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1 Introduction

The fundamental Shannon’s sampling theorem states that any function f belonging to the Paley—Wiener
space
By ={f € L*(R) : suppf ¢ [-7, 1]}

can be reconstructed from its samples {f(k) : k € Z} by the formula

f) =Y flk) sinc(x - k),

kez

where sincy = % and f denotes the Fourier transform of f, given by

F(o) = jf(X)e‘z”“"’f) dx, &eR.

R

Paley and Wiener extended Shannon’s sampling theorem to a non-uniform sampling set in [15]. They
showed that if X = {x; € R : k € Z} is such that |xy — k| < 1/72, then any function f belonging to the class
{f e L2(R) : suppf C [-m, ]} can be recovered from its samples {f(xx) : k € Z}. Duffin and Eachus [7] showed
that the result is true if |xy — k| < 0.22. Later, Kadee [13] showed that the maximum bound for |xj — k| has
to be less than 0.25. For a more general sampling set, the sampling condition is stated in terms of Beurling
density.

Sampling theorems have been studied on wavelet subspaces in [22, 23]. In particular, in [23] for any
closed shift-invariant subspace Vj of L?(RR), a necessary and sufficient condition under which there is a sam-
pling expansion for every f € Vy was shown. In sampling theory, non-uniform sampling in shift-invariant
spaces is given importance to for the past fifteen years. We refer to a few papers [1-3, 8-11, 18-20] in this
connection.

Characterizations of shift-invariant spaces in L?(R") in terms of range functions were studied by Bownik
in [4]. The study of shift-invariant spaces and frames has been extended to locally compact abelian groups
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in[5, 14] and non-abelian compact groups in [17]. Radha and Adhikari [16] introduced twisted shift-invariant
spaces in L2(IR?") and studied characterizations of orthonormal systems, Bessel sequences, frames and Riesz
bases of twisted translates in terms of the kernel of the Weyl transform. The twisted translation and twisted
shift-invariant space are defined as follows.

Definition 1.1. Let ¢ € L?>(R?"). For (k, I) € Z?", we define the twisted translation of ¢, denoted by T(tk P>
as
T(tk,l)‘P(X’ y) = e -0 —k,y -1, (x,y) e R?".

Definition 1.2. For ¢ € L2(R?"), we define the twisted shift-invariant space of ¢, denoted by V{(¢), as
span{T(tk,l)(p : (k, 1) € 2"} in L2(R?").

The aim of our paper is to obtain a sampling theorem in a twisted shift-invariant space V!(¢) on L?(R>").
However, we are able to get a reconstruction formula for a function f belonging to a subspace of V{(¢). We
organize the paper as follows: In Section 2, we provide basic definitions and state some results which are
available in the literature. In Section 3, we study canonical dual frames in a twisted shift-invariant space.
In fact, for a certain function ¢ € L?(IR?"), we explicitly show the existence of ¢ € L?(IR") such that twisted
translates of @ is the canonical dual of twisted translates of ¢. In Section 4, we prove our main result, namely
a sampling theorem on a subspace of a twisted shift-invariant space. In fact, we give a necessary and suffi-
cient condition for obtaining a reconstruction formula for functions belonging to a subspace of V{(¢) from
their samples {f(k, j) : k € Z™} for each fixed j € Z"™. We also provide a necessary condition for obtaining
areconstruction formula for functions belonging to a subspace of Vi(¢) from their samples {f(k, j) : k,j € Z"}.
However, we are not able to get the sufficient condition of this theorem.

2 Preliminaries

Let H be a separable Hilbert space.

Definition 2.1. A sequence {fy : k € Z}in H is called a frame for  if there exist two constants A, B > 0 such
that
AlfI> < Y I fid* < BIAI® forall f e 3. (2.1)

kez
If only the inequality on the right-hand side holds in (2.1), then {fy : k € Z} is called a Bessel sequence for J.

The operator S : H — H defined by Sf := Y, {f, fi)fr is called the frame operator associated with the
frame {fi}. Then S is bounded, invertible, self-adjoint, and positive. Further, {S1f} : k € Z} is also a frame
for H and is called the canonical dual frame of {fy : k € Z}. Using {S~fi}, one can write

f=Y S fidfi forallf e 3. (2.2)
kez

For further details on frames we refer to [6, 12].

