner tubes is 30 mm, and
their length is 150 mm. These burners are connected to the combustion chamber com-
prising an inner and outer duct. The length of the outer and inner ducts are 400 mm and
200 mm, respectively. Each burner houses a swirler for flame stabilization. Each swirler
possesses six vanes inclined at an angle of β = 60◦ with the burner axis (cf. Fig. 1b).

Partially premixed air and fuel (LPG, 40% propane, and 60% butane) are used for
the experiments. The combustor is ignited with the help of a non-premixed pilot flame,
which is switched off following flame stabilization. The equivalence ratio (φ) is increased
from 0.40 to 0.58 in a quasi-static manner by varying the fuel flow rate. The airflow rate
is kept constant at 1400 SLPM throughout the experiments. In the forward direction,
the fuel flow rate is increased from 40 to 45.6 SLPM, while it is decreased from 48 to 36
SLPM in the reverse direction. The Reynolds number, calculated using the exit diameter
of the burner (d = 15 mm), varies from Red ≈ 0.56 × 104 to 1.22 × 104. The power of
the combustor based on the fuel flow rate varies between 39 and 79 kW. Please refer to
[16, 17] for more information on the annular combustor setup.

2.2. Swirl-stabilized combustor

Figure 1(c) shows the schematic of the swirl-stabilized combustor. The setup consists
of a plenum chamber, combustion chamber, and an acoustic decoupler. A central shaft
through the burner is used as a fuel pipe to deliver the fuel. Compressed air is passed, in
a co-axial manner around the fuel pipe, to the plenum chamber. The air and the fuel are
mixed in the burner at a distance of 85 mm from the combustor dump plane. The burner
has a diameter of 40 mm. The combustion chamber has a square cross-section (90 × 90
mm2) and is 800 mm in length. The combustor exhausts into the acoustic decoupler,
which maintains acoustically open boundary conditions at the combustor exit. A swirler
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Figure 1: Schematic of (a) annular combustor comprising sixteen swirl-stabilized burners, (c) swirl-
stabilized dump combustor and (e) bluff-body stabilized dump combustor with preheated air. The flame
stabilizing mechanism for the three combustors are: swirler in (b), (d) and bluff-body in (f), respectively.

of diameter d = 40 mm consisting of 8 vanes, with each vane having an angle of 40◦ with
respect to the longitudinal axis, is used for flame stabilization (cf. Fig. 1d). The swirler
is mounted such that the end of each vane is flush mounted to the dump plane.

Partially premixed air and LPG are used for performing the experiments. The equiv-
alence ratio is varied as the control parameter by increasing the airflow rate from 380
SLPM to 700 SLPM in steps of 20 SLPM. The fuel flow rate is maintained constant at 24
SLPM. The airflow rate is varied in a quasi-static manner. Thus, the value of φ decreases
from 0.99 to 0.54. The power of the combustor based on the given fuel flow rate is 24.30
kW. The Reynolds number, determined using the diameter of the swirler, varies between
of Red = 1.45× 104 and 2.60× 104.

2.3. Preheated bluff-body stabilized combustor

The schematic of the preheated combustor is shown in Fig. 1(e). The combustor
comprises a preheater, plenum chamber, combustion chamber, and an acoustic decoupler.
A portion of the airflow is bypassed to the preheater. The hot gases from the preheater
are then mixed with the airflow prior to the main combustor at the burner to increase
the temperature of the air and fuel. The fuel for the main stage is injected through the
central shaft supporting the bluff body into the burner just before the dump plane. A
bluff-body (cf. Fig. 1f) is used for flame stabilization. The diameter of the bluff-body is
d = 47 mm. The cross-section and length of the combustor are 90 × 90 mm2 and 1200
mm, respectively.
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Experiments are conducted by varying the equivalence ratio (φ) of the main combustor
as the control parameter by keeping the fuel flow rate constant (30 SLPM) and increasing
the airflow rate from 800 SLPM to 1350 SLPM in steps of 50 SLPM. The airflow rate is
varied in a quasi-static manner. The equivalence ratio varies from φ = 0.67 to 0.35. The
power of the main combustor based on the given fuel flow rate is 30.3 kW. Based on the
diameter of the bluff-body, the Reynolds number varies in the range of Red = 3.36×104 to
5.67×104. For the experiments reported here, the preheating temperature was maintained
at T = 300◦C. Please refer to [39] for more details on the preheater setup.

2.4. Instrumentation

The flow rates of air and fuel in all these experiments are controlled using mass flow
controllers (Alicat mass flow controllers, MCR series) with a measurement uncertainty of
±(0.8 % of reading + 0.2 % of full scale). The maximum error in the reported value of φ is
±1.6%, and for Re it is ±0.8%. In all experiments, the control parameter (φ) is varied in a
quasi-static manner. Piezotronics PCB103B02 make piezoelectric pressure transducers are
used for pressure fluctuations measurements. The sensitivity of the transducers is 217.5
mV/kPa. The signal from the pressure transducer is acquired for a duration of 3 s at a
sampling rate of 10 kHz for the annular combustor and swirl stabilized dump combustor,
and 20 kHz for the bluff-body stabilized dump combustor. The maximum uncertainty
in the reported values of pressure measurement is ±0.15 Pa. Semi-infinite waveguides
of length 3.2 m (annular combustor), and 10 m (dump combustors) are attached to the
pressure mountings. The inner diameter of the waveguides is 4 mm. Further details on
the instrumentation can be found in [16, 39].

3. Secondary bifurcation in turbulent combustors

Let us begin by considering the characteristics of the bifurcation when the equivalence
ratio (φ) is changed in the turbulent combustors. Figure 2(a) depicts the variation in
p′rms when the control parameter φ is increased in the annular combustor. For low values
of equivalence ratio (φ < 0.46), the state of the system is characterised by combustion
noise (cf. Fig. 2b) possessing very low amplitude (p′rms ≈ 20 Pa) of fluctuations. The
fluctuations are characterised by a unimodal distribution and a broadband spectrum.
Upon increasing the equivalence ratio (φ) beyond a value of (0.46), we observe the state
of intermittency, where aperiodic fluctuations are randomly interspersed with bursts of
periodic oscillations (cf. Fig. 2c). The appearance of periodic bursts, whose amplitude is
higher than the amplitude of combustion noise, alters the initially unimodal distribution;
we observe secondary peaks at |p′| 6= 0 (see PDF in Fig. 2c). The increased periodic con-
tent appears as a narrowband peak in the amplitude spectrum. Upon further increasing
the value of φ, we observe the state of low amplitude limit cycle oscillations (LCO) with
p′rms ≈ 373 Pa. The limit cycle oscillations show (cf. Fig 2d) a bi-modal distribution and a
narrowband peak in the amplitude spectrum at 220 Hz. Finally, for φ > 0.50, we observe
(cf. Fig 2e) an abrupt transition from the low amplitude primary limit cycle oscillations
to a large amplitude (p′rms ≈ 1500 Pa) secondary limit cycle oscillations.

