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Abstract

A new n− noded polygonal plate element is proposed for the analysis of plate structures comprising
of thin and thick members. The formulation is based on the discrete Kirchhoff Mindlin theory. On
each side of the polygonal element, discrete shear constraints are considered to relate the kinematical
and the independent shear strains. The proposed element: (a) has proper rank; (b) passes patch test
for both thin and thick plates; (c) is free from shear locking and (d) yields optimal convergence rates
in L2−norm and H1−semi-norm. The accuracy and the convergence properties are demonstrated
with a few benchmark examples.

Keywords: Discrete Kirchhoff Mindlin theory, Numerical integration, Polygonal element,
Reissner-Mindlin plate theory, Serendipity shape functions, Shear locking, Wachspress interpolants

1. Introduction

Partition of unity methods based on Reissner-Mindlin plate theory, also referred to as the ‘First
order shear deformation plate theory (FSDT)’ to analyze plate structures is a popular and widely
used approach. It has also been implemented in commercial finite element packages, viz., Abaqus,
Ansys to name few and is industry accepted standard to analyze plate structures. This can be
attributed to the fact the FSDT requires only Co functions to represent the unknown fields. Until,
recently, the shape of the elements were restricted to triangles or quadrilaterals. Such Co plate
elements based on the FSDT suffers from shear locking syndrome as the plate thickness approaches
zero. In other words, as the plate becomes thinner, the plate elements based on the FSDT fails to
satisfy the Kirchhoff constraint, i.e., ∇w−β = 0 (where w is the transverse displacement and β is the
rotation). This has led researchers to develop techniques to suppress the shear locking phenomenon.
Some of the popular and widely used approaches are: reduced integration [1, 2], selective integration
technique [3], stabilization approach with one point integration technique [4], mixed interpolation
technique [5], discrete shear gap technique [6], hybrid stress approach [7], discrete Kirchhoff Mindlin
Quadrilateral (DKMQ) [8], to name a few. Interested readers are referred to a recent exhaustive
review on Reissner-Mindlin plates by Cen and Shang [9].
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1Faculté des Sciences, de la Technologie et de la Communication, University of Luxembourg, Luxembourg. E-mail:

stephane.bordas@alum.northwestern.edu; stephane.bordas@uni.lu

Preprint submitted to Journal Name

http://arxiv.org/abs/1810.08900v1


Recently, elements with arbitrary number of sides and shapes have relaxed the topology con-
straint imposed by the conventional finite element method. This has led researchers to develop
methods with polygonal discretizations, for example, mimetic finite differences [10], virtual el-
ement method [11–13], finite volume method [14], discontinuous Galerkin method [15], virtual
node method [16] and the scaled boundary finite element method [17–19]. Furthermore, polyg-
onal/polyhedral elements have also been used to solve problems involving large deformations [20],
incompressibility [21], contact problems [22] and fracture mechanics [23]. To the best of authors’
knowledge, the application of polygonal elements to analyze plate structure is scarce in the litera-
ture. This can be attributed to the fact that the lower order polygonal elements suffer from locking.
Hung [24] developed a PFEM for thin/thick plates based on FSDT. The shear locking phenomenon
was suppressed by enforcing the Timoshenko’s beam assumption on the sides of the polygon.

In this paper, we extend the DKMQ [8] to arbitrary polygons and propose DKM-ngon. The
proposed element has n vertices with three degrees of freedom (dofs) per node, viz., one transverse
displacement and two rotations. Introduced by Katili [8], the DKMQ combines the idea of discrete
Kirchhoff quadrilateral [25], MITC4 [5] and discrete shear quadrilateral [25] to alleviate the shear
locking problem when the Reissner-Mindlin plate theory is applied to thin plates. The success of the
DKMQ lies in its simple and the efficient formulation valid equally for both thin and thick plates.

The paper is organized as follows. Section 2 presents the governing equations and the variational
principle for the Reissner-Mindlin plate theory. The discrete Kirchhoff-Mindlin theory is extended to
arbitrary polygons in Section 3. The accuracy and the robustness of the DKM-ngon is demonstrated
with a few benchmark problems in Section 4, followed by concluding remarks.

