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A Negative Imaginary Approach to Modeling
and Control of a Collocated Structure
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Abstract—A transfer-function is said to be negative imaginary
if the corresponding frequency response function has a negative
definite imaginary part (on the positively increasing imaginary
axis). Negative imaginary transfer-functions can be stabilized us-
ing negative imaginary feedback controllers. Flexible structures
with compatible collocated sensor/actuator pairs have transfer-
functions that are negative imaginary. In this paper a model struc-
ture that typically represents a collocated structure is considered.
An identification algorithm which enforces the negative imaginary
constraint is proposed for estimating the model parameters. A
feedback control technique, known as integral resonant control
(IRC), is proposed for damping vibrations in collocated flexible
structures. Conditions for the stability of the proposed controller
are derived, and shown that the set of stabilizing IRCs is convex.
Finally, a flexible beam with two pairs of collocated piezoelectric ac-
tuators/sensors is considered. The proposed identification scheme
is used determining the transfer-function and an IRC is designed
for damping the vibrations. The experimental results obtained are
reported.

Index Terms—Integral resonant control, linear feedback control,
negative imaginary systems, piezoelectric actuators.

I. INTRODUCTION

F LEXIBLE structures are highly resonant systems that are

susceptible to high amplitude oscillations even in presence

of mild disturbances. Several industrial and scientific devices

include components that can be classified as flexible struc-

tures, [1]–[9] and [10]. High amplitude oscillations of these

components can result in significant loss of precision and pos-

sible breakdown if the amplitude crosses the elastic limit. Thus,

there is a need to damp or control the oscillations that arise in

flexible structures. Here, as in most control literature, [1]–[7],

[11] and [10] flexible structures under consideration are re-

stricted to linear systems that are controllable and observable

and have complex conjugate poles with small real parts.

Designing controllers to damp vibrations in flexible structures

have always been pursued with a lot interest. Recently, there has
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been a significant raise in focus on control design for flexible

structures with collocated sensors and actuators, [12]–[17]. Col-

located structures are known to offer robust stability properties.

However, clear mathematical characterizations of such proper-

ties have not been provided. This paper deals with identifica-

tion and vibration control of flexible structures with collocated

sensors and actuators. Here, a novel identification scheme is

proposed for modeling these systems, and a new control design

scheme known as integral resonant control (IRC) is presented

to augment their damping.

In general, dynamics of flexible structures are characterized

by partial differential equations, [1], [2], and [10]. Therefore,

they posses an infinite number of lightly damped resonant

modes. Alternatively, the transfer-functions obtained from the

PDEs are of infinite order with poles very close to the imaginary

axis. However, in practice, the PDE models are discretized to

form finite order models. Hence, the infinite order transfer func-

tions are truncated and only the first few modes are retained, [10]

and [18]. Using the truncated model, feedback controllers are

designed to damp the resonant modes of the structure. The dis-

carded modes, referred to as the out-of-bandwidth modes or

the residual modes, often play a limited part in the controller

design. The presence of these uncontrolled truncated modes of-

ten lead to what is known as the spill-over effect, [19], [20],

and [18]. That is, the control energy is inadvertently supplied

to the residual modes, which may destabilize the closed-loop

system.

Under certain conditions, flexible structures with collocated

sensors and actuators can be stabilized in the presence of out

of bandwidth modes. Velocity feedback, [6] and [10], and res-

onant controllers [21], are two well known examples of con-

trollers that guarantee unconditional closed-loop stability when

implemented on collocated structures. Positive position feed-

back (PPF), [22], [23], and [24], is another technique which is

not sensitive to the spill-over effect, and has similar stability

properties. Unlike velocity feedback and resonant control, the

frequency response of a PPF controller rolls off at high frequen-

cies, thus leaving the unmodeled high-frequency modes of the

plant undisturbed.