Figure 3 shows the characteristics of abrupt transition to large amplitude limit cycle
oscillation in the swirl-stabilized and preheated bluff-body stabilized combustor as φ is
decreased. The transition is observed when φ is decreased from 0.99 to 0.54 in a quasi-
static manner in the swirl-stabilized combustor, while it is observed for a decrease in φ
from 0.67 to 0.35 in the preheated bluff-body stabilized combustor. In each of these two
combustors, a decrease in φ leads to a transition from combustion noise to high-amplitude
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Figure 2: Characteristics of secondary bifurcation in the annular combustor. (a) The variation of p′
rms

as a function of the control parameter φ. Panels (b-e) shows the time series, the PDF P(p′) and the
amplitude spectrum |p̂(f)| of pressure fluctuations p′ observed during the states of (b) combustion noise,
(c) intermittency, (d) low amplitude limit cycle oscillations and (e) large amplitude limit cycle oscillations,
as indicated in panel (a). Note the increase in the abscissa limits for the time series and distribution in
panels (b) to (e).
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Figure 3: The variation of p′
rms

as a function of φ during secondary bifurcation in (a) the swirl-stabilized
dump combustor and (b) the bluff-body stabilized dump combustor with preheated air.

TAI through the states of intermittency and low-amplitude limit cycle oscillations. These
states in the swirl and bluff-body combustor have similar statistical properties to the
representative plots shown in Fig. 2(b-e). The abrupt transition, thus, takes place through
a secondary bifurcation to large amplitude limit cycle oscillations. Note that the swirl-
stabilized dump combustor depicts secondary bifurcation to very large amplitude levels
(p′rms ≈ 4 kPa).

Thus, it is evident from Figs. 2 and 3 that these turbulent thermoacoustic systems
exhibit abrupt transitions in the form of secondary bifurcations. Secondary bifurcation
appears in disparate turbulent combustion systems with very different flame and acoustic
responses. Thus, the common phenomenology across disparate combustors implies a
certain universal mechanism through which secondary bifurcation occurs in turbulent
combustors. Motivated by these results, we consider the model for describing secondary
bifurcations proposed by Ananthkrishnan et al. [13]. We extend the model to obtain
primary and secondary limit cycle solutions, derive the underlying potential functions,
and underscore the role of stochastic fluctuations on the observed phenomenology.

4. Modeling secondary bifurcation in thermoacoustic systems

4.1. Low-order thermoacoustic model

In the above experiments, we observed secondary bifurcation associated with the longi-
tudinal mode of TAI in three different combustors. Since we are concerned with modeling
this transition, we consider a simplified one-dimensional thermoacoustic system where the
longitudinal mode is excited. We neglect the effects of temperature gradient and mean
flow. Further, pressure fluctuations relative to the mean are not very large, so the non-
linear acoustic terms are unimportant. We will see that these are reasonable assumptions
for determining the characteristic features of abrupt secondary bifurcations.

Thus, the flame-acoustic interactions inside the combustor are governed by the lin-
earized momentum and energy conservation equations [40], which are given as,

1

ρ̄

∂p′(z, t)

∂z
+
∂u′(z, t)

∂t
= 0, (1)

∂p′(z, t)

∂t
+ γp̄

∂u′(z, t)

∂z
= (γ − 1)Q̇′(z, t)δ(z − zf ). (2)
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Here, γ is the ratio of specific heat capacities, t is time, and z is the distance along the
axial direction of the duct. u′ and p′ are the velocity and pressure fluctuations, while
p̄ and ρ̄ indicate the mean pressure and density, respectively. We assume the flame to
be compact such that the heat release rate fluctuations Q̇′ are concentrated at the flame
location zf , indicated by the Dirac-delta (δ) function [41]. Equations (1) and (2) can be
suitably modified to yield an inhomogeneous wave equation with the source term due to
the heat release rate fluctuations, as given below [42]:

c2
∂2p′(z, t)

∂z2
− ∂2p′(z, t)

∂t2
= −(γ − 1)

∂Q̇′(z, t)

∂t
δ(z − zf ), (3)

where, c =
√

γp̄/ρ̄ is the speed of sound.
We use a Galerkin modal expansion to simplify the second-order partial differential

equation into an ordinary differential equation in the time domain [43]. The acoustic
velocity and pressure fluctuations are projected on a set of spatial basis functions (cosines
and sines) having temporal coefficients (η, η̇), respectively, as indicated below:

p′(z, t) = p̄

n
∑

j=1

η̇j(t)

ωj

cos(kjz) and u′(z, t) =
p̄

ρ̄c

n
∑

j=1

ηj(t) sin(kjz), (4)

where j represent the eigenmodes. The basis functions chosen here are orthogonal, satisfy
the acoustic (closed-open) boundary conditions, and form the eigenmodes of the self-
adjoint part of the linearized equations [44]. Here, kj is the wavenumber given by kj =
(2j − 1)π/2L, where L is the length of the combustor. The relationship between the
wavenumber and the natural frequency of each mode can be expressed as ωj = ckj.
Substituting Eq. (4) into Eq. (3) yields,

n
∑

j=1

η̈j(t)

ωj

cos (kjz) +
γp̄

ρ̄c

n
∑

j=1

ηj(t)kj cos(kjz) =
γ − 1

p̄
Q̇′δ(z − zf ). (5)

Evaluating the inner product of Eq. (5) along each of the basis function and integrating
the resulting equation over the length of the combustor we get,

η̈j(t)

ωj

+ ckjηj(t) =
2(γ − 1)

Lp̄

∫ L

0

Q̇′δ(z − zf ) cos(kjz)dz. (6)