2. Theoretical formulation

Consider a rectangular plate with length a, width b and height h with the origin of the global
Cartesian coordinate system at the mid-plane of the plate (see Fig. 1). The displacements (u, v, w)
in the Cartesian coordinate system from the middle surface of the plate are expressed as functions
of independent rotations βx, βy of the normal in yz and xz planes, respectively, as

u(x, y, z) = zβx(x, y)

v(x, y, z) = zβy(x, y)

w(x, y, z) = w(x, y) (1)

The strains in terms of mid-plane deformation is given by:

ε =

{

zεb
εs

}

(2)

where, εb is the bending strain given by:

εb =







βx,x
βy,y

βx,y + βy,x







(3)

and the transverse shear strains εs are given by:

εs =

{

γxz
γyz

}

=

{

βx + w,x

βy + w,y

}

(4)
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Figure 1: Global coordinate system for a rectangular plate with x, y as in-plane directions and z through the thickness
of the plate. The origin is taken at the mid-plane of the plate.

where the subscript ‘comma’ represents the partial derivative with respect to the spatial coordinate
succeeding it. The moment resultants, {MxMyMxy} and the shear forces are related to the bending
strains and shear strains, respectively, by the following constitutive equations:







Mx

My

Mxy







= Dbεb

{

Qx

Qy

}

= Dsεs

where Db and Ds are the constitutive matrix:

Db =
Eh3

12(1 − ν2)





1 ν 0
ν 1 0
0 0 (1− ν)/2



 ; Ds = κGh

[

1 0
0 1

]

, (5)

where E is the Young’s modulus, ν is the Poisson’s ratio, κ is the shear correction factor and G is
the bulk modulus.

3. Formulation of discrete Kirchhoff Mindlin ngon

In this section, the DKMT [8] is extended to arbitrary polygons with three dofs per node, viz.,
w (transverse displacement in the z− direction) and two rotations, βxz (rotation in the xz−plane)
and βyz (rotation in the yz−plane). Fig. 2 shows a representative polygonal element and the
corresponding dofs. For the rotations, an incomplete quadratic field is considered in terms of the
rotations at the four corners and temporary variable ∆βsk at the mid-side between two adjacent
nodes (see Fig. 2). On each side i − j, a local coordinate system is created with s along the edge
of the element and n perpendicular to the edge of the element. A linear variation is considered for
the normal rotation βn whilst a quadratic variation is considered for the tangential component, βs,
given by:

βn =

(

1−
s

ℓk

)

βni
+

s

ℓk
βnj

βs =

(

1−
s

ℓk

)

βsi +
s

ℓk
βsj + 4∆βsk (6)
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Figure 2: A schematic representation of dofs of a generic polygonal element: kinematic variables at the corner nodes
(‘filled circles’) (wi, βxi

, βyi) and temporary variable at the mid-side node (‘open circles’) ∆βsk . ‘(n, s)’ are the local
coordinates defined along each edge of the polygonal element.

where ℓk is the length of side i− j. With these definitions, the transverse displacement, w and the
rotations βx and βy for an element are written as:

w =

Nv
∑

i

λiwi

βx =

Nv
∑

i

λiβxi
+

Nv
∑

k

ψkCk∆βsk

βy =

Nv
∑

i

λiβyi +

Nv
∑

k

ψkSk∆βsk (7)

where Nv is the number of vertices of an element, φi and ψk are the Wachspress interpolants
and the serendipity shape functions for an arbitrary polygon, respectively, Ck = (xj − xi)/ℓk and
Sk = (yj − yi)/ℓk are the directional cosines of side i − j. Appendix A gives a brief explanation of
Wachspress interpolants.

Upon substituting Equation (7) in Equation (3), we get:

εb = Bbβu+Bb∆β
∆βsn (8)

where u = {w βx βy} and ∆βsn is the vector of dofs corresponding to the corner nodes and
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mid-side nodes, respectively, and,

Bbβ =





0 Ni,x 0
0 0 Ni,y

0 Ni,y Ni,x



 , i = 1, · · · , Nv,

(9)

Bb∆β
=





ψk,xCk

ψk,ySk
ψk,yCk + ψk,xSk



 , k = 1, · · · , Nv (10)

3.1. Assumed shear strain fields

The constitutive equation for the tangential shear strain along a side k joining corner nodes i, j
is given by:

γsz =
Qs

Ds

=
1

Ds

(Ms,s +Mns,n) (11)

where Ds = κGh, Qs is the tangential shear force and the bending moment on each side is given
by:

Ms = Db (βs,s + νβn,n)

Mns = Db
1− ν

2
(βs,n + βn,s) (12)

where Db =
Eh3

12(1 − ν2)
. Using Equations (6) and (12) in Equation (11), the tangential shear strain

for an edge k is given by:

γszk =
Db

Ds

βs,ss = −
4

3κ(1− ν)

(

h

ℓk

)2

∆βsk (13)

Next step is to express γszk in terms of γxzi and γyzi using

{

γszk
γszm

}

=

[

Ck Sk
Cm Sm

]{

γszi
γszi

}

(14)

where Ck, Sk, Cm and Sm are the directional cosines of sides k and m that has a common corner
node i. This is done for all the sides of the polygonal element. With this definition, the transverse
shear strain is interpolated independently with:

{

γxz
γyz

}

=

Nv
∑

i

λi

{

γxzi
γyzi

}

(15)

Using Equations (13)-(14), Equation (15) can be written in a compact form as:

εs = Bs∆β
∆β (16)

where ∆βsn is the vector of temporary variables of all sides of the polygon and Bs∆β
is a function

of the directional cosines, the length of the sides of the element and the plate thickness. An explicit
expression for a four noded and a five noded polygonal element is given in Appendix B.
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3.2. Discrete constraint on element boundaries

In this paper, the following modified Hu-Washizu functional [26] is used to develop the n−noded
plate element:

Π =
1

2

∫

εTb Db εb dΩ +
1

2

∫

εTs Dsεs dΩ +

∫

Q (εs − εs) dΩ −

∫

q w dΩ +Πext (17)

where Πext represents the effect of boundary and other loads, q is the transverse loading. Taking
the variation of Π with respect to Q = {Qx Qy}

T (the shear force) and setting it to zero, we get
the following constrain equation:

ℓk
∫

0

(γsz − γsz) dS = 0 (18)

with γsz = w,s + βs, where w and β are given by Equation (7) and γsz is written in terms of ∆βsk
using Equation (13). Using Equations (7) and (13) in Equation (18) and upon performing the
integration, for a particular edge, i− j, we have:

wj − wi +
ℓk
2

(

βsi + βsj
)

+
2

3
ℓk∆βsk − ℓkγszk = 0 (19)

Upon substituting Equation (15) in the above equation, we get:

wj − wi +
ℓk
2
(Ckβxi

+ Skβyi) +
ℓk
2

(

Ckβxj
+ Skβyj

)

+
2

3
ℓk(1 + αk) = 0 (20)

where αn =
Db

Ds

12

ℓ2n
. Equation (20) is written for all the sides of the polygonal element to express

the temporary variables associated to each edge, ∆βsk in terms of the dofs associated to the corner
nodes, as:

∆β = A−1
∆βA2u (21)

where,

A∆β =











2

3
ℓ1(1 + α1) 0 . . .

...
. . .

0
2

3
ℓn(1 + αn)











(22)

and

A2 =

























−1
C1

2

S1
2

1
C1

2

S1
2

0 . . . . . . . . .

0 0 0 −1
C2

2

S2
2

1
C2

2

S2
2

. . .

...
...

...
...

... . . . . . . . . . . . .
...

−1
Cn

2

Sn
2

. . . . . . . . . . . . 1
Cn

2

Sn
2

























(23)

Upon substituting Equation (21) in Equations (8) and (16), the bending strains and the shear strain
can be written as:

εb = Bbu =
(

Bbβ +Bb∆β
A−1

∆βA2

)

u

εs = Bsu =
(

Bs∆β
A−1

∆βA2

)

u (24)
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Finally, using the standard Galerkin approach, the stiffness matrix is a sum of the bending and
shear stiffness matrix, given by:

K = Kb +Ks (25)

where

Kb =

∫

Ω

BT
b DbBb dΩ

Ks =

∫

Ω

BT
s DsBs dΩ

The external force vector is computed using the standard finite element procedures. The above
formulation allows writing the temporary variable in terms of the dofs associated to the corner
nodes. The resulting system of equations has a proper rank and does not have any spurious energy
modes. Moreover, as the plate becomes thinner, αk ≪ 1 and the influence of shear deformations
becomes negligible. As a consequence, the proposed formulation does not suffer from shear locking.
These aspects are demonstrated with a few benchmark examples in the next section.