Flexible structures with collocated and compatible sensors

and actuators lead to negative imaginary transfer functions. State

space characterizations of negative imaginary transfer functions

were studied in [25], where it was shown that the state space ma-

trices corresponding to a negative imaginary transfer function

were constrained by certain linear matrix inequalities (LMIs).

In this paper, these LMI constraints are used to develop a sys-

tem identification framework for negative imaginary systems in

general, and for flexible systems with collocated sensors and

actuators, in particular.
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In [26], the authors have proposed a feedback control scheme

known as the IRC. This technique was developed for a flexible

structure with a single collocated sensor/actuator pair, i.e., for

the SISO case. It was reported in [26] that IRC achieved re-

markable damping. This was validated in the context of atomic

force microscopes in [27]. This paper generalizes the work

of [26] to the case of flexible structures with multiple collo-

cated sensor/actuator pairs; i.e., to collocated MIMO systems.

In particular a mathematical framework for IRC is provided.

Stability conditions for IRC are derived and shown that the set

of stabilizing controllers is convex. The possibility of making

them unconditionally stable is also discussed. Moreover, due

to its parametric structure, the IRC rolls off quickly at high

frequencies.

It must be mentioned, here, that not all systems exhibit neg-

ative imaginary property. Indeed, collocation is an exception

than a rule in many cases, [28] and [29]. However, IRC has been

successfully applied to approximately collocated systems, such

as pizeelectric tubes, [27] and [30].

This paper is formatted as follows: In Section II, the notion

of a negative imaginary system is introduced and certain char-

acterizations and properties of negative imaginary systems are

reviewed. The subspace-based identification scheme is also pre-

sented in Section II. In Section III, the IRC is presented, and the

motivations behind this control design scheme are discussed.

In Section IV, the IRC scheme is extended to multivariable

systems, and the set of stabilizing IRC controllers form a con-

vex set is also shown. An experimental set up with collocated

sensor/actuator pairs is considered in Section V, and the iden-

tification algorithm presented in Section II is used to estimate

a model. This model is then used to design an IRC that is suc-

cessfully implemented on the structure.

II. IDENTIFICATION OF NEGATIVE IMAGINARY SYSTEMS

Systems with collocated sensors and actuators have the same

number of inputs and outputs. Hence, a square system with

n inputs and n outputs are considered. Let G(s) denote the

transfer-function of a square system with n inputs and n outputs

with a minimal state space realization

G(s) =

[

A B
C D

]

.

Definition: G(s) is said to be negative imaginary if it is Hur-

witz and belongs to the set

C
△
=

{

R(s) ∈ RHn×n
∞ : j [R(jω) − R∗(jω)] ≥ 0,

}

(1)

where ω ∈ (0,∞) and RH∞ denote the set of all real rational

and stable n × n transfer-function matrices.

The following lemma, presented in [25], gives a condition on

the structure of G(s) for it to belong to the set C defined in (1):

Lemma 1: Let [
A B
C D

] be a minimal state space realization

of a transfer-function matrix G(s). Then G(s) ∈ C if and only

if A is Hurwitz, D is symmetric, and there exists an n × n

symmetric matrix P , such that

P > 0 (2)

AP + PA⊤ ≤ 0 (3)

and

B = −APC⊤. (4)

Proof: Refer to Lemma 1 in [25].

Flexible structures with collocated actuator/sensor pairs are

known to have negative imaginary transfer function matrices.

To design a controller for such systems, an efficient method

for identifying the transfer functions is needed. In the follow-

ing a system identification algorithm, based on the subspace

frequency domain identification approach, that estimates a neg-

ative imaginary transfer function is presented.

Subspace identification of a linear system G(s) = D +
C (sI − A)−1 B consists of two steps [31]:

1) An estimate of the matrices A and C is calculated using

the subspace based approach.

2) Estimates of B and D are obtained by minimizing a least

squares criterion.

Details on estimating A and C from given frequency domain

data {G(jωk )}N −1
k=0 can be found in [31], [32], and [33]. In

this paper, only the second step is modified using Lemma 1 to

enforce the identification of a negative imaginary system. The

first step of our algorithm is identical to that described in [31],

and is therefore, not discussed here in the interest of brevity.

