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1. Introduction

For n > 1, consider Rn with the usual inner-product 〈x, y〉 := xT y. We write a vector 
x in Rn by [x0, ̄x]T , where x0 ∈ R and define the Jordan product of any two n-vectors 
x and y by

x ◦ y :=
[

xT y

x0ȳ + y0x̄

]
.

The triple (Rn, ◦, 〈·, ·〉) is called Jordan-spin algebra. The cone of squares

Kn := {x ∈ Rn : x0 ≥ 0, x̄T x̄ ≤ x2
0} = {x ◦ x : x ∈ Rn}

is the well-known second-order cone or the Lorentz cone. The most interesting case 
happens when Kn is non-polyhedral which is true iff n > 2. Henceforth, we fix n > 2
and simply use K to denote Kn. Given an n × n real matrix M and a vector q in Rn, 
the second-order cone linear complementarity problem SOLCP(M, q) is to find a vector 
x ∈ Rn such that

x ∈ K, y := Mx + q ∈ K and x ◦ y = 0(⇔ xT y = 0).

Complementarity problems appear in various areas that include game theory, optimiza-
tion and economics. SOLCP is a classical example of a linear complementarity problem 
defined on a non-polyhedral cone. The Jordan spin algebra associated with the second-
order cone has rank two and has extra properties which allow us to go beyond the 
general study of complementarity problems. The text of Faraut and Koranyi [2] covers 
the foundations of Euclidean Jordan algebra.

Definition 1. We will say that an n ×n real matrix M has the Globally Uniquely Solvable
(GUS) property, if SOLCP(M, q) has a unique solution for all q ∈ Rn.

In general it is very difficult to verify whether a linear transformation has the 
GUS-property. Investigations on GUS-property of a linear transformation in Euclidean 
Jordan algebras are found in Gowda and Sznajder [4]. One of the fundamental problems 
in SOLCP is to find conditions that characterize the GUS-property of an n × n matrix. 
The problem can be posed in a more general setting.

Given a finite dimensional real Hilbert space H, and a closed convex cone C in H, a lin-
ear transformation T : H → H, and a vector q ∈ H, the (cone) linear complementarity 
problem LCP(T, H, C) is to find a vector x ∈ H such that

x ∈ C, y := Tx + q ∈ C∗ and 〈x, y〉 = 0,
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where C∗, called the dual cone, is defined by

C∗ := {u ∈ H : 〈u, z〉 ≥ 0 ∀z ∈ C}.

By specializing H = Rn and C = K with the usual inner-product, we get SOLCP. 
When H = Rn, C = Rn

+ (the non-negative orthant) and 〈x, y〉 is the usual inner 
product, the above complementarity problem reduces, for an n × n matrix M , to the 
linear complementarity problem LCP(M, q): Find x ∈ Rn such that

x ≥ 0, y := Mx + q ≥ 0 and xT y = 0, (1)

where the inequalities are defined in the component-wise sense. With numerous applica-
tions to many fields, see (Cottle, Pang and Stone [1]), the study of linear complementarity 
problem has received wide attention. In the LCP theory, the uniqueness of solution in 
LCP(M, q) for all q is addressed via the following equivalent conditions [Theorems 3.3.4 
and 3.3.7 in Cottle, Pang and Stone [1]]:

(P1) Every principal minor of M is positive.
(P2) The implication

x ∈ Rn, x ∗Mx ≤ 0 =⇒ x = 0

holds, where x ∗Mx is the component-wise product of vectors x and Mx.
(P3) For every q ∈ Rn, LCP(M, q) has a unique solution.

Generalizing (P2), Gowda et al. [3] introduced P -property for a linear transformation 
in a Euclidean Jordan algebra. However, in a non-polyhedral setting, it turns out that 
GUS and P -properties are not equivalent in general. Our findings in this paper are given 
below.

• The following are equivalent for an n × n matrix M .
1. SOLCP(M, q) has a unique solution for all q ∈ Rn.
2. (a) M has the P -property on K.

