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A multiple trapping model is used to study the dispersive transport of holes in insulators. The 
one-dimensional Poisson and continuity equations are solved numerically along with the trap 
rate equations that model multiple trapping. The transient current due to a pulse of radiation is 
obtained as a function of the spread in the trap energy levels and the trap density distribution. 
The main properties of continuous time random walk transport, namely universality and 
superlinear dependence of the transit time on the electric field and oxide thickness, are verified. 

1. INTRODUCTION 

One of the features that marks disordered solids like 
the chalcogenide glasses and silicon dioxide is the disper- 
sive nature of carrier transport. Mathematically, dispersive 
transport is modeled by the continuous time random walk 
(CTRW) formalism of Scher and Montroll.“2 They have 
shown that a good fit to experimental data is obtained if 
one assumes a distribution function for event times, $(t), 
which decays slowly with time, as for example a power law 
in time. The function that they have chosen is t-(‘+“), 
where a is called the disorder parameter and takes on a 
value between 0 and 1. 

The principal problem in CTRW transport is to find a 
form for g(t) based on the underlying physical mechanism 
of transport. Pfister and Scher3 have shown that both hop- 
ping and multiple trapping with a trap density that de- 
creases exponentially with energy, give rise to a power law 
distribution function with one difference, namely, hopping 
gives rise to transient currents that are universal with re- 
spect to temperature but multiple trapping does not. Tran- 
sient hole currents in silicon dioxide turn out to be univer- 
sal with respect to temperature indicating a hopping 
mechanism. Transport in silicon dioxide is believed to oc- 
cur via the formation and hopping of small polarons.“7 In 
the case of a-Se and As2Ses, although experimental evi- 
dence seems in favor of multiple trapping, small polaron 
hopping is not completely ruled out. 

Simulation and modeling of radiation effects as well as 
hot-carrier degradation effects in metal-oxide- 
semiconductor (MOS) structures require an accurate 
model for hole transport, preferably one that will fit into 
the conventional device simulation framework consisting 
of the Poisson and continuity equations. To model hopping 
transport, the CTRW framework will have to be used, 
which still contains fitting parameters to describe the elec- 
tric field dependence of transport. As a result, it becomes 
difficult to take into account spatially varying electric fields 
in the oxide that occur due to the trapping of holes into 
deep traps in the oxide. Multiple trapping, on the other 
hand, is described completely by a set of differential equa- 
tions consisting of the Poisson, continuity, and trap rate 
equations and can be more readily used for simulating var- 
ious degradation effects. As long as the temperature is not 

varied, multiple trapping can be used as a mathematical 
model to give accurate results for silicon dioxide. 

Schmidlin* and Noolandi’ have analytically solved the 
differential equations, but have made several approxima- 
tions. Monte Carlo simulations of multiple trapping have 
been done by Silver and Cohen” for As2Se,. They have 
assumed a spatially uniform trap density that decreases 
exponentially with energy, with capture times constant and 
emission times an empirical function of a, the disorder 
parameter. Curtis and Srour” have numerically solved a 
set of trap rate equations along with a rate equation for 
decrease of holes in the valence band. However, they have 
some fitting parameters which they use to fit their results to 
experimental data. 

None of the above models are in a form where they can 
be used directly in a simulator. Moreover, all of them make 
some approximations in order to arrive at the solution. We 
have done a numerical simulation of dispersive transport 
via multiple trapping, by solving the Poisson and continu- 
ity equations along with a multiple trapping model. In this 
paper we present the results of this simulation. 

II. THE MODEL FOR MULTIPLE TRAPPING 

Figure 1 shows a typical plot of the transient current as 
a function of time that is expected from the CTRW model. 
It is seen to consist of two distinct portions. The initial 
slope of the current transient is - ( 1 -a) and at very large 
times, the slope is - ( 1 + a) on a log-log plot, a being the 
disorder parameter. The intersection of the lines defined by 
these two slopes is by definition the transit time. 