Definition 2.2. For f € L1(C"), the Weyl transform of f is defined as

Wi = [ fom(z 0 dz,
C)’l
where 1, (z, t), for A # 0, denotes the Schrodinger representation on the Heisenberg group H" := C" x R given
by

2miAt 2miA(X,§) +3 (X.y))

m(z, (&) = e & +y), z=x+iy, ¢ € L>(R").

The Weyl transform W(f) is an integral operator with kernel K¢ (¢, ) given by

Jﬂ&q—awmﬁmdx

R"
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This map W can be uniquely extended to a bijection from the class of tempered distributions S'(C") onto the
space of continuous linear maps from S(IR") into S’ (R"). For a further study of the Weyl transform, we refer
to [21].

We shall now state some definitions and results which were given in [16].

Lemma 2.3. Let ¢ € L?(R*"). Then the kernel of the Weyl transform of T(fk, )@ satisfies the relation
Kyt (&) = e HRK (& + 1, m). (2.3)

Definition 2.4. For ¢ € L?(R*"), the function w,, is defined as

we(é) =) j|K¢(§+ m,n)*dn, &eR".

mezZn Rn
Definition 2.5. A function ¢ € L?(IR?") is said to satisfy “condition C” if

Z J’K<p(.§'+m,r1)K(p(§'+m+l,n)dn=0 ae . &eT", foralll e Z" \ {0}.

mezn Rn

Theorem 2.6 ([16]). If {T(tk’l)<p : (k, 1) € Z*"} is a Bessel sequence in L>(R*") with bound B, then w,(¢) < B
ae &eTn.

Theorem 2.7 ([16]). Let ¢ € L?>(R?") and satisfying condition C. Then {T(tk’l)fp : (k, 1) € 2?2} is a frame for

V(@) with frame bounds A, B if and only if A < wy(é) <Bae. & €Oy, where Qp = {& € T" : wy(8) # 0}
Theorem 2.8 ([16]). Let ¢ € L?(IR*"). Suppose {Tfk’l)<p : (k, 1) € Z*"} is a frame for L% (R?") with frame opera-
tor S. Then

S‘lT(tk’l)<p = T(tk’l)S‘l(p.
Let ¢ € L?(R?") and satisfying condition C. Suppose A!(¢p) = span{T(tk,l)(p : (k, 1) € Z*"} and Vi(p) = Al(p).
Consider f € Al(p), i.e.,

f = Z Ci!,1 T(tkl,l:)(Pa
(k' 1"eTF

where ¥ is a finite set. Define p(&) = {py (é)}rezn for & € T", where

pr(©) - ¥, oS A)
kl

Define J,(f) = p. The map J, initially defined on A!(g) can be extended to an isometric isomorphism between
Vi(p) and L*(T™, £2(Z"), wy). Moreover, it was proved that f € V(¢) if and only if
Ke(&m) = Y pr&Kp(&+1, 1), (2.4)
l'ezn
where p(&) = {py (O}rezs and p € L2(T", £2(Z"), wy).
We shall make use of the following lemma in [23], which is a simple application of Parseval’s identity.
Lemma 2.9. Let {xi}, {yx} be the Fourier coefficients of f, g € L*>(T™), respectively. Then
2
[ros@ras= ¥ |3 x|

Tn nez" kezn

3 Canonical dual frames in twisted shift-invariant space

Lemma 3.1. Let ¢ € L?>(R*"). For {c} € £*(Z"), define a function L, on R*" by

Lo&m=( Y cxe?™® 9Ky m).

kezn
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Assume that {Ték,l)go : (k, 1) € Z?"} is a Bessel sequence with bound B. Then L, € L*(R*") and
y ke o
kezn
converges to L, in L>(R*").

Proof. Since {T(k n®: (k, 1) € Zz?"}is a Bessel sequence with bound B, by Theorem 2.6, wy(é) <Bae.& e T
Then we have

| [iLonrasan=| [| ¥ cer®or,&n| dgdn

R" R Rr Rn keZ"

5 [l aemenicomaf s

T mezn Rr kezn

[ aemof 3

j|1<¢<f+m,n)|2 dn d&

Tn kezn meZ"]R,,
. 2
2mi(k,
= [13 cxe™ 9wy dg
Tn kezn
. 2
B J| Z Cke2ﬂl(k,<f)| dé‘
Tn kezn
=B Z lckl? < oo.
kezn