(b) xTMx ≥ 0 and xTM−1x ≥ 0 ∀x ∈ ∂K.
3. (a) MT has the P -property on K.

(b) xTMx ≥ 0 and xTM−1x ≥ 0 ∀x ∈ ∂K.
• If M has P -property on K, then MT need not have P -property on K.
• If A is a Z-matrix with respect to K, then the following are equivalent:

(i) SOLCP(A, q) has a unique solution for all q ∈ Rn.
(ii) A is positive stable and xTAx ≥ 0 for all x ∈ ∂K.
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1.1. Notations

(i) To denote the topological interior and the boundary of K, we use int(K) and ∂K
respectively.

(ii) Let J denote the n × n diagonal matrix diag(1, −1, −1, . . . , −1) and e denote the 
vector (1, 0, . . . , 0)T in Rn.

(iii) C(A) and N (A) will denote the column-space and null-space of a matrix A.
(iv) If M is an n × n matrix and τ ∈ R, we define Mτ := M − τJ .

1.2. Properties of Jordan spin algebra

Let x ∈ Rn and y ∈ Rn be written as

x =
[
x0
x̄

]
, y =

[
y0
ȳ

]
(x0, y0 ∈ R).

(PR1) Recall that for any two vectors x and y, the Jordan spin algebra is defined by:

x ◦ y :=
[

xT y

x0ȳ + y0x̄

]
.

The following are immediate.
(a) K = {x ◦ x : x ∈ Rn}.
(b) Let u, v, w ∈ Rn and α, β ∈ R. The following distributive law holds:

u ◦ (αv + βw) = αu ◦ v + βu ◦ w

(αv + βw) ◦ u = αv ◦ u + βw ◦ u.

(PR2) Any pair of non-zero vectors {c1, c2} that satisfy the following conditions is called 
a Jordan frame.
(S1) c1 ◦ c2 = 0.
(S2) c1 ◦ c1 = c1 and c2 ◦ c2 = c2.
(S3) c1 + c2 = e.

(PR3) Spectral decomposition: Let x ∈ Rn. Then there exist real numbers λ1 and λ2
and a Jordan frame {c1, c2} such that

x = λ1c1 + λ2c2.

The following can be verified easily:
(i) x ∈ ∂K if and only if λ1 ≥ 0, λ2 ≥ 0 and λ1λ2 = 0.
(ii) x ∈ int(K) if and only if λ1 > 0 and λ2 > 0.
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(PR4) Given a vector x ∈ Rn, with the spectral decomposition x = λ1c1+λ2c2, we define 
the determinant of x by det(x) := λ1λ2. It is easy to verify the following:
(a) det(x) = 0 ⇐⇒ x ∈ ∂K ∪−∂K ⇐⇒ x2

0 = ‖x̄‖2.
(b) det(x) > 0 ⇐⇒ x ∈ int(K) ∪ − int(K) ⇐⇒ x2

0 > ‖x̄‖2.
(PR5) We say that the vectors x and y operator commute if they share a Jordan frame, 

that is,

x = λ1c1 + λ2c2, y = ω1c1 + ω2c2,

for a Jordan frame {c1, c2}.
(PR6) The vectors x and y operator commute if and only if x̄ = 0 or ȳ = 0 or x̄ = αȳ

for some real number α. Thus if x ∈ Rn, then x and Jx operator commute.
(PR7) If det(x) > 0, det(y) ≥ 0 and x ◦ y = 0, then y = 0.
(PR8) Any two non-zero vectors x and y in K are orthogonal if and only if y = μJx for 

some μ > 0. Thus, x ∈ K and y ∈ K are orthogonal if and only if x ◦ y = 0.
(PR9) Self-duality:

K = {x ∈ Rn : xT y ≥ 0 ∀y ∈ K}.
int(K) = {x ∈ Rn : xT y > 0 ∀0 �= y ∈ K}.