As mentioned previously, a trap density that decreases 
exponentially with energy results in CTRW transport. This 
is for the following reason. If the distribution of trap en- 
ergies is exponential, it means that there are a large number 
of shallow traps that capture and reemit holes several times 
within a transit time. This gives rise to a large spread in the 
free-carrier distribution and the centroid of free holes 
moves at a much slower rate. Besides, there should also be 
a significant number of deep traps (i.e., traps that emit 
carriers at times larger than the transit times) in order to 
ensure the slow decay of current after the transit time. The 
universality of the current shape implies that irrespective 
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FIG. 1. Typical transient current obtained expected from the CTRW 
model. 

of the transit time, there are always some traps with emis- 
sion times that are much larger than the transit time, i.e., 
there is a wide spread in the trap energies. 

In our model, we have a single trap energy level at each 
grid point, with the trap energies or the emission times 
varying randomly from point to point. From the discussion 
above, it is clear that the trap energies cannot have a uni- 
form distribution. We have generated trap energies with an 
exponential distribution. Typically, the emission times vary 
from a few nanoseconds to a few tens of seconds. 

Theoretically it is impossible to prove that this model 
gives rise to CTRW transport. But the model seems phys- 
ically reasonable and should give correct results in a three- 
dimensional simulation. For simulation in one dimension 
however, this model is an approximation since it assumes 
symmetry in two spatial directions. 

The exponential distribution of traps were generated 
using the inverse CDF (cumulative distribution function) 
technique,‘2 which leads to trap energies given by 

ET=-iln(l--y), 

where c is the coefficient of the exponent in the exponential 
distribution and y is a random number that is uniformly 
distributed between 0 and 1. The corresponding emission 
times are therefore 

q- ~1 &/k’, 
’ uputh% 

where oP is the capture cross section assumed to be con- 
stant, uth is the thermal velocity, and iV, is the density of 
states in the silicon dioxide valence band. We have as- 
sumed a value of aP=10-t6 cm2, A’ = 1019/cm3, and 
vth= lo7 cm/s. None of these parameter: have really been 
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determined for silicon dioxide, but the exact values of these 
parameters are not very important. What matters in 

CTRW transport is the distribution of emission times, and 
changes in these parameters would only mean that the 
position of the energy levels must be changed slightly to 
give similar values of the emission times. 

Trapping and detrapping at each point is modeled us- 
ing first-order trapping kinetics. In order to obtain the 
transient current, the following set of equations needs to be 
solved in the oxide: 

dv 
z= -4 (p+p,-n), 

ox 

ap 1 dJP 
~=-4d,+Gox-~, 

dn 1 dJ,, 
-=- -+G,,, 
at q dx 

dpt 
~=qJkhP(Ntp-Pt) 4, 

7.5 

where 

In the above equations, $, n, and p are the electrostatic 
potential, electron, and hole densities respectively and pt is 
the trapped hole density. Go, is the generation rate in the 
oxide assumed to be due to a pulse of radiation, ,uu, and pP 
are the electron and hole mobilities in the oxide, Ntp is the 
trap density at each point, and 7, are the random emission 
times of these traps. 

In order to obtain the solutions in a MOS capacitor, 
the Poisson and continuity equations also need to be solved 
in the semiconductor. The numerical techniques used as 
well as the boundary and interface conditions have been 
discussed in a previous paper.t3 

The measured hole current per unit area can be calcu- 
lated as 

Ip=dP)vD, 

where 

dxo 
vD=z’ 

In the above equation, x0 is the centroid of the free-charge 
distribution and (p) is the average number of holes in the 
valence band given by 

(p) =; Jotox P dx. 

The velocity of the centroid is calculated numerically by 
finding the position of the centroid at each time point. This 
is essentially the average conduction current per unit area. 
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FIG. 2. Transient current obtained if the trap energies lie between 0.1 and FIG. 4. Transient current obtained if the trap energies lie between 0.1 and 
0.3 eV. The oxide thickness T,,x is 500 8, and the gate voltage V, is 4 V. 1.0 eV. T,,, is 300 b; and V, is 2 V. 