Thus L, € L2(R?"). Now

" Z CkKTtk b~ (p";(]RZn) = J J| Z CkKTfk’O)go(‘s’ n - (kezzn Ckezni(k,f))K(p(%" ’1)|2 dé¢dn

|kl<n R R" [kl<n
. . 2
[ [IT cweroxycm-( Y cxet®0)kym| dé dn,
R" R? |k|<n kezn

using (2.3). Then
|| Z CkKTfk,O)(p —L(p"Z J J| Z Ckeznz(k.{) Z Cr e2mitk, .{)| Ky (£, ’1)|2 dé dn
<n

kI R gan 1K=
“ Z cre?mks) _ Z ciemid 9' JIK¢(-{ +m,n)|? dn dé
I |kl<n mEZ”
H z e _ Z c eZm(k{)' Wo(8) dE
o IkI<n
2
< B" z Ckek — Z Ckek L2(Tm)
|k|<n keZ
=B Z lckl?
|k|>n
— 0 asn— oo,
where ey (&) = e27ik:9), O

Lemma 3.2. Suppose ¢ € L>(IR*"). Then the following are equivalent:
(i) Forany {ck} € £2(z*"),
Z Ck,lT(tk,l)(P
k,lezn
converges to a continuous function.
(i) @ € C(R*") and

sup Z lp(x -k, y —D|? < 0.
XYER" i legn
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Proof. We first prove that (i) implies (ii).
Taking co,0 = 1 and ¢k, = 0 for all (k, I) # (0, 0), we see that ¢ € C(R?>"). Now

H Y. loGx—k,y - dxdy = J j|<p(x,y)|2dxdy<oo,

Tn Tn k,lezn Rn Rn

Hence Y ez l@(x - k,y = D)|* < coa.e.x,y € R". Since ¢ € C(R*"), wehave ¥ ;.7:1¢(x -k, y — D|* < oo for
all x, y € R™. For x, y € T™, we define an operator A,y on £2(Z*") as

Apyck) = Y cxiTh @, y).

k,lezn
Then
Iy UerDl < Y lexllTh o, y)l
k,lezn
= ) lexlle™ 00—k, y -]
k,lezn
1 1
<( X lew?)’( Y lox-ky-DP)" <co.
k,lezn k,lezn
Hence

el < (Y lotx -k y-DI?)".

k,lezn
In particular, taking

Ci.l = (p(x — k’ y - l)e_”i«’(,l)_()/sk))

forall k,l € Z", we observe that

Axyler) = Y lox—k,y - DI
k,lezn

Thus

1
el =( Y lox-ky-DI?)* forallx,y e T".
k,lezn

Define

foy) =Y craTh e y),
k,lezn

where {cy 1} € €2(Z?"), x,y € R™. By our assumption, f is continuous on R?", hence also when restricted
to T2". Thus it follows that

sup Ay ekl = sup | Y Tl (6 y)| = sup If(x, y)| < co.
x,yern x,yern k,lezn x,yern

Now, applying the uniform boundedness principle, we have sup, e llAx,y)ll < M for some M > 0. In other
words,

1
~ky-DP?) <M.
X,Sylé']pr"(k’gzn'go(x y )| )

Since the function (x, y) = Y jez:[@(x — k, ¥ — )|* is 1 x 1 periodic on R*", we get

sup Y lp(x—k,y-DI* < M?,

XYeR" ) lezn
from which (ii) follows.
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Now we prove that (ii) implies (i). For all x, y € R", we have

Y e Th p@Oa Wl = Y leiie™ D=0 gk, y - D)

k,lezn k,lezn
1 1
<( Y lel?) (Y lok-ky-DI?)’
k,lezn k,lezn
1 1
<( Y lewal?)” sup (Y lox-ky-DI?)" < oo.
k,lezn XYER™ * p Gezn
Hence the convergence is uniform on R2". Since ¢ € C(R*"), the limit function must be continuous. O

Lemma 3.3. Let @, € L2(R?") and satisfying condition C. Assume that the collections {T(tk’l)(p 1 (k, 1) € 2™}
and {T(tk,l)l/) : (k, 1) € 2"} are frames for V!(¢). Suppose ¢ € C(R®"), € V(@) and ¥ yezml@(x + k, Y)I* < M

forall x,y € R", where V(t)((p) = span{T([k 0®: k € Z"}. Then there exists a constant M' > 0 such that

