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1. INTRODUCTION

Identifying complex models with a large number of param-
eters from data poses multiple challenges during an identi-
fication exercise. One of the crucial and commonly encoun-
tered challenges is identifiability, the ability to estimate
a unique model. Model outputs of unidentifiable models
are identical. Loss of identifiability can occur due to the
nature of the model structure and/or uninformative exper-
iments. Identifiability is a necessary condition for comput-
ing the error bounds of the parameter estimates. Practical
unidentifiability is the inability to estimate parameters
precisely with the given data set. Within the identifiable
set of models, there exists a subset of models whose model
predictions are nearly identical. Those models are called
sloppy models (Gutenkunst et al., 2007). Model sloppiness
can be characterized as large regions in the parameter
space over which model predictions are nearly identical.
Estimating parameters for sloppy models from noisy data
⋆ Corresponding author, e-mail: arunkt@iitm.ac.in.

can lead to huge parameter uncertainties (Raman et al.,
2017).

Although both identifiability and sloppiness are proper-
ties of the model, they are also affected by information
contained in the data and the estimation algorithm it-
self (Tangirala, 2014). Quantifying information contained
in the data concerning a parameter becomes imperative
to find a remedy for the same. Information contained in
the data concerning a parameter though seems like an
isolated quantity, in practice, it is coupled with the method
of extraction of information. Fisher Information is one of
the widely used information metrics that quantify infor-
mation contained in the data concerning each parameter
in the model structure, is dependent on the method of
estimation (Tangirala, 2014). Fisher Information uses the
likelihood to quantify the information which implicitly
assumes the use of the maximum likelihood estimation
algorithm. Hence use of Fisher Information as an infor-
mation metric is greatly constrained by the estimation
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method adopted. The fundamental limitation of the Fisher
information estimated from maximum likelihood is the
inability to incorporate the already known information.
Fisher information will not be able to quantify any new
information about a parameter apart from the already
known information. Furthermore, Fisher Information is an
unbounded measure.

Bayesian estimation overcomes this limitation and any
known information about the parameters prior to the
experiment can be incorporated in the form of a p.d.f (Tan-
girala, 2014). Though philosophically different, mathemat-
ically maximum likelihood is contained in the Bayesian
estimation by assuming uniform prior distributions. For
non-uniform priors, a more generalized version of Fisher
Information called Kullback-Leibler (KL) divergence is
used to find the information gain in the data from prior
to the posterior distribution. KL divergence is also an
unbounded measure. A new measure of information is
proposed in Martin (1984) for the Bayesian framework
which uses both squared Hellinger distance and Kullback-
Leibler divergence to detect incorrect priors. The distance
between the priors and posterior is viewed as the measure
of consonance for the given model. The proposed informa-
tion index in this work can also be viewed as the squared
Hellinger distance.

In this work, we propose an information gain index that
uses the Bhattacharyya coefficient(Bc), which has advan-
tages that overcome the limitations of KL divergence. Bc

is a measure of overlap between two statistical samples or
population (Kailath, 1971) and being a bounded measure
makes it a natural choice for information index in the
Bayesian framework. Bhattacharyya Coefficient has been
previously used in feature extraction (Coleman and An-
drews, 1979) and optimal signal selection (Kailath, 1971).

In the case of complex and highly nonlinear systems,
the difficulty in constructing posterior distributions paved
the way to ‘likelihood free’ versions of Bayesian estima-
tion known as Approximate Bayesian Computation (ABC)
(Sunn̊aker et al., 2013). ABC finds widespread applica-
tions in systems biology to estimate complex non-linear
models where sample prior and posterior distributions are
obtained. The proposed new information gain index is esti-
mated in the ABC framework. The two main contributions
of the current work are

• An index for information gain from prior to posterior
in a given data set assuming Gaussian priors.

• Application to the detection of practically uniden-
tifiable parameters, sloppy parameters, and model
selection.

The rest of this paper is organized as follows. Section
2 reviews the preliminary definitions pertaining to this
paper. In section 3, we illustrate the problem statement
and method for computing the proposed information index
and its interpretation in the ABC framework. Section 4
contains simulation studies and the paper ends with some
concluding remarks and future directions.