Due to the relatively large mobility of electrons in the 
oxide (20 cm2/V s as compared to 10m5 cm2/V s for 
holes), electrons get swept out of the oxide in a few pico- 
seconds. Therefore, in order to obtain the transient hole 
current, the electron continuity equation can be neglected, 
which gives a set of three differential equations to be solved 
at each point. 

Ill. RESULTS OF THE SIMULATION 

Figures 2-4 show log-log plots of the transient hole 
current versus time. In each of these cases, the trap ener- 
gies are assumed to lie within a particular energy range just 
above the valence band, i.e., an exponential distribution of 

ldQ 1 I I I .,,I,’ I t I. 9.. 
1 10 102 NJ3 

Time (no) 

FIG. 3. Transient current obtained if the trap energies lie between 0.1 and 
0.5 eV. To, is 300 8, and V, is 2 V. 

IO 10’ 
Time (ns) 

trap energies is first generated and the distribution is then 
truncated so that all the energies lie within a specified en- 
ergy range, for example 0.143 eV in Fig. 2. The trap 
energy distribution is shown in each of these figures as an 
inset. In each case the trap density is assumed to vary with 
the trap energy as Nr=5x 10”’ e--Er’o.5(eV), where ET is 
the trap energy. This particular distribution of trap density 
with energy does not have any special physical significance 
and variation of the transient current with different distri- 
butions of the trap density is discussed later. 

Unlike the typical transient that is obtained for CTRW 
transport, shown in Fig. 1, these transient currents are seen 
to contain an initial spike where the current decays sharply 
(except for the current trace in Fig. 2, which has a very 
low spread in the trap energies). This is not predicted in 
CTRW theory, but has been observed in transient currents 
measured in As2Ses and a-Se.3 This occurs due to the high 
initial trapping rates and very little emission from the 
traps. After this initial sharp decay, there is a more gradual 
decay of the current as expected from CTRW transport 
which goes as - ( 1 -a). This occurs when the trapping 
rates of the deeper traps decrease and the carriers begin to 
get emitted from the shallower traps. Finally after the tran- 
sit time, which is obtained from the intersection of the two 
lines as shown in the figures, the current once again de- 
creases more rapidly as carriers are also lost to the contact. 

There are two trends clearly seen in these curves. First, 
as the spread in the trap energy increases the initial decay 
continues for a much longer time. When the spread is very 
small and the traps are almost all shallow traps as in Fig. 
2, very few carriers get trapped and even those that get 
trapped get reemitted very quickly. So the resulting char- 
acteristic is very near a characteristic obtained for drift- 
diffusion transport in extended states. When the spread 
becomes very large, there are a much larger number of 
deeper traps and hence the initial decay continues for a 
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FIG. 5. Transient current for different trap density distributions. The 

variation of trap density with energy is (a) djr’ “.7CeV), (b) &“‘ .s(ev), (c) 
&4’3.3(ev, and (d) $-r/o.lkv) 

much longer time and as seen in Fig. 4, it completely 
masks out the slower decay before the transit time. So in 
this curve, there is no clear transit time. 

The second trend that can be observed is in the slope of 
the post-transit time decay. This slope is clearly seen to 
decrease as the spread in trap energies increases. This 
makes sense because as the spread increases, the number of 
deeper traps increases and more carriers get trapped in 
these deeper traps. Since these carriers then do not get 
emitted until after the transit time, the slope of the post- 
transit decay is more or less controlled by the emission 
time of the deeper traps. The larger the emission times, 
carriers get emitted at a much slower rate and hence the 
current decay is slower. 

Figure 5 shows the transient current obtained for a 
fixed spread in the trap energies, but for different variations 
in the trap density with energy as indicated in the figure. 
Curve (a) has the maximum density of deeper traps and 
hence has the largest amount of initial decay. This is fol- 
lowed by a plateau up to the transit time, which indicates 
that there is not much capture or emission of carriers. 
(Actually there is a slight increase in the current due to 
emission of carriers from the shallower traps.) Curves (b) 
and (c) show the current traces obtained for a decreasing 
density of deeper traps. As the trap density decreases, the 
capture probability of these traps decreases, leading to an 
initial sharp decay followed by a more gradual decay in the 
current. In these two cases, holes continue to get trapped 
right up to the transit time and as a result, the current 
continues to decay until the transit time. When the density 
of the deeper traps decrease further, the initial sharp decay 
disappears altogether due to the very low capture rate and 
only a gradual decay is observed right from the beginning 
as shown in curve (d) . 