Z [Y(x+k,y)> <M forallx,y e R".
keznr

Proof. Let f € V{(¢p). Since {T(tk’l)<p : (k, ) € Z*"} is a frame for V{(¢), there exists {cx,0} € £2(Z") such that
f=) ckoTho®-
kezn
Taking ! = 0 in Lemma 3.2, we get f € C(R?"). Thus V{(¢) ¢ C(R?"). Let
YY) = Y dioT( 0 P06 Y)
keznr

for some {dy o} € €2(Z"). It can be easily shown that the above series converges uniformly to the function i
on IR?". Moreover, using (2.3), we have

Ky(&m =Y dioKr  ,(&n)
keznr

= Y droe™0VK, (& 1)
kezn

= C('{)K(p('{’ rl)’
where C(&) = Yz di 0e?™ %9 and

wp®= Y 1Ky +m it dn

mezZn Rn

Y [1c@P K&+ m. P dn

mezZn Rn

IC(O)1PWy(d).

Since ¢, ¥ satisfy condition C and {T(tk’l)(p : (k, 1) € 7227}, {T(tk,z)l/) : (k, 1) € Zz*"} are frames for Vi(¢), using

Theorem 2.7, we obtain that C(¢) is bounded on Q,, where
Qp ={& T : wy(&) #0}.
Let C(§) = C(é)xq, (é). Then C(¢) is bounded on T". Let

() = z ek
kezn

for some {¢}} € £2(Z"). Since C(OKy(&m) = C(é’)K¢,(€, n) a.e. &, n € R", we have

YOGy = Y T oP6y), (y) e R
kezn

The above series converges both in L?(R*") and pointwise on R?". Let 7, denote the translation operator
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T,f(x) = f(x - y), x,y € R". Then for all x, y € R", using Lemma 2.9, we have

Y eyl = Y| Y Gt gotcny)|

nezn nez" kezn

¥ |3 de gt k|

nez" kezn

J|(T§C)(~9|2| Y go(x+n,y)ezm("”5>|2 a

Tn nezn

<y 0, | ¥ pocs nysetmiond|” ag

Tn nezn

=1ICI%, Y lpGx+n, y)I?

nezn

< |ClI%.M

thus proving the lemma. O

Theorem 3.4. Let ¢ € L?>(R?") and let it satisfy condition C. Assume that {T(fk’l)q) : (k, 1) € Z*"} is a frame
for V(). Define ¢ € L?>(R?") such that

1
WKM& n, §€Qy,

Kp(&,m) = (3.1
o, otherwise.
Then {T(kl @ : (k, 1) € Z?"} is the canonical dual frame of{T(tk,l)(p s (k, 1) € Z*"}.
Proof. Since {T(k n® (k, 1) € Z*"} is a frame for Vi(¢p), we have
Sf = Z Ty Th e forallf e Vip). (3.2)
k,lezn
Now, (3.1) can be written as K3 (&, 1) = Y jczn P1(&)Kp(& + 1, 17), where
1
A 6 € Q ’
po(§) =  We® ’
o, otherwise,

and p;(é) = 0a.e. & e T" for [ # 0. Let p(¢é) = {p1(&)}1ezn for & € T™. Then

1
"p"LZ(Tn 2(zn) W(p) J("p(g)"ﬁ(zn W(p 6) d€ J

1
——dé <= < oo,
th(g) { OO
" Qy

A

using Theorem 2.7. From equation (2.4), it follows that ¢ € V!(p). By Theorem 2.8, the canonical dual
of {T(k p® (kD) e 72"} is given by {S7! T‘k p® (k) e 72"} = {T(k S~ Yo : (k,1) € z?"}. Thus, in order to
prove the theorem, we need to show that S¢ = ¢. Now, we have

<(i)’ Ték’l)q)) = <I(¢’I(T(tk,l)(p>
- [ [ ®ot.Er, @ g dn

R™ R"

— —-mi(k,l) ,-2mi(k,&)
J J ” (aKso(é’ ne Ve Ky(§+1,m)dé dn,

RYI

using (3.1) and (2.3). Then

(¢, T(tk’l)(/» — e—ﬂi(k,l) J JXQ¢({)

R™ R"

" f)qu(f MKy (& +1,me 2% a& dn

_ gtk JXQ ©—— ¥ I Ko(& +m, )K€ + m+ 1, 1) dne 2™k gz,

W(p(‘f) mezn Rn
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Hence

(@, Tfk 0P = J‘XQw(a wy(&)e 200 ag = xo-(k),

0(8)

and for [ # 0, we have (@, T(tk l)(p) = 0, as ¢ satisfies condition C. Now, using Lemma 3.1, we get