4. Numerical Examples

In this section, the accuracy and the convergence properties of the proposed approach are pre-
sented with a few benchmark examples. Unless stated otherwise, the material properties of the plate
are: Young’s modulus, E = 10.92×106 units and Poisson’s ratio, ν = 0.3. Both simply supported
and clamped boundary conditions are considered. The results from the proposed approach are
compared with analytical solutions and/or with results available from the literature. For problems
with known analytical solutions, we use the following relative L2 norm of the error and the relative
H1− semi-norm of the error:

||u− uh||L2(Ω)

||u||L2(Ω)
=

√

√

√

√

√

√

∫

Ω

(u− uh) · (u− uh) dΩ

∫

Ω

u · u dΩ
,

||u′ − u
′h||H1(Ω)

||u′||H1(Ω)
=

√

√

√

√

√

√

∫

Ω

(u′ − u
′h) · (u′ − u

′h) dΩ

∫

Ω

u′ · u′ dΩ
(26)

where u = {w βx βy}
T and u′ = {w,x w,y βx,x βx,y βy,x βy,y}

T are the analytical so-
lutions and uh and u′h are their corresponding FE solutions. The numerical implementation
was done in Matlab R©. The polygonal mesh generation was done using PolyMesher, available
at http://paulino.ce.gatech.edu/software.html.

4.1. Patch test

To ensure that the proposed formulation does not suffer from shear locking phenomenon when
the thickness of the plate approaches zero, zero deformation patch test is done [27]. The following
exact solution for the transverse displacement and the rotations are enforced on the entire boundary
of a square plate with the characteristic length a = 1:

w = 1 + x+ y βx = 1 βy = 1 (27)

7
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(a) (b)

(c) (d)

Figure 3: Square plate discretized with trapezoidal mesh and polygonal meshes. Representative meshes containing:
(a, c) 16 elements and (b, d) 64 elements. Note that the mid-nodes are not shown for clarity.

8



Fig. 3 shows a few representative meshes for the square plate discretized with polygonal elements.
For different mesh discretization and for different normalized thicknesses, h/a = 0.1, 0.01, 0.001,
Tables 1 and 2, shows the relative L2− norm andH1− semi-norm of the error. The errors are close to
machine precision for all thickness ratios, h/a. It can be concluded that the zero shear deformation
patch test is satisfied in the numerical sense and the numerical scheme does not experience the shear
locking phenomenon.

Table 1: Relative error in the L2
− norm for the zero deformation patch test

Mesh h/a

0.1 0.01 0.001 0.00001

(a) 2.05×10−14 3.27×10−13 3.68×10−13 6.45×10−13

(b) 1.85×10−14 2.04×10−12 3.07×10−12 6.79×10−13

(c) 1.23×10−13 1.16×10−12 1.67×10−12 3.79×10−12

Table 2: Relative error in the H1
− norm for the zero deformation patch test

Mesh h/a

0.1 0.01 0.001 0.00001

(a) 4.12×10−13 1.17×10−11 6.84×10−12 1.04×10−11

(b) 1.23×10−13 1.16×10−12 1.67×10−12 1.18×10−11

(c) 1.78×10−12 2.86×10−11 4.11×10−11 5.72×10−11

4.2. Square plate subjected to surface load

In this second example, consider a simply supported (or clamped) square plate subjected to
uniformly distributed and non-uniformly distributed load. The influence of mesh size and the
normalized thickness is studied. The square plate is discretized with arbitrary polygons (see Fig. 3
for representative polygonal meshes).

4.2.1. Plate subjected to uniformly distributed load

In this example, a square plate subjected to a uniformly distributed transverse load q(x, y) = 1
unit is considered with all sides clamped or all sides simply supported boundary conditions. Tables
3 - 4 presents the convergence of the maximum center displacement when the plate is subjected
to clamped and simply supported boundary conditions, respectively. Based on a progressive re-
finement, it can be seen that a mesh of 803 nodes (with 3 dofs per node) is found to be adequate
to model the plate. The effect of plate thickness is also studied and it is opined that the present
formulation does not suffer from shear locking as the thickness of the plate decreases.