For more details, we refer to Tao [7]. The definition of P -property of a linear trans-
formation with respect to the Jordan spin algebra is given below. For a discussion on 
P -property and its variants in a general symmetric cone, we refer to Gowda et al. [3].

Definition 2 (P -property). We will say that an n × n matrix M has the P -property on 
K if:

x and Mx operator commute
and

x ◦Mx ∈ −K

}
=⇒ x = 0.

Example 1. If S is an n × n matrix with S(K) ⊆ K, then I − S has P -property on K if 
and only if ρ(S) < 1. See [5].

Example 2. Let a, b, λ and c be such that

a + |λ| > 0, λ �= 0, a > λc, a > 0, (c + λ)2 < 4a and b ∈ R.

Define M :=

⎡
⎢⎣ a b c

0 1 0
λ 0 1

⎤
⎥⎦. Then M has P -property on K. See [6].

We record some basic results from Gowda et al. [3] which we will use without explicit 
mentioning.
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Theorem 1. Let M be an n × n matrix. Then the following are true:

(i) If M has the GUS-property, then M must have P -property on K.
(ii) GUS and P -properties are not equivalent.
(iii) If M has the P -property, then det(M) > 0.

2. Results

To find new characterizations for the GUS-property, we first derive certain linear 
algebraic properties of a matrix that has P -property on K.

Lemma 1. If M is an n × n matrix, then the following are true:

(i) If det(M) > 0, then MJ has a positive eigenvalue and det(MJ) �= 0.
(ii) If M has the P -property on K, then the following are true.

(a) MJ has a positive eigenvalue and non-singular. Further, if τ is any positive 
eigenvalue of MJ , then there exists u ∈ int(K) such that N (Mτ ) = span{u}.

(b) If α ∈ Rn is an eigenvalue of MJ , then N (Mα) ∩ ∂K = {0}.
(iii) Let τ > 0 be such that N (Mτ ) = span{u} for some u ∈ int(K). Then C(Mτ ) =

{Mτx : x ∈ ∂K}.
(iv) Let τ > 0 be a positive eigenvalue of MJ such that N (Mτ ) = span{u} for some 

u ∈ int(K). Assume that M satisfy the following conditions
(a) If α ∈ R is an eigenvalue of MJ , then N (Mα) ∩ ∂K = {0}.
(b) yTMy ≥ 0 ∀y ∈ ∂K.
Then there exists v ∈ int(K) such that N (MT

τ ) = span{v}.

Proof. First we prove (i). As det(M) > 0 and J is non-singular, det(MJ) �= 0. Define 
f : [0, ∞) → R by f(s) := det(M −sJ). Since lims→∞

f(s)
sn = det(−J) < 0 and f(0) > 0, 

by intermediate value theorem, there exists s′ ∈ R such that f(s′) = 0. As J2 = I, 
f(s′) = det(MJ − s′I) = det(M − s′J) det(J) = 0 and hence, s′ > 0 is a positive 
eigenvalue of MJ . This proves (i).

Now we prove (ii). Assume that M has P -property on K. Then det(M) > 0 and 
therefore by (i), det(MJ) �= 0 and has a positive eigenvalue, say τ . Let 0 �= v ∈ Rn be an 
eigenvector of MJ and w := Jv. As J2 = I, we get Mw = τJw, i.e., Mτw = 0. We claim 
that det(w) > 0. By assuming det(w) ≤ 0, we get a contradiction. If det(w) < 0, then by 
spectral decomposition, we can write w = αe1−βe2, where α > 0 and β > 0. The vectors 
w and Jw operator commute. So, w and Mw operator commute. Since Je1 = μe2 for 
some μ > 0, we see that

Jw = αJe1 − βJe2 = αμe2 − β( 1
μ

)e1.