Y (@ Ték,l)q’)KTfmp(& =) (& Ték,O)‘P>KT(‘k0)<p('f’ )
k,lezn ’ kezr '

= Y Xo,(0Kgp, (& m)
kezn '

=( Y xa, (e %D )k, (&, m)

kezn
=Xa, Ky, n).
It can be easily shown that o, (§)K,(§, n) = Ky (&, n). This implies that

Z (P, Ték,l)(P>T(tk,1)‘p = Q.
k,lezn

Then it follows from (3.2) that S¢ = ¢, thus proving the theorem. O

4 A sampling theorem on a subspace of V(¢p)

The following theorem gives a necessary and sufficient condition for obtaining a reconstruction formula for
functions belonging to a subspace of V!(¢) from their samples {f(k, j) : k € Z"} for each fixed j € Z".

Theorem 4.1. Let ¢ € L2(R*") and satisfying condition C. Assume that {T(kl @ : (k,1) € Z’"} is a frame for
V(). Then the following two statements are equivalent:
(1) @ € C(R™), ¥ ezl (x -k, y)|? is bounded on R*" and there exist constants A;, Bj > 0 such that

Ajxa, () < |9j(®| < Bjxq, (&) ae.&eT", foralljez", (4.1)
where
Qi) = Y ok, jemkh g2mithd, (4.2)
kezn

(i) Yyezn Ck0 Tfk )P converges to a continuous function for any {cy o} € €>(Z"), and there exists a count-
able collection of functions {j € V() : j € Z"} such that for all j € Z", ; satisfies condition C and
{T(tk l)lpj : (k, 1) € Z*"} is a frame for V(). Further, for all j € Z",

fooy) =Y MR fl, TG o Wi(x,y)  forallf € Vi(p), (4.3)
keznr

where the convergence is both in L?(R?") and uniform on R>".

Proof. First, we shall prove that (i) implies (ii). Taking [ = 0 in Lemma 3.2, we see that Y ;. Cx,0T (tk’o)(p
converges to a continuous function for any {cx o} € £2(Z"). Forj € Z", define Y e LZ(R?") such that

1
——=K ( ’ )7 Q )
Ky &) =1 D" R (4.4)
0, otherwise.
Then
wy@= Y JlKl/,,.({ em, ) dn
meZ"]R,,
= 2 “q)(aKq, &+m,n) dn

Brought to you by | New York University
Authenticated
Download Date | 6/26/17 8:11 PM



DE GRUYTER R. Ramakrishnan and S. Adhikari, Sampling theorem = 9

For § € Qg,, we have wy, (§) = 0. Thus we observe that Q, = Qy, for all j € Z". Since ¢ satisfies condition C
and {T(tk’l)(p : (k, 1) € Z*"}is a frame for V!(¢), using Theorem 2.7 and (4.1), we get constants Aj, Bj > 0 such
that Aj < wy,(§) < Bja.e.§ € Qp forallj e 7. Now, for [ # O,

z J I(¢j(f+ m, MKy, (§+m+1,n)dn = W z J Ko +m,mKy(&+m+1,n)dn =0,
MeZ" pn ] MeZ" pn

as ¢ satisfies condition C. Thus 1; satisfies condition C for all j € Z". Hence {T(tk,l)l/)]' : (k, 1) € Z*"} is a frame
for Vt(l/),-) forallj € Z™ by Theorem 2.7. Now, using an argument similar to the one in Theorem 3.4, it follows
from (4.4) that y; € Vi(¢). In fact, ¥; € V{(p). Again, since (4.4) can be written as

D;(§Ky, (&, 1), §eQyp,
o, otherwise,

I<(p(£: TI) = {
it follows that ¢ € V!(1);). Hence V!(p) = Vi(;) for all j € Z". For j € Z", define 1); € L?(R?") such that

(& 1), € Qy,
Ky &m) =1 wu® R (4.6)

o, otherwise.

By Theorem 3.4, {T(kl l/), (k, 1) € Z*"} is the canonical dual of{T(kl Yj : (k, 1) € Z*"}. Using (4.4) and (4.5),
equation (4.6) can be rewritten as

Dj(9)
Qp,
Ky (&m={we®"" £e e 4.7)
o, otherwise.

