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1. Introduction

For n > 1, consider R™ with the usual inner-product (z,y) := 27y. We write a vector
x in R" by [x0,z]T, where xp € R and define the Jordan product of any two n-vectors
x and y by

.’ETy

roy = _ B
ToY + Yo

The triple (R™, o, {-,-)) is called Jordan-spin algebra. The cone of squares
K':={zeR":20>0, z7z<al}={zox:z €R"}

is the well-known second-order cone or the Lorentz cone. The most interesting case
happens when K" is non-polyhedral which is true iff n > 2. Henceforth, we fix n > 2
and simply use K to denote K™. Given an n X n real matrix M and a vector ¢ in R”,
the second-order cone linear complementarity problem SOLCP(M, q) is to find a vector
x € R”™ such that

reEK, y:=Mzx+qe K and xoy:O(@xTy:()).

Complementarity problems appear in various areas that include game theory, optimiza-
tion and economics. SOLCP is a classical example of a linear complementarity problem
defined on a non-polyhedral cone. The Jordan spin algebra associated with the second-
order cone has rank two and has extra properties which allow us to go beyond the
general study of complementarity problems. The text of Faraut and Koranyi [2] covers
the foundations of Euclidean Jordan algebra.

Definition 1. We will say that an n x n real matrix M has the Globally Uniquely Solvable
(GUS) property, if SOLCP(M, ¢) has a unique solution for all ¢ € R™.

In general it is very difficult to verify whether a linear transformation has the
GUS-property. Investigations on GUS-property of a linear transformation in Fuclidean
Jordan algebras are found in Gowda and Sznajder [4]. One of the fundamental problems
in SOLCP is to find conditions that characterize the GUS-property of an n x n matrix.
The problem can be posed in a more general setting.

Given a finite dimensional real Hilbert space H, and a closed convex cone C in H, a lin-
ear transformation T : H — H, and a vector ¢ € H, the (cone) linear complementarity
problem LCP(T,H,C) is to find a vector € H such that

x€C, y:=Tr+qeC* and (z,y) =0,
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where C*, called the dual cone, is defined by

C':={ueH:(uz) >0VzeC(C}

By specializing H = R™ and C = K with the usual inner-product, we get SOLCP.
When H = R", C = R"™; (the non-negative orthant) and (z,y) is the usual inner
product, the above complementarity problem reduces, for an n x n matrix M, to the
linear complementarity problem LCP(M,q): Find x € R™ such that

>0, y:=Mzx+¢q>0 and 27y =0, (1)

where the inequalities are defined in the component-wise sense. With numerous applica-
tions to many fields, see (Cottle, Pang and Stone [1]), the study of linear complementarity
problem has received wide attention. In the LCP theory, the uniqueness of solution in
LCP(M, q) for all ¢q is addressed via the following equivalent conditions [Theorems 3.3.4
and 3.3.7 in Cottle, Pang and Stone [1]]:

(P1) Every principal minor of M is positive.
(P2) The implication

zER"”, z+Mzx<0 = z=0

holds, where x * Mz is the component-wise product of vectors x and Mzx.
(P3) For every g € R™, LCP(M, ¢q) has a unique solution.

Generalizing (P2), Gowda et al. [3] introduced P-property for a linear transformation
in a Euclidean Jordan algebra. However, in a non-polyhedral setting, it turns out that
GUS and P-properties are not equivalent in general. Our findings in this paper are given
below.

o The following are equivalent for an n x n matrix M.
1. SOLCP(M, g) has a unique solution for all ¢ € R™.
2. (a) M has the P-property on K.
(b) 2T Mz >0 and 2" M~z > 0 Vz € OK.
3. (a) MT has the P-property on K.
(b) 2T Mz >0 and "M~z > 0 Vz € OK.
o If M has P-property on K, then M7 need not have P-property on K.
e If Ais a Z-matrix with respect to IC, then the following are equivalent:
(i) SOLCP(4,q) has a unique solution for all ¢ € R™.
(ii) A is positive stable and 27 Az > 0 for all x € OK.
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1.1. Notations

(i) To denote the topological interior and the boundary of IC, we use int(K) and 0K
respectively.