2. PRELIMINARIES

2.1 Practical/Numerical identifiability

Practical identifiability is the ability to estimate the pa-
rameters precisely with the given data set (DiStefano,
2013). It is quantified by the precision and confidence
interval of the parameter estimates. Estimates of variances
can be obtained using

Σ
θ̂
= Î(θ)−1 (1)

In this work, we have used a relative confidence interval to
quantify practical identifiability. 95% relative confidence
interval for a Gaussian distributed random variable is
computed by

RCI =
µ+ 1.95σ

µ− 1.95σ
− 1 (2)

Parameters with RCI > 1 indicates greater than 100%
uncertainty and can be considered as practically uniden-
tifiable. Practical identifiability is the precision of the
parameter estimates and it is subjected to vary with the
modeling exercise. Practical identifiability is different from
the concept identifiability itself. Identifiability is binary
conditionTangirala (2014). Loss of Practical identifiability
can occur due to insufficient input excitation, low signal to
noise ratio or due to optimization algorithms. Parameters
with a wide confidence interval can also be a result of over-
fitting. In black-box identification, improper choice of the
model structure may lead to loss of practical identifiability.
In grey-box modeling, sloppy parameters under noisy mea-
surements can lead to practical unidentifiability (Raman
et al., 2017).

2.2 Model sloppiness

In certain models, there are regions in the parameter space
over which the model predictions are nearly identical. It is
quantified by the condition number of the Hessian of the
cost function (Chis et al., 2016). The Hessian of the cost
function can be approximated as

Hij =
1

N

N∑

n=1

∂y

∂ log θi

∂y

∂ log θj
(3)

where y denotes model output.

While using the least square estimation algorithm assum-
ing Gaussian data, the Hessian of the cost function is
essentially an estimate of the Fisher information matrix:

Î(θ) = H (4)

The sloppiness of a model is computed by the ratio
of minimum to the maximum eigenvalues of the Fisher
Information matrix/Hessian of the cost function. From
Chis et al. (2016), a model can be considered sloppy if

λmin

λmax

≤ 10−3 (5)

Model sloppiness can be a result of both model structure
and data (Gutenkunst et al., 2007). It is predominately
observed in multi-parameter models where a large number
of parameter combinations are insensitive to model output.
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2.3 Bhattacharyya coefficient and Bhattacharyya distance

Bhattacharyya distance (Bd)is a measure of similarity be-
tween two statistical distributions (Bhattacharyya, 1943).
The Bc can be used to quantify the relative closeness of
two samples. The Bc of two densities f1(θ) and f2(θ) is
given as

Bc =

∫

∞

−∞

√

f1(θ)f2(θ) (6)

The Bc is bounded between 0 ≤ Bc ≤ 1. A distance
measure associated with this is the Bd.

Bd = −ln(Bc) (7)

The Bhattacharyya distance is bounded between 0 ≤ Bd ≤
∞. The Bd for two normal distributions can be calculated
by estimating the mean and variances. The simplified form
of Bhattacharyya distance for two Gaussian distributed
random variables is derived in Coleman and Andrews
(1979) as:

Bd(f1, f2) =
1

4
ln

(

1

4

(

σ2

f1

σ2

f2

+
σ2

f2

σ2

f1

+2

))

+
1

4

(

(µf1 − µf2)
2

σ2

f1
+ σ2

f2

)

(8)

The Bhattacharya coefficient (Bc) can be computed by

Bc = e−Bd (9)

Bhattacharyya distance is a symmetric measure but does
not obey triangle inequality. In this work we quantify the
information gain as

β = 1−Bc (10)

The βθi is bounded between zero and one. The lower and
upper bounds represent the amount of new information
contained in the data apart from the priors.

3. METHODOLOGY

In this section, we illustrate the methodology for comput-
ing the proposed information gain index in an Approxi-
mate Bayesian (ABC) computation framework.

3.1 Problem statement

Given a data set yN , model structure M, and prior
knowledge of the parameters in the form of f(θ),

(1) Quantify the information gain from prior to posterior.
(2) Use the information gain to detect parameters that

are practically unidentifiable and sloppy.
(3) Use the proposed index to select parsimonious black-

box models.

3.2 Bayesian inference

At the heart of the Bayesian inference is the Bayes rule
for conditional probability. The true model parameters are
considered as random variables (Tangirala, 2014).

f(θ|yN ) =
f(yN |θ)f(θ)

f(yN )
(11)

f(θ|yN ) = Cf(yN |θ)f(θ) (12)

f(θ|yN ) is called the posterior distribution of the param-
eter θ as this quantity is computed after collecting data
and f(θ) is the prior of the parameter θ. The constant
C is adjusted to obtain a legitimate posterior p.d.f of
the parameter θ. The quantity f(yN |θ) is the likelihood
function.

Priors capture the knowledge of the parameter θ before
data; they are usually characterized by a tractable family
of distributions. In the context of complex models, it is
much more difficult to construct the likelihood functions.
Therefore, it is important to turn towards likelihood-free
methods such as the ABC rejection algorithm.