Here, we restrict our analysis to a single eigenmode which is sufficient for analyzing
transition characteristics observed in the combustors described here. Further, the observed
dynamics in thermoacoustic systems arise from the nonlinear flame-response to acoustic
perturbations. So, the heat release rate response can be expressed as a nonlinear function
of η and η̇, i.e, Q′ ≡ Q′(η, η̇). With all these considerations, Eq. (6) reduces to the
equation of a self-excited harmonic oscillator, expressed as

η̈ + ω2η = f(η, η̇), (7)

where, f(η, η̇) = Q̇′(η, η̇)−αη̇ is the nonlinear driving term with an extra term αη̇ added
to take acoustic damping into account (α is the damping co-efficient). Using a truncated
Taylor series expansion of the source term f(η, η̇) following [45, 46], we express Eq. (7)
as

η̈ +
(

µ6η
6 + µ4η

4 + µ2η
2 − µ0

)

η̇ + ω2η + ξ = 0, (8)
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Figure 4: Bifurcation characteristics of the stochastic thermoacoustic system described by Eq. (8).
Variation in the amplitude of fluctuations for (a) subcritical and (b) supercritical bifurcation followed
by a secondary bifurcation to large amplitude limit cycle. The bifurcation diagram for the deterministic
system (Γ = 0, cf. Eq. 11) is indicated by the black line. The difference in the abscissa in (a) and (b)
indicates the significant difference between the amplitude of limit cycles due to subcritical and secondary
bifurcation. The solid lines correspond to stable solution, while the broken lines indicate the unstable
solution. The contour shows the variation in probability density function P(A) with parameter µ0,
estimated according to Eq. (19). The noise intensity is fixed at Γ = 106.5. The other model parameters
are: (a) µ2 = −10, µ4 = 3, µ6 = 0; and (b) µ2 = 7, µ4 = −0.6, µ6 = 0.01. Labels µH , µF and µS indicate
the parameter value µ0 at which Hopf, fold and secondary bifurcations occur.

where µ0 is the control parameter and µ2, µ4, and µ6 are the coefficients of the nonlinear
terms. The effect of turbulence is included as additive Gaussian white noise ξ which is
delta correlated in time: 〈ξ(t)ξ(t + τ)〉 = Γδ(τ), where Γ is the noise intensity [31–33].
The symbol 〈.〉 represents the ensemble of realizations of the stochastic process. Thus,
the overall dynamics is governed by the second-order stochastic differential equation.

4.2. Secondary bifurcation of the deterministic system

Let us first consider the deterministic system (Γ = 0). It is instructive to examine the
effect that each of the nonlinear terms has on the overall dynamics of the system. The
higher-order nonlinear terms (η2, η4 and η6) in the expansion of f(η, η̇) are responsible
for stabilizing the system to limit cycle solution when the fixed point solution becomes
unstable due to a variation in µ0 [13]. To see this, set µ6 = µ4 = 0 and µ2 = 1. The
system depicts a stable fixed point for µ0 < 0. The fixed point solution becomes unstable
at µ0 = 0, and the eigenvalues representing the linearized system cross the imaginary axis.
This is the well-known scenario of supercritical Hopf bifurcation to limit cycle oscillations
(not shown here for brevity). Near the fixed point µH , the amplitude of the limit cycle
increases monotonically through the relation η ∼ (µ0 − µH)

0.5 [6].
The stable limit cycle so obtained can be made unstable by choosing a negative value

for µ2. This is depicted by the broken line in Fig. 4(a) (shown for the representative case
of µ2 = −10), which has a parabolic dependence close to µH . The unstable limit cycle
solution can be stabilized by the inclusion of the next higher-order term η4 by setting
µ4 = 3. The inclusion of η4 stabilizes the limit cycle through a fold bifurcation (µ0 = µF ),
and the system depicts large amplitude limit cycle oscillation. We observe that the system
exhibits two stable solutions for µF < µ0 < µH : a fixed point and a limit cycle. Thus,
the system is said to exhibit bistability. With µ6 = 0, Eq. (8) reverts to the normal form
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of subcritical Hopf bifurcation and is widely used as models of subcritical bifurcation in
the thermoacoustic literature [8, 33, 47].

We obtain secondary bifurcation through the inclusion of the sixth-order nonlinear
term η6. Figure 4(b) shows the typical bifurcation plot obtained upon setting µ2 =
7, µ4 = −0.6 and µ6 = 0.01. The system depicts a stable fixed point state for µ0 < 0. At
µ0 = µH = 0, the fixed point becomes unstable, and a supercritical bifurcation to limit
cycle solution takes place. There is a monotonic increase in A with µ0 until the system
reaches the secondary bifurcation point µ0 = µS = 12. At µS, the supercritical branch
becomes unstable, and there is an abrupt jump to a stable large amplitude limit cycle
solution.

In the reverse direction, the secondary limit cycle branch extends till the fold bifurca-
tion with µF < µH , highlighting the associated bistability in the system. Further, there
are two regions of bistability. First, in the region µF < µ0 < µH , the system depicts a
fixed point solution and secondary limit cycle. Second, for µH < µ0 < µS, the system
depicts a low-amplitude limit cycle solution and secondary limit cycle solution. This be-
havior (also referred to as hysteresis) is qualitatively very similar to the bistable region
observed in our experiments (cf. Fig. 2a).

4.3. Slow flow representation of the stochastic system

Let us now consider the effect of stochastic fluctuations on the transition to limit cycle
oscillations. We consider the acoustic variable η(t) to be quasi-harmonic [48], such that
we have:

η(t) = A(t) cos [ωt+ φ(t)] . (9)

This decomposition allows us to separate the evolution of envelope-amplitude A(t) and
phase φ(t), which vary at a slower time scale in comparison to the faster time scale 2π/ω.
Now, we evaluate the expressions for η, η̇ and η̈ after expressing Eq. (9) in terms of the
exponential function (refer to Appendix A). Substituting these in Eq. (8) leads to

iωȧeiωt − ω2

2
β +

(µ6

64
β6 +

µ4

16
β4 +

µ2

4
β2 − µ0

)