(ii) Let J denote the n x n diagonal matrix diag(1l,—1,—1,...,—1) and e denote the
vector (1,0,...,0)T in R™.

(iii) C(A) and N (A) will denote the column-space and null-space of a matrix A.

(iv) If M is an n x n matrix and 7 € R, we define M, := M — 7.J.

1.2. Properties of Jordan spin algebra

Let € R™ and y € R™ be written as

T = lx_ol , Y= [y_o} (0,90 € R).
z y

(PR1) Recall that for any two vectors z and y, the Jordan spin algebra is defined by:

ZL‘Ty

Toy:= - _
oY + Yo

The following are immediate.
(a) K={zoz:zecR"}.
(b) Let u,v,w € R™ and «, 8 € R. The following distributive law holds:

uo (aw+ fw) =auov+ fuow

(av + Bw) ou = av o u + fw o u.

(PR2) Any pair of non-zero vectors {c1, ca} that satisfy the following conditions is called
a Jordan frame.
(S1) ¢1 0 =0.
(S2) ¢10¢1 =c1 and ¢y 0 ¢ = ¢o.
(S3) 1 +ca=e.

(PR3) Spectral decomposition: Let x € R™. Then there exist real numbers A; and Ag
and a Jordan frame {c;, c2} such that

T = A\c1 + Aaco.
The following can be verified easily:

(1) x € oK if and only if )\1 Z 0, AQ Z 0 and )\1)\2 =0.
(ii) = € int(K) if and only if Ay > 0 and Ay > 0.
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(PR4) Given a vector z € R", with the spectral decomposition = Ajc;+Aaca, we define
the determinant of = by det(x) := A Ao It is easy to verify the following:
(a) det(z) =0 <=z € KU —0K <> 23 = ||z|]°.
(b) det(z) > 0 < z € int(K) U —int(K) < 22 > ||z*

(PR5) We say that the vectors x and y operator commute if they share a Jordan frame,
that is,

T = Aic1 + Aaca, Y = wicy + wacs,

for a Jordan frame {cy, c2}.

(PR6) The vectors x and y operator commute if and only if z =0 or y =0 or Z = ay
for some real number . Thus if x € R"”, then z and Jz operator commute.

(PR7) If det(x) > 0, det(y) > 0 and x oy = 0, then y = 0.

(PR8) Any two non-zero vectors z and y in K are orthogonal if and only if y = uJx for
some g > 0. Thus, z € K and y € K are orthogonal if and only if z oy = 0.

(PR9) Self-duality:

K={zxeR": 2Ty >0 vyeK}.
int(K) ={r e R": 27y >0 VO #yeK}.
For more details, we refer to Tao [7]. The definition of P-property of a linear trans-

formation with respect to the Jordan spin algebra is given below. For a discussion on
P-property and its variants in a general symmetric cone, we refer to Gowda et al. [3].

Definition 2 (P-property). We will say that an n x n matrix M has the P-property on
K if:

x and Mx operator commute
and } —x=0.
zoMx e —-K

Example 1. If S is an n X n matrix with S(K) C K, then I — S has P-property on K if
and only if p(S) < 1. See [5].

Example 2. Let a, b, A and ¢ be such that

a+ A\ >0, X#0, a>X, a>0, (c+)\)?<4a and b<R.

a
Define M := | 0 . Then M has P-property on K. See [6].
A

O = o
= o 0

We record some basic results from Gowda et al. [3] which we will use without explicit

mentioning.
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Theorem 1. Let M be an n x n matriz. Then the following are true:

(i) If M has the GUS-property, then M must have P-property on K.
(ii) GUS and P-properties are not equivalent.
(iii) If M has the P-property, then det(M) > 0.

2. Results

To find new characterizations for the GUS-property, we first derive certain linear
algebraic properties of a matrix that has P-property on K.

Lemma 1. If M is an n X n matriz, then the following are true:

(i) If det(M) > 0, then MJ has a positive eigenvalue and det(MJ) # 0.

(ii) If M has the P-property on KC, then the following are true.
(a) MJ has a positive eigenvalue and non-singular. Further, if T is any positive

eigenvalue of M J, then there exists u € int(K) such that N'(M;) = span{u}.