3.3 Approximate Bayesian Computation (ABC)

ABC approximates the likelihood function by numerical
simulation (Sunn̊aker et al., 2013). The sampled prior is
plugged into the model M to generate ŷN . The parameter
is accepted if

d(ŷN , yN ) ≤ ǫ (13)

where d(ŷN , yN ) is some distance function.

A sufficiently small ǫ and an appropriate distance function
will approximate the true posterior distribution reasonably
well (Sunn̊aker et al., 2013). The choice of conjugate priors
helps to fix the posterior family of distributions the same
as prior distributions. In this work, we focus on the normal
distribution that falls in the domain of conjugate priors.
In order to have a normalized ǫ we use ǫ = 1 − R2. Here
R2 is the measure of goodness of fit (Tangirala, 2014).

3.4 ABC rejection algorithm

Choose the simulation number N and acceptance thresh-
old ǫ. Let observed data be yN .
Step 1: Declare the Gaussian prior for each parameter
fp(θi) = N (µθi , σ

2

θi
)

Step 2: Sample θi from prior distribution
Step 3: Simulate model data set ŷN from sampled θi
Step 4: if d(ŷN , yN ) < ǫ accept and store the parameter
vector in an array A.
Step 5: Repeat Step 2 to Step 4 a total of N times.

3.5 Computing Bhattacharyya coefficient

Step 1: Compute the sample mean and variance of each
parameter in the sampled prior and posterior distributions.
Step 2: Compute the Bhattacharyya distance Bd between
prior and posterior distributions for each parameter θi
using Equation 8
Step 3: Compute Bhattacharyya coefficient Bc for each
parameter θi using Equation 9
Step 4: (1−Bc) gives the estimate of information gain.

3.6 Interpretation of the bounds of the Bhattacharyya
coefficient in the ABC framework

The bounds of Bc have a meaningful interpretation in the
ABC framework, which made it a natural choice of an
index for information gain.
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(1) If all the samples in the prior are present in posterior,
then, from Equation 8 the Bd is zero and hence
the information gain β = 0. This indicates that no
new information is available in the data about the
parameters θi apart from prior information.

(2) If only one of the samples from the prior is accepted
in the posterior, then the variance of the posterior dis-
tribution is zero from Equation 8, the Bhattacharyya
distance is infinite and hence the information gain
β = 1. This indicates the information available in
the data shrunk the uncertainty in the prior to the
maximum.

In the ABC framework the proposed information index can
be viewed as the information gain concerning a parameter
with a known prior. Maximizing the information index
is perceived as shrinking the uncertainty in the prior
knowledge using the data.

4. SIMULATION STUDIES

Three different case studies of varying complexities are
taken to demonstrate the application of the proposed infor-
mation index in detecting practical identifiability, sloppy
parameters and in model selection. We first illustrate a
discrete-time FIR model, followed by a simple linear multi-
scale system, and ultimately a more realistic pharmacoki-
netic model used to understand the role of information
gain in detecting practical identifiability, sloppiness and
model selection.

4.1 A discrete-time FIR model

Consider a three-parameter FIR model given in Tangirala
(2014), excited by a single frequency. This experiment is a
classic example of the loss of identifiability due to data.

y[k] = θ1u[k − 1] + θ2u[k − 2] + θ3u[k − 3] (14)

When the system is excited with the single frequency
u[k] = A sin(2πfk), the output of the model becomes

y[k] = θ1 sin(ω0k − φ) + θ2 sin(ω0k − 2φ) + θ3 sin(ω0k − 3φ)
(15a)

= θ′
1
sin(ω0k − φ) + θ′

2
sin(ω0k − 3φ) (15b)

where θ′
1
=

(

θ1 +
θ2

2 cosφ

)

and θ′
2
=

(

θ3 +
θ2

2 cosφ

)

The three-parameter FIR model is manifested as a two-
parameter model under single frequency input. This is due
to insufficient input excitation. The model is simulated
using the parameter values θ1 = 1, θ2 = 0.6, θ3 = 0.3
and with the input u[k] = sin(2π0.1k). The posterior
distributions are estimated with N = 10, 000 number of
simulations and threshold ǫ = 0.05.

Table 1. Summary statistics of FIR(3)

θ Prior µ Prior σ2
Post µ̂ Post σ̂2 β RCI

θ1 1 0.09 1.01 0.011 0.19 0.5

θ2 0.6 0.02 0.59 0.017 0.03 1.6

θ3 0.3 0.01 0.30 0.006 0.01 2.2

The relative confidence interval of θ2 > 1 and θ3 > 1
indicates practical unidentifiability of these parameters.
The information gain column in the Table 1 indicates that
the data does not contain information to estimate three
parameters with good precision.