× iω

2
(aeiωt − a∗e−iωt) +

ω2

2
β + ξ = 0, (10)

where, β = aeiωt + a∗e−iωt, a = Aeiφ, a∗ = Ae−iφ. To eliminate the fast time scale, we
compute the average of Eq. (10) over the time period T = 2π/ω of the fast oscillations
[49]. Using the method of averaging and simplifying the stochastic functions following
[49–51] (refer to Appendix B for further details), we obtain a set of Langevin equation
governing the evolution of the slowly varying amplitude and phase of the system, which
are expressed as:

Ȧ =
µ0

2
A− µ2

8
A3 − µ4

16
A5 − 5µ6

128
A7 +

Γ

4ω2A
+

√
Γ√
2ω
ξ1, (11)

φ̇ =

√
Γ√

2ωA
ξ2. (12)

Here, ξ1 and ξ2 are two uncorrelated Gaussian white noise terms with zero mean and
unit variance. Note that for a deterministic system, the evolution of the phase is zero
(φ̇ = 0), and now with the addition of noise, the phase drifts. In Eq. (11), the sign
associated with the factor µ0/2 determines the linear stability of the system. Further,
the term Γ/4ω2A + (

√
Γ/

√
2ω)ξ1 arises due to the covariance of stochastic terms in the

Fokker-Planck equation (refer to Eq. B.17) of the joint PDF of A and φ. The Langevin
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equation (Eq. 11) can be expressed in terms of the potential function V , as shown below:

Ȧ = −dV
dA

+

√
Γ√
2ω
ξ1. (13)

Here, the negative sign associated with it implies the fact that the evolution of the system
tends to minimize the potential function. The potential function V (A, µ0) can then be
determined by comparing Eqs. (11) and (13) and evaluating the resulting integral. This
leads to

V (A) = −µ0

4
A2 +

µ2

32
A4 +

µ4

96
A6 +

5µ6

1024
A8 − Γ

4ω2
lnA, (14)

which defines the potential function of the overall system.

4.4. Stationary solution of the Fokker-Planck equation

We now recast the stochastic differential equation in the Îto sense [52], which would
allow us to invoke the Fokker-Planck equation for the evolution of P(A) corresponding to
the Langevin equation of A. Thus, in the Îto sense, Eq. (13) becomes

dA = Ψ(A)dt+ dW, (15)

where,

Ψ(A) = −dV
dA

=
µ0

2
A− µ2

8
A3 − µ4

16
A5 − 5µ6

128
A7 +

Γ

4ω2A
, (16)

and dW = ξdt is the increment of the Wiener process. Recall that we have assumed
that the noise ξ is delta-correlated, a condition that is seldom fulfilled in real systems.
The noise usually possess finite correlation time (tcor). For the present purposes, if ξ is
sufficiently fast such that tcor is much lesser than the relaxation time of the system, the
evolution of the PDF P(A) satisfies the Fokker-Planck equation

∂

∂t
P(A, t) = − ∂

∂A
[Ψ(A)P(A, t)] +

Γ

4ω2

∂2

∂A2
P(A, t). (17)

Here, Ψ(A) and Γ/4ω2 are the drift and diffusion coefficients, respectively. At large times,
we assume that the distribution reaches a stationary state, such that: limt→∞ P(A, t) =
P(A). Thus, Eq. (17) reduces to

d

dA
P(A)− 4ω2

Γ
Ψ(A)P(A) = 0. (18)

This equation can be readily solved to yield

P(A) = N exp

(

−4ω2

Γ
V (A)

)

. (19)

where N is a constant such that
∫

∞

0
P(A) = 1.

4.5. Effect of noise levels on abrupt transitions

In Fig. 4, we plot the analytically derived probability distribution function P(A) in Eq.
(19) as a function of µ0. For obtaining the subcritical bifurcation, we set µ6 = 0, µ4 = 3
and µ2 = −10, while for the secondary bifurcation, we choose µ6 = 0.01, µ4 = −0.6 and
µ2 = 7. The bifurcation for the purely deterministic case is obtained by setting the noise
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Figure 5: Time series of η(t), the probability density function P(η) and the spectrum η̂(f) from the
stochastic model during the state of (a) combustion noise (µ0 = −20), (b) intermittency (µ0 = −5), (c)
low-amplitude TAI (µ0 = 5) and (d) high-amplitude TAI (µ0 = 12). The simulation parameters are:
µ6 = 0.01, µ4 = −0.6, µ2 = 7 and Γ = 106.5. Note that η is normalized by the amplitude of limit cycle
oscillation shown in panel (d).

intensity Γ = 0 in Eq. (11) and plotting the resulting solution. Figure 4 compares the
effect of the same level of noise intensity Γ = 106.5 on the characteristic of bifurcation.
We notice that for the same noise intensity, an initially sub-critical Hopf bifurcation
transforms into a continuous sigmoid-type transition, as depicted by the contour of P(A)
in Fig. 4(a). On the other hand, the secondary bifurcation remains abrupt with an
important difference: the fixed point solution is colored by noisy fluctuations, which hides
the sharp demarcation in the dynamics at the location of supercritical transition µ0 = µH .
This is precisely what we observe in the bifurcation plots from experiments (cf. Figs. 2a
and 3) where the amplitude rises through the state of intermittency before the state of
the low-amplitude limit cycle is reached.

To see this effect clearly, we numerically simulate the model (Eq. 8) using the stochas-
tic Runge-Kutta method and plot the time series, P(η) and η̂(f) for four representative
states across the transition in Fig. 5. At µ = −20, the time series depicts aperiodic
fluctuations, albeit with some periodic content (cf. Fig. 5a). However, the spectral am-
plitude remains very low. The distribution P(η) shows unimodal characteristics, a fact
also observed in the experimental data (cf. Fig. 2a). We also note here that features such
as chaos [21, 22] and multifractality [24] of the state of combustion noise are not captured
by the additive white noise considered here. Next, at µ0 = −5 (cf. Fig. 5b), we observe
intermittent bursts amidst aperiodic fluctuations. The distribution P(η) shows a change
from a unimodal distribution to peaks at |η| 6= 0, a feature we also noted in Fig. 2(c).
Finally, we observe low-amplitude and high-amplitude limit cycle oscillations at µ0 = 5
and µ0 = 12 as shown in Fig. 5(c,d).