(b) If « € R™ is an eigenvalue of MJ, then N'(M,) N oK = {0}.

(iii) Let 7 > 0 be such that N(M,) = span{u} for some u € int(K). Then C(M,) =
{M,x: x € OK}.

(iv) Let T > 0 be a positive eigenvalue of MJ such that N'(M.) = span{u} for some
u € int(K). Assume that M satisfy the following conditions
(a) If a« € R is an eigenvalue of M.J, then N'(M,) N oK = {0}.
(b) yTMy >0 Vy € 0K.
Then there exists v € int(K) such that N (M) = span{v}.

Proof. First we prove (i). As det(M) > 0 and J is non-singular, det(M.J) # 0. Define
f:]0,00) = R by f(s) :=det(M —sJ). Since limg_, 0 fs(f) =det(—J) < 0 and f(0) > 0,
by intermediate value theorem, there exists s’ € R such that f(s’) = 0. As J? = I,
f(s") = det(MJ — §'I) = det(M — s'J)det(J) = 0 and hence, s’ > 0 is a positive
eigenvalue of MJ. This proves (i).

Now we prove (ii). Assume that M has P-property on K. Then det(M) > 0 and
therefore by (i), det(MJ) # 0 and has a positive eigenvalue, say 7. Let 0 # v € R™ be an
eigenvector of M.J and w := Jv. As J? = I, we get Mw = 7Jw, i.e., M,w = 0. We claim
that det(w) > 0. By assuming det(w) < 0, we get a contradiction. If det(w) < 0, then by
spectral decomposition, we can write w = aey — Seq, where o > 0 and 8 > 0. The vectors

w and Jw operator commute. So, w and Mw operator commute. Since Je; = pes for
some g > 0, we see that

1
Jw =alde; — fJes = apes — 5(;)61~

By distributive law,

wo Mw = —TozB(e—1 + peg).
W
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Thus, w o Mw € —int(K). Since M has the P-property, w = 0 and this is possible only
when v = 0, which is a contradiction. Let det(w) = 0. Then Mw = 7Jw and by using
(PR4) and (PR8) we get w o Mw = 0. Since M has the P-property, w = 0 and thus
v = 0, which is a contradiction. Therefore, det(w) > 0. To this end, we have shown that
if u € N(M;), then det(u) > 0, i.e., u € int(K). We now show that nullity(M;,) = 1.
If nullity (M,;) > 1, then there exist linearly independent vectors x and y in A'(M,) such
that 7y = 0. Since det(x) > 0 and det(y) > 0, by self-duality (PR9), either 27y > 0
or 7y < 0. So, x and y cannot be orthogonal. Thus, nullity(M,) = 1 and this proves
(i) ().

If z € N(M,)NOK, then Mz = aJz and x € K and hence z o Mz = 0. Since M
has the P-property, £ = 0. This completes the proof of (ii)(b).

We now prove (iii). Let v € int(K) be such that N (M,) = span{v}. Suppose w €
C(M,). Then, w = M,z for some z € v*. Since z is orthogonal to a vector in int(K),
det(z) < 0. As det(v) > 0, by continuity, there exists 0 < a < 1 such that det((1 —
a)v + az) = 0. Define y := (1 — @)v + az. Since y"v > 0 and det(y) = 0, y € K.

Y
If v := = = v + 252, then we have

(6%
Mz = —

= M,z and z € OK.
11—«

Thus, w = M, (1=%z). The proof of (iii) is complete.