Using these curves, it is possible to give a physical 

I 
1 

Increasing cc 
I 

I 

tT 
Time 

FIG. 6. Dependence of the disorder parameter a, on the trap density 
distribution with energy, for a larger density of deeper traps. Curves (a), 
(b), and (c) in this figure correspond to (a), (b), and (c) of Fig. 5. 

meaning to the disorder parameter a. In materials like a-Se 
and As2Se3, there is a sharp decay in the current before the 
more gradual decay that goes as t-(lMa). In this case a 
increases with an increasing density of deeper traps. This 
can be understood using Fig. 6. This figure shows the 
trapped charge as a function of time for different trap den- 
sities and hence different capture rates of holes. If each of 
the trap density distributions that we have considered were 
to be represented by an equivalent trap level, curve (a) in 
Fig. 5 would correspond to a characteristic similar to the 
one shown in curve (a) in Fig. 6. Here the trap density is 
large, leading to large initial capture rate. As a result, the 
free-hole density and therefore the current decreases 
sharply. This in turn results in a sharp decrease in the 
subsequent capture rate of holes by the deeper traps at 
other points in the oxide and thereafter hardly any holes 
are lost to the traps. Therefore, the current remains more 
or less constant up to the transit time, which according to 
Pfister and Scher,j corresponds to an a of 1. As the density 
of traps reduces, the initial capture rate of holes by the 
traps reduces and the trapped charge builds up more grad- 
ually, as seen from Fig. 6. Since now holes are lost to the 
traps at a much slower rate, instead of a plateau one sees a 
continuing decrease in the current with a slope (on a log 
scale) that is around - ( 1 -a). Therefore, with a decreas- 
ing trap density, a decreases since then, the capture of 
holes is spread out over a much longer time. In all these 
cases, a significant number of carriers get captured, so that 
the post-transit decay is slow and is controlled by the emis- 
sion times of these deeper traps. 

When the trap density reduces to a point where the 
initial decay disappears completely and there is only a 
gradual decay right from the beginning with a slope of 
- ( 1 -a), then a can be interpreted slightly differently. In 
this case the trapped charge builds up as shown in Fig. 7. 
Since the capture probability is quite small, holes are lost 
to the traps at almost a constant rate right up to the transit 
time. As the trap density of the deeper traps reduces, the 
capture rate reduces further and at any time, there is a 
much smaller amount, of charge trapping resulting in a 
smaller rate of current decay and hence a larger value of a. 
In the limit when there are no traps, the current trace 
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FIG. 7. Dependence of a on the trap density distribution with energy for 
a smaller density of deeper traps. 

corresponding to drift diffusion in extended states is ob- 
tained which corresponds to an a of 1. A larger value of a 

would correspond to fewer carriers in deeper states and 
hence will have a larger post-transit time slope. Transient 
currents in silicon dioxide show this type of behavior. Mea- 
sured values of a are quite small, between 0.1 and 0.3 (Ref. 
5,14) indicating a fairly large density of deeper traps. 

Since we are interested in hole currents in SiOz which 
does not show the initial sharp decay, we have used a trap 
density which varies with the energy as eET”.lceV), which 
does not give the initial spike. All further simulations are 
done with this distribution of trap density. 