Assume that both A and C matrices have been estimated and

Ã and C̃ be the corresponding estimates. Let

Ek
△
= G(jωk ) − (D + C̃(jωk − Ã)−1B). (5)

As the system under consideration is known a priori, to be

negative imaginary, matrices B and D can be obtained from a

solution to the constrained least squares problem

min
B,D,P

N −1
∑

k=0

‖Ek‖
2 (6)

subject to constraints (2)–(4). Using (4) in (6), the optimization

problem can be restated as

min
D,P

N −1
∑

k=0

‖G(jωk ) − (D − C̃(jωk − Ã)−1ÃPC⊤)‖2 (7)

subject to

P > 0 (8)

ÃP + PÃ⊤ ≤ 0 (9)

and D being symmetric, i.e., D − D⊤ = 0. In the standard sub-

space method estimation of the matrices D and B would involve

minimizing the sum of squares of Ek , (5), without the constraints

(2)–(4).

Note that the cost function (7) is quadratic in P and D, and

the constraints are affine in P and D. Hence, the constrained

optimization problem is convex. Good numerical solutions to

this constrained optimization problem can be obtained using

the Matlab package SeDuMi [34].
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Fig. 1. Closed-loop system with the Integral controller C(s) = Γ
s around

Gm (s) + d.

III. INTEGRAL RESONANT CONTROL OF SISO

COLLOCATED SYSTEMS

Here, for the sake of completeness, the IRC presented in [26]

for an SISO collocated flexible system is thoroughly reviewed

and presented.

In [26], the authors considered a collocated system repre-

sented by a scalar transfer function of the form

Gm (s) =

m
∑

k=1

ψk

s2 + 2σkωks + ω2
k

+ du (10)

where the quantities du , ψk , σk , and ωk are all positive. As (10)

denotes a lightly damped flexible structure, the term 2σkωk is

negligible when compared with ω2
k . Significant damping was

achieved by adding a feed through term d and wrapping an

integral controller C(s) = γ
s around the modified plant. The

IRC structure is depicted in Fig. 1. In [26], to analyze the stability

of the closed-loop system, Gm (s), (10), was approximated by

Ĝm (s) =

m
∑

k=1

ψk

s2 + ω2
k

+ du . (11)

It was shown in [26] that Ĝm (s), (11), is equivalent to

Ĝm (s) = K

(

s2 + ω2
z1

)

. . .
(

s2 + ω2
zn −1

)

(s2 + ω2
1 ) (s2 + ω2

2 ) . . . (s2 + ω2
n )

(12)

where

0 < ω1 < ωz1
< ω2 < ωz2

. . . < ωzn −1
< ωn (13)

and K > 0. An implication of the above is that the poles and

zeros of Ĝm (s), (11), are purely imaginary and their pole–zero

map (PZ map) has a pole–zero alternating pattern, as illustrated

in Fig. 2(a). By adding a suitable d term to Ĝm (s), the zeros can

be shifted in such a way that Ḡ(s)
△
= Ĝm (s) + d has a PZ map

with a zero-pole alternating pattern, as illustrated in Fig. 2(b).

Alternatively stated, it can be shown that (see [26])

Ḡ(s)
△
=

n
∑

k=1

αk

s2 + ω2
k

+ d

= K
′ (s2 + ω2

z ∗
1
) . . . (s2 + ω2

z ∗
n
)

(s2 + ω2
1 )(s2 + ω2

2 ) . . . (s2 + ω2
n )

(14)

for all d < d∗ < 0, where

0 < ωz ∗
1

< ω1 < ωz ∗
2

< · · · < ωn−1 < ωz ∗
n

< ωn (15)

Fig. 2. Illustration of the Pole–Zero positions of Ĝm (s), (11), and Ḡ =

Ĝm (s) + d, “×” denoting the poles and “o” denoting the zeros.