We now prove (iv). By our assumption nullity(M,) = 1 and hence nullity(M7T) = 1.
Let N (ML) = span{z}. To complete the proof, by (PR4), it suffices to show that
det(xz) > 0. Suppose det(z) < 0. By (PR3), there exist A; > 0 and A2 > 0 such that
x = Ajep — Ageq, where {ej,es} is a Jordan frame. Define p := ,\%61 + )\—1262. Then,
p € int(K) and pT'z = 0. Since C(M,) = {y : yTx = 0}, it follows that p € C(M, ). By (iii),
there exists 0 # y € OK such that M,y = My—71Jy = —p; hence y” My+pTy = 0. Since
p € int(K)andy € 9K, pTy > 0. Asy" My > 0, y" My+pTy > 0. This is a contradiction.
Thus, det(x) > 0. Suppose det(z) = 0. Without loss of generality, assume x € OK. As Jx
is orthogonal to x, —Jx € C(M,). By (iii), we can find y € 9K such that M,y = —Jx,
ie., My —7Jy = —Jz. Since yT Jy = 0, we get y" My + yT Jx = 0. As y" My > 0 and
yTJz > 0, it follows that y”Jx = 0 and y" My = 0. So, y = ax for some a > 0. From
M,y = —Jz, we see that Mz = pJx for some p € R and hence z € N'(M,) NOK. By our
assumption on M, we deduce that = 0, which is a contradiction. Therefore det(x) > 0.
This proves (iv). O

2.1. Necessary and sufficient conditions for GUS-property

We now prove our main result regarding the global uniqueness of solutions in second-
order cone linear complementarity problems by establishing a precise interconnection
between the P and GUS-properties in SOLCP. We first note a useful result that follows
easily from Theorem 2 in [8] and Lemma 1.
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Theorem 2. Let M be an n X n matriz. Then M has the GUS-property if and only if M

satisfies the following conditions:

(Z1) MJ is non-singular and has a positive eigenvalue.

(Z2) There exist 7 > 0 and v € int(K) such that MJv = Tv. Further, all positive
eigenvalues of M J are equal to 7 and rank(MJ —7I) =n — 1.

(Z3) If « € R, then N (M,)N oK = {0}.

(Z4) For all y € OK, y" My >0 and y" M~y > 0.

Proof. Assume that M has the GUS-property. Since P-property on K is a necessary
condition for GUS, by Lemma 1, we get (Z1) and (Z3). (Z2) and (Z4) are immediate
from Theorem 2 in [8].

We now prove the converse. By Theorem 2 in [8], it suffices to show that there exists
v € int(K) such that N (ML) = span{v}. But this is immediate from item (iv) of
Lemma 1. This completes the proof. O

Theorem 3. Let M be an n x n matriz. Then the following are equivalent:

(T1
(T2

) M has the GUS-property.
) M satisfies the following:
(P1) M has the P-property on K.
(P2) For allx € 0K, 2T Mz >0 and 2T M1z > 0.
(T3) M satisfies the following:
(R1) MT has the P-property on K.
(R2) For allz € 0K, 2" Mz > 0 and 2T M~1z > 0.
) MT has the GUS-property.
) satisfies the following:
( Both M and M have P-property.
( Forallz € 0K, 2T Mx >0 and 2" M~z > 0.

(T4) M
(T5) M
S1)
S2)
Proof. We first show that (T1) = (T2). Since GUS implies P-property, we get (P1).
By Theorem 2(Z4), (P2) must be true. Thus, (T1) = (T2).

To prove (T2) = (T1), we verify all four conditions in Theorem 2. Item (Z4) in
Theorem 2 follows immediately from (P2). By the P-property of M, det(M) > 0 and
hence by Lemma 1(i), M J is non-singular and has a positive eigenvalue. Thus, M satisfies
(Z1). Further, (Z3) is immediate from Lemma 1(ii)(b). We now verify (Z2). If 7 > 0 is
a positive eigenvalue of MJ, then from Lemma 1(ii)(a), there exists v € int(K) such
that M (M;) = span{v}. To complete the proof, we need to show that all the positive
eigenvalues of M.J are equal and rank(M.J — 71) = n — 1. Suppose there exist distinct
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positive eigenvalues of MJ (say, 7 and 7’), such that 7/ = 7 4 ¢, where ¢ > 0. Let
x,y € int(K) be such that

MJxr =72 and MJy="1'y.

Now we can find scalars o and 3 such that 0 # u := ax + Sy € K and af < 0.
Consider the following two possibilities:

(A) a>0and g <0.
(B) a<0and g >0.