Figure 8 shows the transient current obtained for dif- 
ferent values of the applied voltage. It is seen that the 
initial slope decreases with an increasing electric field in 
the oxide. This is because as the held increases, the holes 
get swept away faster and the capture efficiency of the traps 
reduces. As a result, a smaller number of holes are cap- 
tured by the traps and the current decays at a slower rate. 
Therefore it is not possible to obtain a single value of the 
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FIG. 8. Transient hole currents for different electric fields. The intersec- 
tion of the dashed lines is taken as the transit time. 

parameter a. This is inconsistent with the CTRW theory in 
which the initial slopes are parallel irrespective of the field. 
Obtaining parallel slopes means that the number of carriers 
trapped is the same irrespective of the field. One way to get 
this is by increasing the trap density, so that the trapping 
rate is very high which will result in the trapping of carri- 
ers dominating over the action of the electric field for all 
typically used electric fields. However in our model, in- 
crease in the trap density results in the presence of an 
initial spike which is not seen in SiOz. The other way is to 
have traps of several energy levels at each grid point, so 
that the amount of trapped charge is high. But the capture 
rate of each of the trap levels can be kept small, so that 
there is only a gradual decay of current right upto the 
transit time without an initial spike. This is what is seen in 
the simulation done by Silver and Cohen.’ This is a limi- 
tation of our model, because once a trap at a particular grid 
point reaches steady state, there is no further trapping at 
that point. 

However, as seen from the figure, the final slopes are 
approximately parallel which makes sense as this slope 
should be determined by just the emission rates of the 
traps. But the slope is larger than expected from the 
CTRW theory [around -2.2 instead of - (1 +a)]. This 
indicates that not enough carriers are trapped in the deeper 
traps. One way to increase the trapped charge without 
increasing the initial trapping rates considerably, is to have 
several trap energy levels at each point so that none of the 
traps reach steady state before the transit time but a large 
amount of charge is trapped. This is an indication that for 
simulations of CTRW transport using multiple trapping in 
one dimension, multiple trap energy levels at each grid 
point are necessary. 

Although not very apparent from Fig. 8, the post- 
transit time slope keeps on increasing with increasing time. 
This also seems to be the case in some of the published 
experimental results of transient currents in a-Se and 
As2Se3,223 but not in Si02.5 This increase in slope is con- 
sistent with our model. In the initial stages, after the transit 
time, there is still both capture and emission of carriers. 
But as more and more holes are lost to the contact, the 
trapping rate reduces. As a result, the effective number of 
carriers getting emitted keeps on increasing and therefore 
carriers are lost at a faster rate to the contact. This should 
be true irrespective of the number of trap energy levels at 
each grid point, although the effect will probably be 
smaller as the number increases. 

One other effect that is noticeable in the current curves 
in Fig. 8 is the sharp decrease in the current near the 
transit time at high fields. This happens because for very 
short transit times, not enough charge is trapped and a 
considerable amount of charge is lost to the contact at a 
time corresponding to the transit time that would have 
been obtained if there was no trapping of carriers. How- 
ever, the asymptotic slope is still determined by the emis- 
sion time of the traps. 

Figure 9 shows the transit time, determined from the 
intersection of the two straight lines obtained from the 
asymptotic slopes as shown in Fig. 8, as a function of 

3228 J. Appl. Phys., Vol. 74, No. 5, I September 1993 V. Vasudevan and J. Vasi 3228 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

155.97.178.73 On: Wed, 15 Oct 2014 06:05:38



3 I t 

.O -11.8 -11.8 -11.4 -11.2 -11.0 -10.8 

Log (T,,IE,,) 

FIG. 9. The transit time as a function of T,,/J&, on a log-log plot. The 
inverse of the slope is a. 

(T&E), where T,, is the oxide thickness and E is the 
electric field in the oxide. According to the CTRW theory, 
the transit time varies superlinearly with both the electric 
field and the oxide thickness, with a variation that is ap- 
proximately given by ( T,,/E) 1’a.2 Using this relationship, 
we obtain an a of about 0.4, which is the average value of 
a determined from the pretransit time slopes. It is not 
surprising that the transit time depends superlinearly on 
the oxide thickness and the electric field. As the oxide 
thickness increases, the transit time increases due to two 
reasons. Not only do the carriers have to travel longer to 
reach the other boundary, but they also get trapped more 
often and this results in the superlinear dependence. Sim- 
ilarly, with an increase in the electric field, not only does 
the transit time decrease due to an increase in the drift 
velocity, but the capture efficiency of the traps also de- 
creases which means that on an average, the carrier spends 
a smaller amount of time in the trapped state further de- 
creasing the transit time. Also it makes sense that the ex- 
ponent depends on a, since a essentially is a measure of the 
capture efficiency of the traps. 