We next quantify the effect of turbulence on the transition to the final state of limit
cycle oscillations. To do this, we define a transition amplitude factor R from experiments
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Abrupt transitions Continuous transitions
Experiments Model Experiments Model

Annular
combustor
(Fig. 2a)

RE = 1.4% Stochastic
secondary
bifurcation
(Fig. 4b,
at Γ = 106.5)

RM = 9%
Continuous
transition in
Nair et al. [24]

RE = 21%
Stochastic
subcritical
bifurcation
(Fig. 4a,
at Γ = 106.5 )

RM = 22%

Swirl
dump combustor
(Fig. 3a)

RE = 2.3%

Preheated
bluff-body
dump combustor
(Fig.3b)

RE = 8.4%

Table 1: Comparison of the transition amplitude factor observed in experiments RE and simulated from
the stochastic model RM for representative values of noise intensity Γ.

(RE) and model (RM) as

RE =
p′rms(CN)

p′rms(LCO) − p′rms(CN)

× 100%, RM =
ηrms(CN)

ηrms(LCO) − ηrms(CN)

× 100%. (20)

The transition amplitude factor compares the amplitude of combustion noise and the
difference in the amplitude of combustion noise and limit cycle from experiments and that
simulated in the model. Thus, the transition amplitude factor RE can be used to quantify
the effect of turbulence on the observed transition and compared with representative values
of RM for a given intensity Γ, to understand how well the effect of turbulent fluctuations
are approximated by the stochastic model (see Table 1).

The transition amplitude factor during the abrupt transition in the annular, swirl-
stabilized, and bluff-body stabilized dump combustor are RE = 1.4%, 2.3%, and 8.4%,
respectively. For each of these cases, the maximum Reynolds numbers attained during the
transitions are 8.6×103, 2.6×104, and 5.67×104, respectively. The values of RE obtained
from the experiments are comparable to the values of RM = 9% obtained from the model,
for a representative value of intensity Γ = 106.5, during the secondary bifurcation, which
is illustrated in Fig. 4(b). In contrast, when we consider the case of initially subcritical
bifurcation made continuous by the additive noise, as shown in Fig. 4(a), the factor is
RM = 22%. To put this into context, the factor for the intermittent transition reported in
Fig. 4(c) by Nair et al. [24], is RE = 21%. Thus, the effect of turbulence on the observed
transition is approximated reasonably well in the stochastic model.

To further the discussion, we now set the noise intensity in the model to Γ = 107.5.
Fig. 6(b) shows the stochastic bifurcation for this case. We note that the secondary
bifurcation displays a continuous, sigmoid-type transition. This noise level corresponds
to the transition amplitude factor of RM = 35%. Thus, we infer that the abrupt secondary
bifurcations can be made continuous at very high noise levels, which may be unrealizable
in practical turbulent combustors.

4.6. Potential landscape of the secondary bifurcation

Let us now consider the stability of the dynamical states observed during the sec-
ondary bifurcation. The stability of various dynamical states is best visualized through
the potential function V (Eq. 14). From the definition of the potential function, we have:
Ψ(A) = −∂V/∂A. We note that minima and maxima of the potential function V (A, µ0)
correspond to the stable and unstable fixed points of Ψ(A, µ0). The value of Ψ′(A) is a
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Figure 6: Effect of stochastic fluctuations on the properties of secondary bifurcation for (a) Γ = 106.5

and (b) Γ = 107.5. The contours show the variation in the distribution P(A) as a function of µ0. Panels
(c) and (d) depicts the potential functions V (A) (top panel) and distribution P(A) (bottom panel). The
potential V is indicated by the bold line. The contributions of individual terms of Eq. (14) are also
indicated. V (A) and P(A) are shown at µ0 = −5, 4 and 12, marked by the dotted lines in panel (a) and
(b). Other simulation parameters are same as that in Fig. 4(b).

measure of the stability of the fixed points as Ψ′(A) corresponds to the second derivative
of potential function (d2V/dA2) [6]. The second derivative is a measure of the curvature
of the potential function, describing its sharpness. Thus, the higher the magnitude of
−Ψ′(A) is, the higher would be the stability of the fixed point [6]. We discuss how the
variation in the parameter µ0 leads to a change in the stability of the potential Ψ(A) next.

The variation in the potential function V (A) is shown in Fig. 6(c,d) at µ0 = −5, 4
and 12 to compare their behavior at different states, indicated by the dotted lines in the
transition diagram. The potential functions are shown at two different noise intensities
(Γ = 106.5 and Γ = 107.5). The associated distribution P(A) is also shown below the
potential V (A). When µ0 = −5, the system is at stable equilibrium (Fig. 6c), and any
amount of perturbation to the stable state will be restored to its equilibrium position.
Thus, the system exhibits globally stable fixed points for µ0 < 0. The additive noise
continuously perturbs the system around the stable fixed points. For low noise levels
(Γ = 106.5), the mean of the distribution P(A) is at the minimum of the potential function
V (A) (cf. Fig. 6c, at µ0 = −5). In contrast, at a higher noise level (Γ = 107.5), P(A)
shows a wider distribution, as the variance of the noise is much larger (see Fig. 6(d), at
µ0 = −5).

For µ0 > 0, we notice that the potential V (A) develops a secondary trough. We
observe a unimodal Gaussian distribution P(A) for Γ = 106.5 at µ0 = 4 and µ0 = 12
(Fig. 6c). We notice that there is a shift in P(A) from a distribution centered at a lower
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Figure 7: Illustration of hysteresis observed during the secondary bifurcation. Plot shows the variation
of the potential function V (A) when the value of the parameter is decreased from µ0 = 15 to µ0 = −3.

amplitude to one centered at a much higher amplitude. This shift at µ0 = 12 is associated
with the secondary trough in the potential V (A) becoming the global minima, implying
its global stability. On the other hand, for Γ = 107.5, we notice that at µ0 = 4, the
potential V (A) has a double-well characteristic with a comparable value of minima. As
the noise level is higher, the perturbations can take the system from one potential well to
the next. Consequently, the distribution P(A) has a bimodal distribution. The bimodal
distribution implies the presence of intermittency where the amplitude switches between
low-amplitude oscillations (wider distribution) and higher-amplitude bursts of periodic
oscillations (narrow distribution). Finally, at µ0 = 12, we have a unimodal distribution.
The second trough has a lower minima, implying that the system reaches the globally
stable limit cycle oscillation at very large amplitude levels.