Fig. 3. Illustration of the root locus of 1
s Ḡm (s).

and

d∗ = −

(

m
∑

k=1

ψk

ω2
k

+ du

)

. (16)

Due to the zero-pole interlacing in (15), it was observed in [26]

that the root-locus plot of 1
s Ḡm (s) would lie entirely in the

left-half plane. Thus, by choosing a reasonable γ one could

achieve significant damping, see Fig. 3. Note that this amounts

to wrapping C(s) = γ
s around Ĝm (s) + d. Therefore, to design

an IRC for an SISO collocated system consists of two steps:

First, a feed through term has to be added to the plant to place
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a zero between the first pole and the origin; then, an integrator

needs to be incorporated, as illustrated in Fig. 1.

However, in [26], no specific reasons were given as to why the

root-locus was lying completely in the left-half plane. Though,

it was a direct implication of the Hermite-Biehler Theorem (HB

Theorem) (see p. 41 of [35]). Furthermore, the approximation

made in (11) does note make this a stability proof, but definitely

a plausibility argument.

IV. INTEGRAL RESONANT CONTROL OF MIMO

COLLOCATED SYSTEMS

Due to the spatially distributed nature of flexible structures,

it may not be possible to control all the required modes using

a single actuator/sensor pair. Some of the in-bandwidth modes

may be unobservable, uncontrollable or to damp them may re-

quire a significant control effort. This leads to the necessity of

using multiple actuators and sensors in flexible structures. In this

section, the above mentioned IRC scheme is extended to allow

for a MIMO system. In particular, we will describe a MIMO

IRC structure that covers the SISO controller as a special case.

The mathematical machinery used to establish stability of the

SISO system cannot be applied to the MIMO case. Our stability

proof will utilize the negative imaginary nature of the plant.

Furthermore, stability proof does not require approximations of

the form (11).

Note from (10) that

Gm (jω) =

m
∑

k=1

ψk

−ω2 + 2jσkωkω + ω2
k

+ du

=

m
∑

k=1

ψk

rk

(

ω2
k − ω2 − 2jσkωkω

)

+ du (17)

where

rk =
(

ω2
k − ω2

)2
+ (2σkωk )2 . (18)

It is evident from (17) that Gm (jω) satisfies the negative imag-

inary property and, hence, belongs to the set C defined in (1),

for the SISO case, i.e., for n = 1. A natural extension of the

IRC to the MIMO case is to replace the scalar feed-through

term d and the scalar gain γ by symmetric n × n matrices Df

and Γ, respectively. Before proving the closed-loop stability, for

technical ease, the above mentioned control scheme is rewritten

into an equivalent form. This equivalent form makes it easier to

analyze the stability in the MIMO case.

Note, from Fig. 1, that the input to the controller C(s) is given

by

e(s) = r(s) + Ỹ (s) (19)

where (in the MIMO case)

Ỹ (s) = Y (s) + Df U(s) (20)

with U(s) and Y (s) being the plant inputs and outputs, respec-

tively. The output of the controller, which is the plant input

U(s), is given by U(s) = Γ
s e(s). Therefore,

U(s) =
Γ

s
r(s) +

Γ

s
Y (s) +

Γ

s
Df U(s) (21)

Fig. 4. Closed-loop system with the controller K (s) around Gm (s).

which implies

(sI − ΓDf ) U(s) = Γr(s) + ΓY (s) (22)

and, hence,

U(s) = (sI − ΓDf )−1Γr(s) + (sI − ΓDf )−1ΓY (s). (23)

As Y (s) = Gm (s)U(s), it can be further deduced that

Y (s) = Gm (s) (sI − ΓDf )−1 Γr(s)

+ Gm (s) (sI − ΓDf )−1 ΓY (s) (24)

which implies

(I − Gm (s)(sI − ΓDf )−1Γ)Y (s)

= Gm (s) (sI − ΓDf )−1 Γr(s). (25)

It can be inferred from (25) that the control strategy presented

in Fig. 1 is equivalent to that presented in Fig. 4, with

K(s) = (sI − ΓDf )−1 Γ. (26)

Therefore, proving the stability of the control strategy presented

in Fig. 1 is equivalent to proving the stability of the control

strategy presented in Fig. 4.