Assume (A). Since
MJ(azx) = rax and MJ(By) = (7 + ¢)By,

we get M Ju = Tu+cBy. By (P2), (Ju)T M Ju > 0. Further, u” Ju = 0. Hence, ¢y’ Ju >
0. Since y € int(K) and u € 9K, we have y*Ju > 0 and from ¢ > 0 and 8 < 0, we have
cByT Ju < 0 which is a contradiction. Thus (A) is not true. Now assume (B). Let 6 > 0
be such that

From the equations
1 1 1 1
M~7y=—Jy and M~z =—Jx,
T T

we find that

1 1
Mty = —aJu+ @aJ:c.
T

Since uT M~ u > 0, we have
I 7
yau Jxr > 0.

Since z € int(K), u € 0K, 6’ > 0 and a < 0, we see that 5au” Jz < 0. Thus (B) leads
to a contradiction. Hence all the positive eigenvalues of M J are equal. Suppose 7 > 0 is
the positive eigenvalue of M.J. From Lemma 1(ii)(a), we see that nullity(M,) = 1 and
hence rank(M,) = n — 1. Since J? = I, rank(M,) = rank(MJ — 7I) = n — 1. Thus
M satisfies (Z2). Hence, M satisfies all sufficient conditions in Theorem 2. The proof of
(T2) = (T1) is now complete.

By Corollary 2 in [8], M has the GUS-property if and only if M7 has GUS-property.
Therefore (T1), (T2), (T3), (T4) and (T5) are equivalent. O
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We have seen that M has the GUS-property if and only if M7 has GUS. Here is an
example of a matrix that has P-property on K while its transpose does not posses the
P-property.

Example 3. Let

a:=1/Vv2+2 and f§:= 2(\/5—&—1).

Define
1 a 1] V241
M = 0 1 0| and z:= -
-1 0 1 -1

Then

242
MTz=|2/V2+1].
V2

By (PR6) in Section 2, x and MTz operator commute. Further, z o MTx = 0. So,
M7 does not have the P-property. However, M has the P-property (see Example 2).

2.2. Z-Transformations

We now consider an interesting class of linear transformations namely Z-transforma-
tions over the second-order cone.

Definition 3. An n x n matrix M is called a Z-matrix on K if the following condition is
satisfied:

rek, yek and 2Ty=0 = y'Mz<0.

It is well-known that if a matrix S satisfies S(K) C K, then I — S is a Z-matrix. Thus
the class of Z-matrices is very broad. If M is a Z-matrix on K, then SOLCP (M, ¢) has a
solution for all ¢ € R™ if and only if every eigenvalue of M (over the complex field) has
a positive real part, i.e., M is positive stable. We refer to [5] for the proof of this result
and more details on Z-matrices. For Z-matrices on I, the following is conjectured in Tao
[6]: For a Z-matrix M on K, the following are equivalent: M has the GUS-property if
and only if M has the P-property and M is positive semidefinite on 9K. We prove this
result now.

Theorem 4. Let M be a Z-matriz on K. Then the following are equivalent:

(A) M has the GUS-property.
(B) M is positive stable and xT Mx > 0 for all x € OK.
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Proof. We first prove (A) = (B). By our assumption SOLCP(M,q) has a unique
solution for all ¢ € R™. From Theorem 7 in [5], we see that M is positive stable if
and only if SOLCP(M,q) has a solution for all ¢ € R™. Hence M is positive stable.
By Theorem 3, 2T’ Mz > 0 for all x € K. This proves (A) = (B).

We now prove (B) = (A). By Theorem 13 in [5], M has the P-property on K.
Further, by Theorem 7 in [5], M has the P-property on K if and only if M~1(K) C
KC. Therefore, " M~'xz > 0 for all z € K. By Theorem 3, we see that M has the
GUS-property. This completes the proof. 0O

We conclude the paper with the following example where M and M7 have P-property,
but M does not have the GUS-property.

Example 4. For a > 0, let

l-aa —a 0
M, = « 14+4a 0
0 0 1

Then M, =1 — S, where

By an easy verification, S, (K) C K. Hence for any a > 0, M, is a Z-matrix on K. Since
5,2 =0, p(S,) = 0. Thus, M, and ML have P-property on K for any . If y € 9K,
then it is easy to see that y" M,y = 2y? — a(y? +43). If a > 2 and y = (1,0,1) then
yT May < 0. Hence for a > 2, M, does not have the GUS-property.
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