To illustrate the phenomenon of hysteresis, we plot the potential functions for different
values of µ0 (15, 9, 3, and -3), which is shown in Fig. 7. The system depicts the state of
the secondary limit cycle at µ0 = 15. Reversing µ0 below µS will not restore the state of
the system back to the primary limit cycle. Upon reducing the parameter value (µ0 = 9
and 3), another trough forms at a lower amplitude value. However, the potential barrier
(local maxima in V ) of the unstable fixed point separating the two troughs is very high,
thereby hindering the transitions back to either the primary limit cycle or the fixed point.
The system transition to the fixed point solution only when the parameter is reversed
below the fold point (i.e., µ0 < µF ).

5. Conclusion

To summarize, we reported the observation of secondary bifurcation in three dis-
parate turbulent combustors – annular combustor, swirl-stabilized combustor, and bluff-
body stabilized combustor with preheated air – despite them having completely different
flame responses and acoustic characteristics. These systems exhibit a sequence of tran-
sitions from combustion noise to intermittency to low-amplitude limit cycle oscillations,
followed by an abrupt jump to large amplitude secondary limit cycle oscillations. We
then model the secondary bifurcation using a second-order oscillator equation containing
higher-order nonlinearities. The effect of turbulence is incorporated in terms of Gaussian
delta-correlated white noise. We show that the model captures the secondary bifurcation
very well and depicts good qualitative agreement with the dynamical states observed in
experiments.
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We then derive the Langevin equation of the slowly varying amplitude and phase
through deterministic and stochastic averaging techniques. We obtain the potential func-
tion for the secondary bifurcation and discuss the stability of the observed dynamical
states. In addition, we obtain the stationary distribution of the envelope of the amplitude
of the fluctuations by solving the Fokker-Plank equation. We show that a deterministic
subcritical bifurcation is transformed into a continuous sigmoid type transition, typical
of the intermittency route in the presence of noise. By means of comparison, we observe
that for a given intensity of noise, which is high enough to transform a subcritical Hopf bi-
furcation into a continuous one, the secondary bifurcation to a large amplitude limit cycle
remains abrupt. We find that a very high value of noise intensity is required for trans-
forming a secondary bifurcation into a continuous transition. We, therefore, conclude that
secondary bifurcations can have very high stability due to the presence of higher-order
nonlinearities and can appear in turbulent combustion systems despite having relatively
high levels of turbulent fluctuations.

Our study shows that the higher stability of secondary limit cycles reflects the system’s
high resilience to instability-control strategies, while their abrupt nature makes them
exceedingly difficult to predict. Prediction of secondary bifurcation in experiments based
on the presented stochastic model will be taken up in future studies.
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Here, we present the derivation of the slow-flow equations and perform the stochastic
averaging to obtain Eqs. (11) and (12) of the manuscript.

Appendix A. Derivation of slow flow amplitude and phase evolution equa-

tions

Consider the modified stochastic Van der Pol oscillator which is mentioned as Eq. (8)
in the main text, describing secondary bifurcation, given as,

η̈ +
(

µ6η
6 + µ4η

4 + µ2η
2 − µ0

)

η̇ + ω2η + ξ = 0, (A.1)

where µ6, µ4, µ2 are the coefficients of the nonlinear terms and µ0 is the variable parameter.
ω is the natural frequency of the system. The term ξ is the white noise, with zero mean
〈ξ(t) = 0〉 and with the covariance given as ψ[ξ, ξτ ] = 〈ξ(t)ξ(t+ τ)〉 = Γδ(τ) where τ and
Γ are the time of lag and the intensity of the noise, respectively. We assume that white
noise is stationary process in our derivation. Using Krylov-Bogoliubov (KB) method of
decomposition [49, 50] the general solution for the Eq. (A.1) is of the form

η(t) = A(t) cos(ω(t)t+ φ(t)), (A.2)
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here, A(t) and φ(t) are of slow time scale and ω(t) is of fast time scale. The first derivative
η̇ for the general solution Eq. (A.2) is given as

η̇ = Ȧ cos (ωt+ φ)− Aω sin (ωt+ φ)− Aφ̇ sin (ωt+ t), (A.3)

By representing the general solution for η(t) in the form of Eq. (A.2), we introduce two
new variables A(t) and φ(t). In order to remove this ambiguity we specify an additional
condition that A and φ has to satisfy [49] and is given as,

Ȧ cos (ωt+ φ)− Aφ̇ sin (ωt+ t) = 0. (A.4)

Thus, we consider that the general solution has a simple derivative of the form

η̇ = −Aω sin (ωt+ φ). (A.5)

Writing the general solution in exponential form we get

η = A cos (ωt+ φ) = A

(

ei(ωt+φ) + e−i(ωt+φ)

2

)

=
aeiωt + a∗e−iωt

2
, (A.6)

where a = Aeiφ and a∗ = Ae−iφ. In a similar way we can write Eq. (A.5), Eq. (A.4) and
η̈ as

η̇ =
iω(aeiωt − a∗e−iωt)

2
, (A.7)

ȧeiωt + ȧ∗e−iωt = 0, (A.8)

η̈ = iωȧeiωt − ω2

2
(aeiωt + a∗e−iωt), (A.9)

respectively, where ȧ = Ȧeiφ + iAφ̇eiφ and ȧ∗ = Ȧe−iφ − iAφ̇e−iφ. Substituting for η, η̇
and η̈ in Eq. (A.1) and letting aeiωt + a∗e−iωt = β we get

iωȧeiωt− ω2

2
β+

(µ6

64
β6 +

µ4

16
β4 +

µ2

4
β2 − µ0

)

× iω

2
(aeiωt−a∗e−iωt)+

ω2

2
β+ξ = 0, (A.10)

here a, ȧ and a∗ are slow functions of time as compared to e(±nωt), n being an integer. This
is expressed as Eq. (10) in the main text. We further simplify Eq. (A.10) by expanding β6,
β4 and β2 using binomial expansion, which is not shown here in the interest of space. In
order to eliminate the terms associated with the fast time scale, we divide Eq. (A.10) with
iωeiωt and average the whole equation over the time period, T = 2π/ω, of fast oscillations.
The terms having even integers in e(±nωt) will be zero after averaging. Substituting for
a = Aeiφ , a∗ = Ae−iφ and aa∗ = |A|2 we get

Ȧ+ iAφ̇− µ0

2
A+

µ2

8
A3 +

µ4

16
A5 +

5µ6

128
A7 − i

ξ

ω
e−i(ωt+φ) = 0. (A.11)