Let f € V(¢). Then
(i Tfk,l)lpj) = <Kf’KTfk,z>ll3i>

- | [k @ dsan
R" R"

Y Pr®OKp@ + 1, m)e ™SR (£ + 1, m) dE dn,

R Re '€2"
using (2.4) and (2.3). Now substituting for Kl/;j(f +1,n) from (4.7), we get

i @0
il k) , ) j
e [ [ Y pr@Ky+ g

Ky (& +1,me?m®8 ¢ dn
R Q(p I'ezn [ {)

-
T(k,z)‘l’j)

w5 -
= e 70 J _w](?) Y @ ) J Kp(& +m+1, DKy(& +m+1,n)dne %5 q&
Tn @ l'ezn mMEZM g

. D; .
= e~ (LR) J ﬁpl(a Y Juq,,(.f +m+1,n)|? dne 24 g,

T W(p('f) mezn R

as ¢ satisfies condition C. Thus

(0 —L2pi(&) Y J Ky (& +m, n)|? dne 28 gg
(P({) YTIGZ"R

;(é)
W (4)

]
—m(l k) J D; (g)pl(‘,;:)e—Zm(k ,&) d‘,;:
™

. T(k 1)¢1> = ek j

- o TilLk pl(éf)w(p({)e—bﬂ(k ,8) d¢
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10 —— R.Ramakrishnan and S. Adhikari, Sampling theorem DE GRUYTER

where @;(¢) is given by (4.2) and p;(&) = ¥ ,pezn Cm 1€ ™ e27M8) Hence

<f, Ték,l)’ﬁﬁ — e—m’(l,k} Z cm,le”i(l’m>fp(k _ m’]-)eni(k—m.j)

mezZn

:e—ﬂi(l,k)eﬂi(j,k) Z Cm,lenia’m)T(tm,o)(P(k,]')- (4.8)

mezn

Since {T(tk’l)l/;j : (k, 1) € Z*"} is the canonical dual frame of{T(tk’I)L/),' : (k, 1) € Z*"}, using (2.2), we get

f= Z (f, T(tk’l)',[;ﬁT(tk’l)ll)j forall f € V(). (4.9)
k,lezr
Let f € V{(@), i.e., f =Y nezn cm,onm’O)(p for some {cm,o} € £2(Z™). Then ¢y, = 0 for all m € Z" and all
1 € "\ {0}. It follows from (4.8) that {f, T(tk’l)l/],-) =O0foralll +#+ 0and
£, T(tk,O)l/Ji) = emh Z m,0 T (0 (ks J) = e" R f(k, j).

mezn

Hence from (4.9), we get

t p o\t ij,k o ot ,
f= Z {f, T(k,())lp]')T(k,O)l/}}' = Z e )f(ka])T(k,o)l/)]'
kezn kezn
Since ; € V{(¢), by Lemma 3.3 and the Cauchy-Schwarz inequality, the above series converges uniformly
on R?", and hence we obtain the reconstruction formula

fooy) =y emORfUG T o i(x, y)
kezn

in the sense of uniform convergence.
Now, we prove that (ii) implies (i). Taking ! = 0 in Lemma 3.2, we get ¢ € C(R?"), and ¥ ;.9 (x - k, y)|?
is bounded on R?". Now, fix j € Z". Then from (4.3) we have

o06y) = Y 0Nk, )T o0, y).
kezn

Using (2.3) and (4.2), we get

— mi(j, k) ;
Kp(§,m) = kén e R gk, Ky, (6 1)

_ Z eﬂi(j’k)(p(k, j)e2ﬂi<k,f)l<lpi(§" n)
kezn

= ©j(§Ky, (8, n)

and

W@ = Y [IKg(¢ +m P dn

mezZn Rn

= Y [10/@K,, @+ moni dn

mezZn Rn
= DO wy, (§). (4.10)

Then Q, < Qy,. Since ¢ and ; satisfy condition C and {T(tk’l)fp : (k, 1) € Z2"} and {T(tk’l)z,bj : (k, 1) € Z*"} are
frames for V(¢p), using Theorem 2.7, we obtain from (4.10) that there exist constants Aj, B; > 0 such that
A]‘ < |CD](rf)| < B)' a.e. f € Q(p.