Now, an FIR(2) model is estimated with the same data
fixing all the experimental conditions. The parameters are
practically identifiable and information gain concerning
both the parameters is quite high compared to FIR(3)
model. The proposed information gain index thus can be
a tool for model selection.

Table 2. Summary statistics of FIR(2)

θ Prior µ Prior σ2
Post µ̂ Post σ̂2 β RCI

θ1 1 0.09 0.85 0.004 0.41 0.37

θ2 0.6 0.02 0.95 0.003 0.67 0.27

In discrete-time black-box identification, the information
gain index can also be used as a tool to detect overfitting.
Parameters with low information gain can be eliminated
and the model can be re-estimated.

4.2 A linear multiscale system

Consider the linear state space model. The model is
multiscale with the parameter values a = 1, b = 101 and
c = 100

M :























[

ẋ1

ẋ2

]

=

[

0 −a

b −c

] [

x1

x2

]

y(t) = x1(t) + x2(t) + e(t),

e(t) ≈ N (0, σ2

e)

(16)

The initial conditions of the system are x1(0) = x2(0) =
1. The output of the system yN is corrupted by white
Gaussian noise with zero mean and variance is adjusted
to give SNR of the signal yN = 100. The parameters
have Gaussian priors, the parameters of the p.d.f are
given in Table 3. The posterior distributions are estimated
using the ABC rejection algorithm setting the number of
simulations N = 10000, and the tolerance ǫ = 0.005.

The Fisher information matrix is estimated by inverting
the covariance matrix of the parameters. The ratio of
eigenvalues quantifies the sloppiness of the model.

Î(θ)=

[

439.34 2.19 −2.10
2.19 0.02 −0.18
−2.10 −0.18 0.02

]

and
λmin

λmax

= 10−4.

The ratio of eigenvalues indicates sloppiness. The eigen-
vectors corresponding to the sloppy and stiff directions
are shown in the figure.

Table 3. Summary statistics of the multiscale
system

θ Prior µ Prior σ2
Post µ̂ Post σ̂2 β RCI

a 1 1 1.00 0.004 0.61 0.29

b 100 100 100.45 71.85 0.007 0.39

c 101 100 101.27 69.30 0.007 0.38

Figures 1 and 2 indicate the projection of stiff and sloppy
directions on the bare parameter axis. The parameters b
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Fig. 1. Eigenvectors of the sloppy direction
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Fig. 2. Eigenvectors of the stiff direction

and c have maximum contribution to the sloppy direction
and minimum contribution to the stiff direction. The
information gain column (βθi

) in the Table 3 shows that
parameters that contribute to the sloppy directions have
extremely low information gain and the parameters that
contribute to the stiff directions have high information
gain.

The relative confidence interval of the parameters b and c
falls in the sloppy direction is wider than the parameter a
in stiff direction. But in this case, the parameters b and c
are practically identifiable as the relative confidence inter-
val is less than one. It can be seen that the presence of noise
has widened the confidence intervals of the parameters
that contribute to the sloppy direction. In ABC framework
a parameter may become practically unidentifiable if it has
a significant contribution to sloppy direction with weak
(uninformative) prior.

4.3 A pharmacokinetic model

We now consider a two-compartment pharmacokinetic
model with two states, one input, and four parameters,
with only one of the states measured. The model equations
are defined as follows:

M :















ẋ1 = −Kx1 + k21x2 + bu(t)

ẋ2 = k12x1 − k21x2

y(t) = x1(t) + e(t)

e(t) ≈ N (0, σ2

e)

(17)

The model M is a slightly modified version of the model
given in Villaverde et al. (2019). The parameter vector

θ∗ = [K k21 b k12]
T
= [10 5 10 2]

T
is known with a prior

knowledge of each parameter defined by a Gaussian p.d.f.
The initial conditions of the states are assumed to be
known x1(0) = x2(0) = 0.

The input u(t) is a step input of magnitude 0.1 at time
t = 0. The simulation time t = 0 to t = 10 with 101 equally
sampled data points are generated. The measurement
noise is added so that the signal to noise ratio (SNR) of
the measurement signal (yN ) is 100. The sample posterior
distribution for each parameter is constructed using ABC
rejection algorithm with N = 50000 simulations, tolerance
ǫ = 0.01 and the distance function. d(yN , ŷN ) = ||yN −
ŷN ||2

2
.