Separating Eq. (A.11) into real and imaginary parts we have

Ȧ− µ0

2
A+

µ2

8
A3 +

µ4

16
A5 +

5µ6

128
A7 − ξ

ω
sin (ωt+ φ) = 0, (A.12)

17



Aφ̇− ξ

ωA
cos (ωt+ φ) = 0. (A.13)

Equations (A.12) and (A.13) are the governing equations for the evolution of slowly vary-
ing amplitude and phase, respectively. The amplitude and phase equation can be explicitly
written as,

Ȧ = −
(

−µ0

2
A+

µ2

8
A3 +

µ4

16
A5 +

5µ6

128
A7

)

+
ξ

ω
sin (ωt+ φ),

φ̇ =
ξ

ωA
cos (ωt+ φ)

(A.14)

Appendix B. Stochastic averaging of the slow flow equations

When the stochastic process ξ = 0, Eq. (A.14) represents the deterministic evolution
of the envelope-amplitude of the limit cycles and phase of the oscillator. In order to
simplify the stochastic term ξe−iωt we make use of the procedure used by Stratonovich
[53]. The method involves the use of Fokker-Planck (FP) equation that describes the time
evolution of the joint PDF of amplitude P(A) and P(φ), simplification of the FP equation
and reconstructing the stochastic differential equations that correspond to the simplified
FP equation. For convenience we write Eq. (A.14) as,

Ȧ = GA(A, φ) +HA(A, φ, ξ) = FA,

φ̇ = Gφ(A, φ) +Hφ(A, φ, ξ) = Fφ

(B.1)

where

GA = −
(

−µ0

2
A+

µ2

8
A3 +

µ4

16
A5 +

5µ6

128
A7

)

,

HA =
ξ

ω
sin (ωt+ φ),

Gφ = 0,

Hφ =
ξ

ωA
cos (ωt+ φ).

(B.2)

FA and Fφ are the stochastic functions of amplitude and phase. Following Stratonovich
[53] and Balanov et al. [49], we write the FP equation describing the joint probability
density function P(A, φ, t) as,

∂P
∂t

=− ∂

∂A

{(

〈FA〉+
∫ 0

t0−t

ψ

[

∂FA

∂A
, FAτ

]

dτ +

∫ 0

t0−t

ψ

[

∂FA

∂φ
, Fφτ

]

dτ

)

P
}

− ∂

∂φ

{(

〈Fφ〉+
∫ 0

t0−t

ψ

[

∂Fφ

∂A
, FAτ

]

dτ +

∫ 0

t0−t

ψ

[

∂Fφ

∂φ
, Fφτ

]

dτ

)

P
}

+
∂2

∂A2

{(
∫ 0

t0−t

ψ [FA, FAτ ] dτ

)

P
}

+
∂2

∂A∂φ

{(
∫ 0

t0−t

ψ [FA, Fφτ ] dτ

)

P
}

+
∂2

∂φ∂A

{(
∫ 0

t0−t

ψ [Fφ, FAτ ] dτ

)

P
}

+
∂2

∂φ2

{(
∫ 0

t0−t

ψ [Fφ, Fφτ ] dτ

)

P
}

(B.3)

Here, ψ [X, Yτ ] is the cross-covarience of the two stochastic process X and Yt at time
instants t and t + τ , respectively. The symbol 〈.〉 represents the ensemble of realizations
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of the stochastic process. The covariance terms that appear in Eq. (B.3) can be simplified
as follows. To begin with, we consider the first covariance term

ψ

[

∂FA

∂A
, FAτ

]

=

〈

∂FA

∂A
× FAτ

〉

−
〈

∂FA

∂A

〉

〈FAτ 〉

=

〈

∂(GA +HA)

∂A
× (GAτ +HAτ )

〉

−
〈

∂(GA +HA)

∂A

〉

〈GAτ +HAτ 〉

(B.4)

GA and ∂GA/∂A are deterministic functions of time and they remain same for any real-
ization of stochastic process ξ. Hence, their ensemble averages are given by

〈GA〉 = GA,

〈

∂GA

∂A

〉

=
∂GA

∂A
. (B.5)

Considering Eq. (B.5) and the fact, that the ensemble average of a product of a determin-
istic and a stochastic functions can be written as the product of deterministic function
and the average of the stochastic function. Eq. (B.4) can be written as

ψ

[

∂FA

∂A
, FAτ

]

=

〈

∂HA

∂A
×HAτ

〉

= 〈0×HAτ 〉 = 0 (B.6)

We can also calculate the the averages and covariances of other terms in Eq. (B.3) as

ψ

[

∂FA

∂φ
, Fφτ

]

=

〈

∂HA

∂φ
×Hφτ

〉

=

〈

ξ

ω
cos (ωt+ φ)×

(

ξτ
ωAτ

cos (ωt+ ωτ + φτ )

)〉

= 〈ξξτ 〉
1

Aτω2
cos (ωt+ φ) cos (ωt+ ωτ + φτ )

(B.7)

Now, we evaluate an integral of ψ[∂FA/∂φ, Fφτ ] over τ from (t0 − t) to 0 where t0 is
some initial time moment from which we start to consider the process. We set t0 to
minus infinity so as to consider an established process. We also make an assumption that
noise ξ is a fast stochastic process whose correlation time is much lesser than the systems
relaxation time [49]. Hence the slow variables can be treated as constant in the time
interval which is of the order of the correlation time of the noise, which implies Aτ = A
and φτ = φ. After simplifying the trigonometric terms in Eq. (B.7) we can write the
integral as

∫ 0

−∞

ψ

[

∂FA

∂φ
, Fφτ

]

dτ =
1 + cos(2ωt+ 2φ)

2Aω2

∫ 0

−∞

〈ξξτ 〉 cos(ωτ)dτ

− sin(2ωt+ 2φ)

2Aω2

∫ 0

−∞

〈ξξτ 〉 sin(ωτ)dτ
(B.8)

We have initially assumed that the noise we are considering is a stationary process, then
its correlation function 〈ξξτ 〉 depends only on τ . According to Wiener-Khintchine theorem
[54], the autocorrelation of the stationary process is the Fourier transform of the power
spectral density Γ. The first integral on the right hand side of the Eq. (B.8) is half of
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the Fourier transform (FT) of the correlation function 〈ξξτ 〉 which is equal to Γ/2. The
second integral is the imaginary part of the FT and is equal to zero. Hence Eq. (B.8)
simplifies to