4.2.2. Plate subjected to a nonuniform load

In this example, we study the convergence properties of the proposed formulation for a square
plate subjected to a non-uniformly distributed surface load. The plate is assumed to be clamped

9



Table 3: Normalized central deflection, w for a clamped square plate

Method h/a

1×10−5 0.001 0.01 0.10 0.15 0.20

Present (104 nodes) 0.1319 0.1319 0.1320 0.1533 0.1815 0.2203

Present (204 nodes) 0.1272 0.1272 0.1273 0.1497 0.1783 0.2174

Present (404 nodes) 0.1276 0.1276 0.1277 0.1511 0.1798 0.2190

Present (602 nodes) 0.1268 0.1268 0.1270 0.1505 0.1791 0.2181

Present (803 nodes) 0.1266 0.1266 0.1267 0.1504 0.1791 0.2181

TTK9s6 [28] 0.1269 0.1269 0.1272 0.1487 0.1746 0.2098

DST-BL [28] 0.1265 0.1265 0.1268 0.1476 0.1726 0.2073

Exact 0.1265 0.1265 0.1265 0.1499 0.1798 0.2167

Table 4: Normalized central deflection, w for a simply supported square plate

Method h/a

1×10−5 0.001 0.01 0.10 0.15 0.20

Present (104 nodes) 0.4013 0.4013 0.4013 0.4199 0.4463 0.4837

Present (204 nodes) 0.3991 0.3991 0.3991 0.4190 0.4457 0.4833

Present (404 nodes) 0.4044 0.4044 0.4044 0.4251 0.4519 0.4896

Present (602 nodes) 0.4042 0.4042 0.4042 0.4250 0.4516 0.4890

Present (803 nodes) 0.4043 0.4043 0.4043 0.4252 0.4520 0.4895

PRMn-W [24] - 0.4070 - 0.42750 - -

TTK9s6 [28] 0.4064 0.4064 0.4067 0.4261 0.4507 0.4850

DST-BL [28] 0.4061 0.4061 0.4063 0.4256 0.4501 0.4844

Exact 0.4062 0.4062 0.4064 0.4273 0.4536 0.4906

10



on all four sides with side length of the plate, a = 1. The nonuniform surface load is given by:

q =
E

12(1 − ν2)

[

12y(y − 1)(5x2 − 5x+ 1)(2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1))

+12x(x− 1)(5y2 − 5y + 1)(2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1))
]

(28)

and the analytical solution for the rotations and the transverse displacement is given by [29]

βx = −y3(y − 1)3x2(x− 1)2(2x− 1), βy = −x3(x− 1)3y2(y − 1)2(2y − 1) (29)

w =
1

3
x3(x− 1)3y3(y − 1)3 −

2h2

5(1− ν)
A1 (30)

where A1 =
[

y3(y − 1)3x(x− 1)(5x2 − 5x+ 1) + x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
]

. The conver-
gence of the error in the L2−norm and H1−semi-norm with mesh refinement is shown in Fig. 4 for
different plate thickness. It is inferred that the proposed method yields optimal convergence rate
in both the norms for different normalized thickness. From Fig. 4, it can further be inferred that
the accuracy and the convergence rates are not compromised with the proposed formulation as the
plate’s normalized thickness is reduced.
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Figure 4: Rates of convergence for the square plate subjected to a non-uniform load: (a) L2-norm of the error and
(b) H1-semi-norm of the error for several values of h/a.

4.3. Circular plate subjected to a uniform surface load

Fig. 5 depicts a circular plate of radius R = 1 subjected to a uniformly distributed surface load,
q(x, y) = 1. The plate is assumed to be clamped on the outer boundary. The normalized thickness
of the plate is h/R. The analytical solution for this problem is given by [8]:

w =
(x2 + y2)2

64Db

− (x2 + y2)

[

t2

4λ
+

1

32Db

]

+
t2

4λ
+

1

64Db

βx =
x(x2 + y2 − 1)

16Db

, βy =
y(x2 + y2 − 1)

16Db

(31)
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q(x; y) = 1

R = 1

(a) (b)

Figure 5: Circular plate: (a) geometry and boundary conditions and (b) representative polygonal discretization
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Figure 6: Rates of convergence for the circular plate subjected to a uniform load. (a) L2-norm of the error and (b)
H1-semi-norm of the error for several values of h/a. DKMT formulation.
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The convergence of the relative error is studied for the following normalized thicknesses: h/R =
{0.2, 0.1, 0.01, 0.00001}. Fig. 6 shows the converges rates for the proposed method and it is inferred
that the optimal rates of convergence is obtained in both the L2 norm and H1 semi-norm for all
thickness ratios. It can be opined that the proposed method does not suffer from shear locking.