Table 4. Summary statistics of the pharma-
cokinetic model

θ Prior µ Prior σ2
Post µ Post σ2 β RCI

K 10 25 12.77 5.91 0.14 0.91

k21 5 4 5.74 2.60 0.04 2.41

b 10 25 10.30 1.31 0.32 0.23

k12 2 1 1.84 0.70 0.01 14.31

From the Table 4, it can be seen that the relative con-
fidence interval of parameter k21 > 1 and k12 > 10
which indicates that these parameters have uncertainty
greater than 100% and hence can be considered practi-
cally unidentifiable. From Table 4, the information gain of
these respective parameters are 1% and 4% respectively,
which is extremely low and indicates that there is not
much additional information in this data, except the prior
information.

However, the parameter K has nearly 14% and b has 32%
information gain and their relative confidence intervals
are less than 1 which makes them practically identifiable.
It can be seen that practically identifiable parameters
will have high information gain. A parameter can be
considered practically unidentifiable if the information
gain is extremely low for a prior with large uncertainty,
otherwise called as weak prior.

Next, we use a different set of experimental conditions
to study the sensitivity of the information gain to the
changes in experimental conditions. we consider two cases
a) Non-zero initial conditions , x1(0) = x2(0) = 1 and b)
Reducing sample size to n = 51 data points by reducing
the simulation end time t = 5 with zero initial conditions.

Table 5. Information gain for initial conditions
x1(0) = x2(0) = 1

Parameters RCI β

K 1.6 0.30

k21 3.0 0.11

b 1.4 0.30

k12 10.8 0.0007
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Table 6. Information gain for the sample size
n = 51

Parameters RCI β

K 0.66 0.05

k21 1.3 0.008

b 0.63 0.04

k12 7.5 0.001

From Table 5 and Table 6 it is evident that the proposed
information gain is affected by the quantity and quality
of the data. Non-zero initial conditions have improved the
information concerning the parameters K and k21 while
the reduced sample size ended up in very low informa-
tion gain concerning all the parameters in the model.
The sensitivity of the information gain to experimental
conditions indicates the possibility for optimal experiment
design using the proposed information gain.

The case studies demonstrate the application of the pro-
posed information index in detecting identifiable and
sloppy parameters. Though there is no strict cut-off on the
information gain to detect loss of practical identifiability
and sloppy parameters, the proposed index gives insights
into relative information content concerning each param-
eter which will help to design informative experiments
focusing on the specific parameter of interest.

5. DISCUSSION AND CONCLUSION

Practical identifiability and sloppiness are frequently en-
countered challenges in any identification exercise that will
result in poor parameter estimates, particularly such as
those in dynamical systems-level modeling of biological
systems. In this study, we propose a new index that has
many advantages over conventional metrics like Fisher
information and KL divergence. Firstly, this index is
bounded and the bounds have a natural meaning when
used in an ABC framework. The zero value of the infor-
mation gain indicates that there is no new information in
the data apart from the prior and a unity value indicates
that the data has shrunk the uncertainty in the prior to
the maximum. Second, the proposed index can be used to
design experiments that would reduce sloppiness and in-
crease the precision of the particular parameter of interest.
When estimated in the Bayesian framework it can be seen
that sloppy parameters become practically unidentifiable
which is not necessary in case of least square estimation.
Lastly, the proposed information gain can also be used
to detect overfitting and as a model selection criterion in
discrete-time black-box identification.

We perceived certain limitations on the proposed informa-
tion gain. First, it is highly dependent on the prior distri-
bution and the threshold ǫ. A highly informative prior and
a very large ǫmay also lead to very low information gain. In
such cases using the proposed information index to detect
unidentifiable and sloppy parameters may be misleading.
A sufficiently small ǫ and a weak prior(uninformative) will
be appropriate in detecting practical identifiability and
sloppiness. Although we have employed Gaussian priors in
our illustrative examples, our proposed information index

itself is not restricted to Gaussian priors. Indeed, the pro-
posed method can be used for non-Gaussian priors using
the Equation 6. However, in such cases, the densities have
to be estimated, which may be computationally expensive,
compared to merely estimating the moments of the p.d.f.

The proposed index also opens several avenues for future
explorations. A natural extension of this is to use the
proposed information gain index to find optimal input
design that reduces sloppiness and improves identifiability.
In pharmacokinetic and pharmacodynamic modeling the
proposed index can be used to decide the number of
compartments for a given experimental data set. In sum,
we believe that this index provides another useful way
to interrogate complex dynamic models, notably in the
context of available data. Our approach also underlines
the power of Bayesian approaches to characterize system
sloppiness and identifiability.
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