∫ 0

−∞

ψ

[

∂FA

∂φ
, Fφτ

]

dτ =
Γ

4Aω2
(1 + cos(2ωt+ 2φ)) (B.9)

We can again apply the Krylo-Bogoliubov method of averaging to Eq. (B.9) by taking A
and φ as slowly varying functions of time to obtain

∫ 0

−∞

ψ

[

∂FA

∂φ
, Fφτ

]

dτ =
Γ

4Aω2
(B.10)

In a similar manner we can simplify the other terms of the Eq. (B.3) as

ψ

[

∂Fφ

∂A
, FAτ

]

=

〈

∂Hφ

∂A
×HAτ

〉

= 0 (B.11)

ψ

[

∂Fφ

∂φ
, Fφτ

]

=

〈

∂Hφ

∂φ
×Hφτ

〉

= 0 (B.12)

ψ [FA, FAτ ] = 〈HAHAτ 〉 =
Γ

4ω2
(B.13)

ψ [FA, Fφτ ] = 〈HAHφτ 〉 = 0 (B.14)

ψ [Fφ, FAτ ] = 〈HφHAτ 〉 = 0 (B.15)

ψ [Fφ, Fφτ ] = 〈HφHφτ 〉 =
Γ

4ω2A2
(B.16)

In the view of the above, Eq. (B.3) can be rewritten as

∂P
∂t

=
∂

∂A

{(

GA +

∫ 0

−∞

ψ

〈

∂HA

∂A
,HAτ

〉

dτ +

∫ 0

−∞

ψ

〈

∂HA

∂φ
,Hφτ

〉

dτ

)

P
}

− ∂

∂φ

{(

Gφ +

∫ 0

−∞

ψ

〈

∂Hφ

∂A
,HAτ

〉

dτ +

∫ 0

−∞

ψ

〈

∂Hφ

∂φ
,Hφτ

〉

dτ

)

P
}

+
∂2

∂A2

{(
∫ 0

−∞

ψ 〈HA, HAτ 〉 dτ
)

P
}

+
∂2

∂A∂φ

{(
∫ 0

−∞

ψ 〈HA, Hφτ 〉 dτ
)

P
}

+
∂2

∂φ∂A

{(
∫ 0

−∞

ψ 〈Hφ, HAτ 〉 dτ
)

P
}

+
∂2

∂φ2

{(
∫ 0

−∞

ψ 〈Hφ, Hφτ 〉 dτ
)

P
}

(B.17)

Substituting all the terms in Eq. (B.10)-(B.16) into Eq. (B.17) we obtain

∂P
∂t

=− ∂

∂A

{(

GA +
Γ

4Aω2

)

P
}

− ∂

∂φ
{GφP}

+
∂2

∂A2

{

Γ

4ω2
P
}

+
∂2

∂φ2

{

Γ

4ω2A2
P
}

.

(B.18)

Equation (B.18) is a Fokker-Planck equation which is simplified by means of averaging
over the period of fast time scale T = 2π/ω. Now, we would like reconstruct stochastic
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equations in the form
Ȧ = G̃A(A, φ) + H̃A(A, φ, ξ1), (B.19)

φ̇ = G̃φ(A, φ) + H̃φ(A, φ, ξ2), (B.20)

that would result in the simplified FP Eq. (B.18), if one wanted to construct it following
the Eq. (B.3). We find the expressions for G̃A, H̃A, G̃φ and H̃φ by comparing seperate
terms of Eq. (B.18) with the corresponding terms of Eq. (B.17), considering that all the
functions in the latter would be marked by tildes. We observe that

∫ 0

−∞

〈

H̃AH̃φτ

〉

dτ =

∫ 0

−∞

〈

H̃φH̃Aτ

〉

dτ = 0, (B.21)

This can be true if the process H̃A and H̃φ are not correlated. If the Eq. (B.21) is true,
then the two pairs of processes ∂H̃A/∂φ and H̃φ, and ∂H̃φ/∂A and H̃A are not correlated
that is

∫ 0

−∞

〈

∂H̃A

∂φ
× H̃φτ

〉

dτ =

∫ 0

−∞

〈

∂H̃φ

∂A
× H̃Aτ

〉

dτ = 0. (B.22)

Therefore we have

G̃A +

∫ 0

−∞

ψ

〈

∂H̃A

∂A
× H̃Aτ

〉

dτ = GA +
Γ

4Aω2
, (B.23)

G̃φ +

∫ 0

−∞

ψ

〈

∂H̃φ

∂φ
× H̃φτ

〉

dτ = Gφ. (B.24)

Next we consider
∫ 0

−∞

ψ
〈

H̃A × H̃Aτ

〉

dτ =
Γ

4ω2
, (B.25)

which is an expression independent of A, and therefore ∂H̃A/∂A = 0. This leads to the
disappearance of the integral in Eq. (B.23), and the final expression for G̃A is

G̃A = GA +
Γ

4Aω2
. (B.26)

Next, we consider
∫ 0

−∞

ψ
〈

H̃φ × H̃φτ

〉

dτ =
Γ

4ω2A2
, (B.27)

Here, the integral depends on A, but does not depend on φ, therefore the term involving
∂/∂φ vanishes, and G̃φ is given as

G̃φ = Gφ. (B.28)

Equation (B.25) and (B.27) are only valid if H̃A and H̃φ can be expressed as

H̃A =

√
Γ√
2ω
ξ1 and H̃φ =

√
Γ√

2ωA
ξ2 (B.29)

Where ξ1 and ξ2 are delta-correlated noise with zero mean and unity variance. In order
for H̃A and H̃φ to be uncorrelated, we need that ξ1 and ξ2 are uncorrelated which is given
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as
〈ξ1(t)ξ2(t+ τ)〉 = 0. (B.30)

Finally, we can write the simplified stochastic differential Eq. (A.14) as

Ȧ = −
(

−µ0

2
A+

µ2

8
A3 +

µ4

16
A5 +

5µ6

128
A7

)

+
Γ

4Aω2
+

√
Γ√
2ω
ξ1,

φ̇ =

√
Γ√

2ωA
ξ2.

(B.31)

This is expressed in Eq. (11) and Eq. (12) of the main text.
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