4 final and perhaps the most important property of 
CTRW transport is the universality of the transient cur- 
rent, which means that if the transient current scaled to its 
value at the transit time is plotted as a function of time in 
units of the transit time, it traces out the same curve irre- 
spective of the electric field and the oxide thickness. In 
order to verify this, we have plotted the normalized current 
versus time on a log-log scale in Fig. 10, for different values 
of the applied voltage. It is seen that except for very short 
times ( < 20 ns), the transient current is universal with 
respect to the applied field. In these short times, probably 
the holes have not yet started moving dispersively accord- 
ing to CTRW transport. Figure 11 shows a similar plot for 
different oxide thicknesses and once again, the currents are 
seen to be approximately universal. This result is readily 
understandable, since as we have seen earlier, the initial 
slope is determined by the trap density distribution with 
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+: 2V, tT:760ns 

x: 4V, tT =18Ons 

_ o: 6V,tT=80ns 
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FIG. 10. The normalized hole currents for different electric fields. The 
oxide thickness is 500 A. Time is scaled to the value of the transit time 
obtained from Fig. 8 and the current is normalized to its value at the 
transit time. 

energy (i.e., capture rate of the traps) and the final slope is 
controlled by the distribution of emission times of the 
traps. Therefore, as long as the effect of the electric field 
does not dominate over the effect of the traps, the currents 
must be universal since it is a property of the structure of 
the material rather than externally applied conditions. 

One of the major effects of radiation incident on an 
MOS device is the long-term flatband voltage shifts occur- 
ring due to the trapping of radiation-generated holes in 

lo30 1 

lo3 
la3 10-l 1 10 102 

(t It,) 

FIG. Il. The normalized hole currents for two different oxide thicknesses 
and different values of the applied electric fields. Time is scaled to 
the value of the transit time and the current is scaled to its value at the 
transit time. 
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FIG. 12. The flatband voltage shifts due to trapping of holes in deep traps 
near the interface for a total dose of 1 Mrad(Si). The solid line is obtained 
using the multiple trapping model for hole transport and the points are 
obtained using drift diffusion in the valence band. 

deep traps near the interface. (The emission times of these 
traps is 104-lo6 s.) Simulations of this process done so far 
have used the drift-diffusion model for hole 
transport.‘3’15’16 We have added the multiple trapping 
model to the equations described previously13 and obtained 
the flatband voltage shifts as a function of the applied gate 
bias for a total incident dose of 1 Mrad( Si). A comparison 
was made with the flatband voltage shifts obtained using 
the drift-diffusion model. Figure 12 shows the results of 
this comparison. It can be seen that there is no difference in 
the two results. This is understandable because under uni- 
form generation of electron-hole pairs, very few holes are 
trapped in the shallow traps involved in hole transport, 
since the emission times of these traps are very low (ns to 
a few seconds). As a result, there is not much difference in 

the number of holes available for trapping into the deep 
traps and the trapped charge density in these traps remains 
almost the same. Therefore at room temperature, the fact 
that holes move dispersively according to the CTRW 
model, makes very little difference to the flatband voltage 
shifts due to the deep traps near the interface and it is 
possible to use the drift-diffusion model to obtain A V, . 
However, any sort of transient simulation as well as sim- 
ulations at low temperatures or very high dose rates will 
need an accurate model for hole transport. 

IV. CONCLUSIONS 

In this paper we have studied the CTRW transport of 
holes in silicon dioxide using a multiple trapping model. 
The model is able to simulate some of the main features of 
CTRW transport. The transient currents show approxi- 
mate universality and the transit time is seen to depend 
superlinearly on the electric field and oxide thickness as 
expected from the CTRW theory. Moreover, this simula- 
tion gives a fairly clear physical picture of dispersive trans- 
port that is not very apparent from the complex mathe- 
matical formalism of CTRW. 
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