5. Conclusions

In this paper, the discrete Kirchhoff Mindlin theory is applied to arbitrary polygons using the
primary unknowns, viz., the transverse displacements and the rotations. The transverse shear effect
is included by assuming that the tangential shear strain is constant along each edge of the polygon.
The shear locking phenomenon is then alleviated by relating the kinematical and the independent
shear strain along each edge of the polygon. With a few examples, we have shown that the proposed
formulation passes patch test to machine precision, devoid of shear locking phenomenon and yields
optimal convergence rates for both thin and thick plates in L2−norm and H1−semi-norm.
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Appendix A

Wachspress interpolants. Wachspress [30], by using the principles of perspective geometry, proposed
rational basis functions on polygonal elements, in which the algebraic equations of the edges are used
to ensure nodal interpolation and linearity on the boundaries. The generalization of Wachspress

v

P

nf1nf2

hf1(x)

hf2(x) x

Figure 7: Barycentric coordinates: Wachspress basis function

shape functions to simplex convex polyhedra was given by Warren [31, 32]. The construction of the
coordinates is as follows: Let P ⊂ IR3 be a simple convex polyhedron with facets F and vertices V .
For each facet f ∈ F , let nf be the unit outward normal and for any x ∈ P , let hf (x) denote the
perpendicular distance of x to f , which is given by

hf (x) = (v − x) · nf (32)

for any vertex v ∈ V that belongs to f . For each vertex v ∈ V , let f1, f2, f3 be the three faces
incident to v and for x ∈ P , let

wv(x) =
det(pf1

,pf2
,pf3

)

hf1(x)hf2(x)hf3(x)
. (33)

where, pf := nf/hf (x) is the scaled normal vector, f1, f2, · · · , fd are the d faces adjacent to v listed
in an counter-clockwise ordering around v as seen from outside P (see Fig. 7) and det denotes the
regular vector determinant in R

d. The shape functions for x ∈ P is then given by

λv(x) =
wv(x)

∑

u∈V

wu(x)
. (34)

The Wachspress shape functions are the lowest order shape functions that satisfy boundedness,
linearity and linear consistency on convex polyshapes [31, 32]. A simple MATLAB implementation
is given in [33] along with the gradient bounds for Wachspress coordinates. A discussion on their
use for smoothed polygonal elements is given in [34].
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Quadratic serendipity shape functions. In this work, the quadratic serendipity shape functions are
constructed from pairwise product of set of barycentric coordinates [35]. These shape functions are
C∞ continuous inside the domain Ω while C 0 continuous at the boundary Γ . The pairwise product
of a set of barycentric coordinates (λi), yields a total of n(n + 1)/2 functions with mid-nodes on
the edges and nodes inside the domain. Then by appropriate linear transformation technique, the
n(n+1)/2 set of functions are reduced to 2n set of functions that satisfies Lagrange property. The
essential steps involved in the construction of quadratic serendipity shape functions are (also see
Fig. 8:

1. Select a set of barycentric coordinates φi, i = 1, · · · , n, where n is the number of vertices of
the polygon.

2. Compute pairwise functions µab := φaφb. This construction yields a total of n(n + 1)/2
functions.

3. Apply a linear transformation A to µab. The linear transformation A reduces the set µab to
2n set of functions ξij indexed over vertices and edge midpoints of the polygon.

4. Apply another linear transformation B that converts ξij into a basis ψij which satisfies the
“Lagrange property.”

Interested readers are referred to [35] for a detailed discussion on the construction of quadratic
serendipity elements.
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Figure 8: Construction of quadratic serendipity shape functions based on generalized barycentric coordinates.

Appendix B

Fig. 9 shows a generic quadrilateral and a pentagonal element. The shear strain-displacement
matrix Bs∆β

(c.f. Equation (16)) is given by:
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Figure 9: A generic polygonal element.

For a quadrilateral element.
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and for a pentagonal element
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where λi are the Wachspress interpolants.
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