By distributive law,
w ◦Mw = −ταβ(e1 + μe2).
μ
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Thus, w ◦Mw ∈ − int(K). Since M has the P -property, w = 0 and this is possible only 
when v = 0, which is a contradiction. Let det(w) = 0. Then Mw = τJw and by using 
(PR4) and (PR8) we get w ◦ Mw = 0. Since M has the P -property, w = 0 and thus 
v = 0, which is a contradiction. Therefore, det(w) > 0. To this end, we have shown that 
if u ∈ N (Mτ ), then det(u) > 0, i.e., ±u ∈ int(K). We now show that nullity(Mτ ) = 1. 
If nullity(Mτ ) > 1, then there exist linearly independent vectors x and y in N (Mτ ) such 
that xT y = 0. Since det(x) > 0 and det(y) > 0, by self-duality (PR9), either xT y > 0
or xT y < 0. So, x and y cannot be orthogonal. Thus, nullity(Mτ ) = 1 and this proves 
(ii)(a).

If x ∈ N (Mα) ∩ ∂K, then Mx = αJx and x ∈ ∂K and hence x ◦Mx = 0. Since M
has the P -property, x = 0. This completes the proof of (ii)(b).

We now prove (iii). Let v ∈ int(K) be such that N (Mτ ) = span{v}. Suppose w ∈
C(Mτ ). Then, w = Mτz for some z ∈ v⊥. Since z is orthogonal to a vector in int(K), 
det(z) < 0. As det(v) > 0, by continuity, there exists 0 < α < 1 such that det((1 −
α)v + αz) = 0. Define y := (1 − α)v + αz. Since yT v > 0 and det(y) = 0, y ∈ ∂K. 
If x := y

1−α = v + α
1−αz, then we have

Mτx = α

1 − α
Mτz and x ∈ ∂K.

Thus, w = Mτ (1−α
α x). The proof of (iii) is complete.

We now prove (iv). By our assumption nullity(Mτ ) = 1 and hence nullity(MT
τ ) = 1. 

Let N (MT
τ ) = span{x}. To complete the proof, by (PR4), it suffices to show that 

det(x) > 0. Suppose det(x) < 0. By (PR3), there exist λ1 > 0 and λ2 > 0 such that 
x = λ1e1 − λ2e2, where {e1, e2} is a Jordan frame. Define p := 1

λ1
e1 + 1

λ2
e2. Then, 

p ∈ int(K) and pTx = 0. Since C(Mτ ) = {y : yTx = 0}, it follows that p ∈ C(Mτ ). By (iii), 
there exists 0 �= y ∈ ∂K such that Mτy = My−τJy = −p; hence yTMy+pT y = 0. Since 
p ∈ int(K) and y ∈ ∂K, pT y > 0. As yTMy ≥ 0, yTMy+pT y > 0. This is a contradiction. 
Thus, det(x) ≥ 0. Suppose det(x) = 0. Without loss of generality, assume x ∈ ∂K. As Jx
is orthogonal to x, −Jx ∈ C(Mτ ). By (iii), we can find y ∈ ∂K such that Mτy = −Jx, 
i.e., My − τJy = −Jx. Since yTJy = 0, we get yTMy + yTJx = 0. As yTMy ≥ 0 and 
yTJx ≥ 0, it follows that yTJx = 0 and yTMy = 0. So, y = αx for some α > 0. From 
Mτy = −Jx, we see that Mx = ρJx for some ρ ∈ R and hence x ∈ N (Mρ) ∩∂K. By our 
assumption on M , we deduce that x = 0, which is a contradiction. Therefore det(x) > 0. 
This proves (iv). �
2.1. Necessary and sufficient conditions for GUS-property

We now prove our main result regarding the global uniqueness of solutions in second-
order cone linear complementarity problems by establishing a precise interconnection 
between the P and GUS-properties in SOLCP. We first note a useful result that follows 
easily from Theorem 2 in [8] and Lemma 1.
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Theorem 2. Let M be an n × n matrix. Then M has the GUS-property if and only if M
satisfies the following conditions:

(Z1) MJ is non-singular and has a positive eigenvalue.
(Z2) There exist τ > 0 and v ∈ int(K) such that MJv = τv. Further, all positive 

eigenvalues of MJ are equal to τ and rank(MJ − τI) = n − 1.
(Z3) If α ∈ R, then N (Mα) ∩ ∂K = {0}.
(Z4) For all y ∈ ∂K, yTMy ≥ 0 and yTM−1y ≥ 0.