Now consider the set

C1
△
=

{

R(s) ∈ RHn×n
∞ : j [R(jω)−R∗(jω)] > 0,∀ω ∈ (0,∞)

}

(27)

which is a subset of C, described in (1). It can be shown that, if

P (s) ∈ C and Q(s) ∈ C1 , and P (∞)Q(∞) = 0, then a positive

feedback connection of P (s) and Q(s) is internally stable if and

only if λmax (P (0)Q(0)) < 1, where λmax (P (0)Q(0)) denotes

the maximum eigenvalue of the product P (0)Q(0). Formally

stated this result is as follows:

Theorem: Given P (s) ∈ C and Q(s) ∈ C1 such that

P (∞)Q(∞) = 0, then the positive feedback connection of P (s)
and Q(s) is internally stable if and only if eigenvalues of the

matrix P (0)Q(0) are strictly less than 1.

Proof: Refer to [25].

Thus for the system in Fig. 4 to be stable, it is sufficient for

the controller K(s) to satisfy (i) K(s) ∈ C1 , (ii) K(∞) = 0,
and (iii) the eigenvalues of G(0)K(0) are strictly less than 1. It

follows from (26) that K(∞) = 0. For K(s) to be in C1 , it must

be stable and K(jω) must satisfy

j [K(jω) − K∗(jω)] > 0. (28)

It can be shown that, for Γ and D both symmetric, with Γ being

positive definite and Df being negative definite (or −Df being
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positive definite), i.e., for

Γ > 0 (29)

and

−Df > 0. (30)

K(s) would belong to C1 . A proof of this is given in the

Appendix. Furthermore, note that K(0) = −D−1
f . Therefore,

the eigenvalue condition λmax (Gm (0)K(0)) < 1 is equivalent

to Gm (0)(−Df )−1 < I , which in turn is equivalent to

Gm (0) < −Df . (31)

Remark 1: If the controllers K1(s) = [sI − Γ1Df1
]−1 Γ1

and K2(s) = [sI − Γ2Df2
]−1 Γ2 satisfy (28) individually,

then so does K(2)(s) = K1(s) + K2(s). In fact, for any

finite sum K(n)(s) =
∑n

k=1 Kk (s), with each Kk (s) =

[sI − ΓkDfk
]−1 Γk satisfying (28), K(n)(s) would also sat-

isfy (28). For K(n)(s) to provide closed-loop stability, the re-

quired conditions are Γk > 0,−Dk > 0, for k = 1, 2, 3, . . . , n
and −

∑n
k=1 D−1

fk
> Gm (0)−1 . These constraints can also be

posed as LMIs affine in the variables Γk and D−1
f .

Remark 2: If g0 = supm Gm (0) is known, then choosing

−Df > g0I would guarantee stability over any finite number

of out of bandwidth modes. In any physical system, power and

bandwidth constraints ensure that it is not possible to excite

all the infinite modes of the system. Hence, for −Df > g0I
and Γ > 0, the IRC will guarantee closed-loop stability for all

practical purposes.

V. EXPERIMENTAL VALIDATION

To study the performance of multivariable IRC, a cantilever

beam representing a physical resonant system is used as an

experimental testbed. This cantilever beam is clamped at one

end and free at the other end, and is susceptible to high amplitude

oscillations when disturbed. Two pairs of piezoelectric patches

are glued to the beam. One pair is positioned close to the clamped

end and the other pair close to the free end of the beam. For

each pair, one piezoelectric patch is used as an actuator (where

input signals are applied) and the other patch acts as a sensor

(where output signals are recorded). The sensor and the actuator

patches of each pair are bonded in a back to back fashion such

that they form a collocated sensor/actuator pair. Another solitary

piezoelectric patch is attached to the center of the beam and is

driven by a voltage source w. This voltage w is used to represent

the effect of disturbances on the beam. Figs. 5 and 6 contain

schematics of the beam set up and an actual picture of the beam,

respectively.