Now we shall show that @;() is equal to O a.e. § € Q¢ forall j € Z". For fixed j € Z", we have

_— . )
J |(Dj(‘f)|2 d¢ = J ' z (p(k,j)em(k,])eZm(k,{) dé,

kezn
Q Q
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using (4.2). Then using Lemma 2.9, we get

|10/ dg = [xas @ ¥ e pemheio|"ag

Q% Tn kez
_ i(j k-r) NG
=y | Y croe go(k—r,J)| ,
kezn rez

where XQ;({) =Y.z cr,oezm'(”‘f) with {cy,0} € £2(Z™"). In order to prove that ®;(§)isequaltoOa.e.{ € Q@ for
allj € Z", it is enough to prove that

Jl‘?Dj({)I2 dé =0 foralljeZ",
Q;

which is equivalent to show that

Y e Nk -1,j)=0 forallk,jez".

rezn
In other words, we need to show that ¥, cr.0e ™" @(k - 1,j) = 0 for all k, j € Z". In fact, we will show
that
Y croe ™ o(x-r,y)=0 forallx,y e R"

rezn

i.e., toshow that ), cr0 T(tr’o)(p(x, y) = 0forallx, y € R". Since xo (§)Ky(§, ) = 0 a.e. §, n € R", we have

( z Cr,Oezni(r’a)Kw(‘f’ n)=0

rezn

in L2(R?"). Using Lemma 3.1, we see that the series

Y. croKr (& m)

rezn

converges to 0 in L*(R*"), which implies that ',z ¢1,0T(,. o, @ (x, ) converges to 0 in L*(R*"). But, by assump-

tion, Y ,czn Cro T(tr’o)<p(x, y) converges pointwise and hence it converges pointwise to O for all x, y € R", thus
proving our claim. O

In the following theorem, we provide a necessary condition for obtaining a reconstruction formula for func-
tions belonging to a subspace of V!(¢) from their samples {f(k, j) : k, j € Z"}. However, we are not able to get
the sufficient condition of this theorem. We leave this as an open problem to the interested reader.

Theorem 4.2. Let ¢ € L?>(R*") and satisfying condition C. Assume that {T(tk’l)fp 2 (k, 1) € 2"} is a frame
for Vi(¢p). Suppose ¥ czn CkoT fk’0)<p converges to a continuous function for any {cyo} € €(Z"), and there

exists a function € V'(¢p) which satisfies condition C and {T(thﬂ/) : (k, 1) € Z*™} is a frame for V(@) such that

fooy)y =) fl DTG, p(x.y) forallf € Vi(g), (4.11)

k,lezn

where the convergence is both in L?(R?™) and uniform on R?".
Then ¢ € C(R?"), ¥ cm|@(x — k, y)|? is bounded on R*" and there exist constants A, B such that

Axa, () < 1@()le2(zny < Bxa,(§) ae.&eT",
where ®(&) = {D;(&)}jezn and ®j(&) is given by (4.2).

Proof. Taking ! =0 in Lemma 3.2, we get @ € C(R*") and Yz |9(x - k,y)|? is bounded on R?". Now,
from (4.11), we have @(x, y) = 2rtezn Pk, D) T(tk I)l,b(x, y). Then proceeding as in Theorem 4.1, we get

Kp(&,m) = ) ®i(OKy(E +1,1)

lezr
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and

we(®) =) I|I(¢({+m,q)|2 dn

mezZn Rn

= Z Dy, ()Dy, () Z JK¢(£+m+ll,n)K¢,(¢’+m+lz,n)d)1

11,1262" meZ"]Rn
- Y10 Y (1K +m L,
lezn meZ"Tn

as 1 satisfies condition C. Hence
W(p(a = "q)(g)nngn)wlll('{)

Using arguments as in Theorem 4.1, we can find constants A, B > Osuch that A < [|[®(8)lle2¢z < Ba.e.& € Q.
Now

[ 1001 @y ds = [ ¥ 1056007 a

jeznr
Qp Q5

=Y Y| Y e gk -n [,

JEZM kez" reZ

where {c, o} € £2(Z"). In order to prove that [®(&)]|,2(zn is equal to O a.e. & € Q;, it is enough to prove that

G

Q
which is equivalent to show that

Y croe™ P Nk -1,j)=0 forallk,jez".

rezn

This can be shown in lines similar to the ones in the proof of Theorem 4.1, from which the theorem will
follow. o
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able comments and suggestions.
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