Proof. Assume that M has the GUS-property. Since P -property on K is a necessary 

condition for GUS, by Lemma 1, we get (Z1) and (Z3). (Z2) and (Z4) are immediate 

from Theorem 2 in [8].
We now prove the converse. By Theorem 2 in [8], it suffices to show that there exists 

v ∈ int(K) such that N (MT
τ ) = span{v}. But this is immediate from item (iv) of 

Lemma 1. This completes the proof. �
Theorem 3. Let M be an n × n matrix. Then the following are equivalent:

(T1) M has the GUS-property.
(T2) M satisfies the following:

(P1) M has the P -property on K.
(P2) For all x ∈ ∂K, xTMx ≥ 0 and xTM−1x ≥ 0.

(T3) M satisfies the following:
(R1) MT has the P -property on K.
(R2) For all x ∈ ∂K, xTMx ≥ 0 and xTM−1x ≥ 0.

(T4) MT has the GUS-property.
(T5) M satisfies the following:

(S1) Both M and MT have P -property.
(S2) For all x ∈ ∂K, xTMx ≥ 0 and xTM−1x ≥ 0.

Proof. We first show that (T1) =⇒ (T2). Since GUS implies P -property, we get (P1). 
By Theorem 2(Z4), (P2) must be true. Thus, (T1) =⇒ (T2).

To prove (T2) =⇒ (T1), we verify all four conditions in Theorem 2. Item (Z4) in 

Theorem 2 follows immediately from (P2). By the P -property of M , det(M) > 0 and 

hence by Lemma 1(i), MJ is non-singular and has a positive eigenvalue. Thus, M satisfies 
(Z1). Further, (Z3) is immediate from Lemma 1(ii)(b). We now verify (Z2). If τ > 0 is 
a positive eigenvalue of MJ , then from Lemma 1(ii)(a), there exists v ∈ int(K) such 

that N (Mτ ) = span{v}. To complete the proof, we need to show that all the positive 

eigenvalues of MJ are equal and rank(MJ − τI) = n − 1. Suppose there exist distinct 
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positive eigenvalues of MJ (say, τ and τ ′), such that τ ′ = τ + c, where c > 0. Let 
x, y ∈ int(K) be such that

MJx = τx and MJy = τ ′y.

Now we can find scalars α and β such that 0 �= u := αx + βy ∈ ∂K and αβ < 0. 
Consider the following two possibilities:

(A) α > 0 and β < 0.
(B) α < 0 and β > 0.

Assume (A). Since

MJ(αx) = ταx and MJ(βy) = (τ + c)βy,

we get MJu = τu +cβy. By (P2), (Ju)TMJu ≥ 0. Further, uTJu = 0. Hence, cβyTJu ≥
0. Since y ∈ int(K) and u ∈ ∂K, we have yTJu > 0 and from c > 0 and β < 0, we have 
cβyTJu < 0 which is a contradiction. Thus (A) is not true. Now assume (B). Let θ′ > 0
be such that

1
τ ′

+ 1
θ′

= 1
τ
.

From the equations

M−1y = 1
τ ′
Jy and M−1x = 1

τ
Jx,

we find that

M−1u = 1
τ ′
αJu + 1

θ′
αJx.

Since uTM−1u ≥ 0, we have

1
θ′
αuTJx ≥ 0.

Since x ∈ int(K), u ∈ ∂K, θ′ > 0 and α < 0, we see that 1
θ′αu

TJx < 0. Thus (B) leads 
to a contradiction. Hence all the positive eigenvalues of MJ are equal. Suppose τ > 0 is 
the positive eigenvalue of MJ . From Lemma 1(ii)(a), we see that nullity(Mτ ) = 1 and 
hence rank(Mτ ) = n − 1. Since J2 = I, rank(Mτ ) = rank(MJ − τI) = n − 1. Thus 
M satisfies (Z2). Hence, M satisfies all sufficient conditions in Theorem 2. The proof of 
(T2) =⇒ (T1) is now complete.