The experimental setup is a three-input three-output multi-

variable system (see Fig. 7). The input v1 and the output vp1 ,

denote the voltages applied and measured, respectively, at the

first collocated sensor/actuator pair, while v2 and vp2 denote the

voltages applied and measured at the second collocated pair.

The third input w is the disturbance acting on the beam and

the output ytip is the displacement of the tip of the beam mea-

sured by a noncontact Polytec laser vibrometer (PSV-300). The

laser vibrometer has a bandwith of 20 kHz and a resolution of

Fig. 5. Layout of the cantilever beam, v1 and v2 denote the actuator patches,
vp1 and vp2 denote the sensor patches, w denotes the noise patch and ytip (t)
denotes tip displacement.

Fig. 6. Picture of the cantilever beam.

Fig. 7. Augmented MIMO plant.

TABLE I
BEAM PROPERTIES

0.3 µm/sec. The dimensions and properties of the the aluminum

beam and the piezoelectric patches are tabulated in Tables I

and II.

Even though this is a three-input three-output system, the

noise input w and the tip displacement are not directly used in the

control design. Here, a positive feedback connection linking the

output Vp = [vp1 , vp2 ]
⊤

to the input u(t) = [v1 , v2 ]
⊤

, through a

2 × 2 controller K(s), of the form described in (26), is designed

to damp the resonant modes of the beam. The effectiveness of

this control design is tested by exciting the beam through the

noise patch and observing the corresponding tip response.

In Fig. 8, a schematic diagram of the experimental setup is

presented. As shown there, the dSPACE board, which generates
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TABLE II
PIC 151 CERAMIC PROPERTIES

Fig. 8. Schematics of the experimental setup.

the control signal, is cascaded with a 20× voltage amplifier.

dSPACE boards output a maximum of ±10 V while the 20×
voltage amplifier could output a maximum output of ±200 V.

Thus, control signals with magnitude less than 200 V could be

delivered without saturation.

A. System Identification and Control Design

Given that the structure is interpreted as a three-input three-

output system, its associated frequency response function (FRF)

G(jω) is a 3 × 3 matrix with each element Gij (jω), i, j = 1, 2,
and 3, corresponding to a particular combination of the input

and the output, i.e.,

Gij (jω) = Gy i u j
= Yi(jω)/Uj (jω) (32)

where y1 = ytip , y2 = vp1, and y3 = vp2 . Furthermore, u1 =
w, u2 = v1 , and u3 = v2 . Yi(jω) and Uj (jω) are the Fourier

transforms of yi and uj , respectively. These FRFs are deter-

mined (nonparametrically) by applying swept sine waves, in the

frequency band of 5 − 200 Hz, to the piezoelectric actuators (in-

cluding the central patch corresponding to the disturbance term

w) and measuring the corresponding output signals ytip , vp1

and vp2 . The inputs and the outputs, with the exception of ytip ,

were generated and measured respectively using an HP36570A

dual channel spectrum analyzer. In Fig. 9, the nonparametric

FRFs Gij (jω), i, j = 1, 2 and 3 are plotted. It is apparent from

the plots that all the FRFs have three resonance frequencies in

the plotted frequency band, and not surprisingly the resonance

frequencies are the same for all the FRFs.