By Corollary 2 in [8], M has the GUS-property if and only if MT has GUS-property. 
Therefore (T1), (T2), (T3), (T4) and (T5) are equivalent. �
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We have seen that M has the GUS-property if and only if MT has GUS. Here is an 
example of a matrix that has P -property on K while its transpose does not posses the 
P -property.

Example 3. Let

α :=
√√

2 + 2 and β :=
√

2(
√

2 + 1).

Define

M :=

⎡
⎢⎣ 1 α 1

0 1 0
−1 0 1

⎤
⎥⎦ and x :=

⎡
⎢⎣
√

2 + 1
−β

−1

⎤
⎥⎦ .

Then

MTx =

⎡
⎢⎣ 2 +

√
2

2
√√

2 + 1√
2

⎤
⎥⎦ .

By (PR6) in Section 2, x and MTx operator commute. Further, x ◦ MTx = 0. So, 
MT does not have the P -property. However, M has the P -property (see Example 2).

2.2. Z-Transformations

We now consider an interesting class of linear transformations namely Z-transforma-
tions over the second-order cone.

Definition 3. An n × n matrix M is called a Z-matrix on K if the following condition is 
satisfied:

x ∈ K, y ∈ K and xT y = 0 =⇒ yTMx ≤ 0.

It is well-known that if a matrix S satisfies S(K) ⊆ K, then I−S is a Z-matrix. Thus 
the class of Z-matrices is very broad. If M is a Z-matrix on K, then SOLCP(M, q) has a 
solution for all q ∈ Rn if and only if every eigenvalue of M (over the complex field) has 
a positive real part, i.e., M is positive stable. We refer to [5] for the proof of this result 
and more details on Z-matrices. For Z-matrices on K, the following is conjectured in Tao 
[6]: For a Z-matrix M on K, the following are equivalent: M has the GUS-property if 
and only if M has the P -property and M is positive semidefinite on ∂K. We prove this 
result now.

Theorem 4. Let M be a Z-matrix on K. Then the following are equivalent:

(A) M has the GUS-property.
(B) M is positive stable and xTMx ≥ 0 for all x ∈ ∂K.
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Proof. We first prove (A) =⇒ (B). By our assumption SOLCP(M, q) has a unique 
solution for all q ∈ Rn. From Theorem 7 in [5], we see that M is positive stable if 
and only if SOLCP(M, q) has a solution for all q ∈ Rn. Hence M is positive stable. 
By Theorem 3, xTMx ≥ 0 for all x ∈ ∂K. This proves (A) =⇒ (B).

We now prove (B) =⇒ (A). By Theorem 13 in [5], M has the P -property on K. 
Further, by Theorem 7 in [5], M has the P -property on K if and only if M−1(K) ⊆
K. Therefore, xTM−1x ≥ 0 for all x ∈ K. By Theorem 3, we see that M has the 
GUS-property. This completes the proof. �

We conclude the paper with the following example where M and MT have P -property, 
but M does not have the GUS-property.

Example 4. For α > 0, let

Mα :=

⎡
⎢⎣ 1 − α −α 0

α 1 + α 0
0 0 1

⎤
⎥⎦ .

Then Mα = I − Sα, where

Sα =

⎡
⎢⎣ α α 0
−α −α 0
0 0 0

⎤
⎥⎦ .

By an easy verification, Sα(K) ⊆ K. Hence for any α > 0, Mα is a Z-matrix on K. Since 
Sα

2 = 0, ρ(Sα) = 0. Thus, Mα and MT
α have P -property on K for any α. If y ∈ ∂K, 

then it is easy to see that yTMαy = 2y2
1 − α(y2

1 + y2
2). If α > 2 and y = (1, 0, 1) then 

yTMαy < 0. Hence for α > 2, Mα does not have the GUS-property.
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