Note that {v1 , vp1} and {v2 , vp2} are the only collocated

pairs in the system. As mentioned above only the inputs

u(t) = [v1 , v2 ]
⊤

and the outputs Vp(t) = [vp1 , vp2 ]
⊤

are used

for control purposes. Therefore, to design a controller a model

Fig. 9. Magnitude (in dB) plot of the identified model (solid) with the mea-
sured data (dotted).

of the form

ẋ(t) = Ax(t) + Bu(t)

Vp(t) = Cx(t) + Du(t) (33)

is fitted to the frequency domain data Gij (jω), i, j = 2 and 3,

plotted in Fig. 9. It can be observed from Fig. 9 that the model

fits the data quite well. Since only three modes of the structure

are modeled, x is a 6 × 1 vector, A is a 6 × 6 matrix, B is 6 × 2
matrix, C is 2 × 6 matrix, and D is a 2 × 2 matrix. The model

was fitted using the modified frequency domain subspace sys-

tem identification algorithm presented in Section II. Matrices A
and C were estimated using the first step of the standard fre-

quency domain subspace identification method [32]. Matrix D
was obtained by numerically solving constrained convex opti-

mization problem (7)–(9). The numerical solution was obtained

using the Matlab package SeDuMi, [34].

Since K(s) acts as a feedback controller connecting the plant

output Vp(t) to the input u(t), it can be described in the state

space form as

˙̃x = ΓDf x̃ + ΓVp

u = x̃. (34)

Setting Z = [x, x̃] the closed-loop system can be written as

Ż =

[

A B

ΓC Γ (D + Df )

]

Z. (35)

The goal is to choose Γ and Df such that poles of (35) are well

into to the left-half plane. To this end the following optimization

problem is posed:

min
Γ,D f

8
∑

k=1

| P
(d)
k − P

(c)
k (Γ, Df ) |2 (36)
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Fig. 10. Desired closed-loop poles(△) along with the open (×) and closed-
loop poles (◦).

under the convex constraints, Γ > 0 and −Df > G(0) =

−CA−1B. In (36), the P
(d)
k ’s denote the set of desired closed-

loop poles, while P
(c)
k (Γ, Df ) are the closed-loop pole posi-

tions for a given Γ and Df . In an ideal scenario one would

like to have Γ and Df such that P
(d)
k = P

(c)
k (Γ, Df ) for all k.

Here, the desired closed-loop poles are set to {P
(d)
k = pk −

20}2
k=1 , {P

(d)
k = pk − 30}4

k=3 and {P
(d)
k = pk − 40}6

k=5 ,

where {pk}
2
k=1 are the open loop poles corresponding to the

first resonant mode, {pk}
4
k=3 are the open loop poles corre-

sponding to the second resonant mode and {pk}
6
k=5 are the

open loop poles corresponding to the third resonant mode, and

P
(d)
7 = P

(d)
8 = −5. In Fig. 10, the open- and the desired closed-

loop poles are plotted. The cost function is minimized using a

nonlinear search with the constraints enforced. Needless to say,

the cost function (36) is nonconvex and has many local minima.

Therefore, the controller obtained here is only locally optimal.

It is worth noting that the closed-loop system (35), can also

be written as

Ż =

([

A B

0 0

]

+

[

0

I

]

[ Γ Γ (D + Df ) ]

[

C 0

0 0

])

Z

△
=

(

Ã + B̃K̃C̃
)

Z. (37)

Therefore, the optimization problem (36) along with its asso-

ciated LMI constraints can also be interpreted as a generalized

pole placement problem via static output feedback, which is

difficult to solve, [36]–[39].

A Bode plot of the pole optimized controller KIRC(s) ob-

tained by minimizing (36) under the convex constraints, Γ > 0
and −Df > G(0) is plotted in Fig. 11. The simulated closed-

loop poles, i.e., poles of the closed-loop system (35) with the

optimized controller, are plotted in Fig. 10. It is apparent that

this controller places the closed-loop poles close to the desired

pole locations. In order to predict or simulate the damping intro-

duced in the FRF Gy t ip w (jω)
△
= G11(jω) relating w and ytip(t)

Fig. 11. (a) Magnitude (in dB) (b) Phase (in degs) plots of the pole optimized
controller.

in closed loop, the 2 × 2 model (33) was extended to a 3 × 3
model by setting

ẋ(t) = Ax(t) + Bw w(t) + Bu(t)

Vp(t) = Cx(t) + Dvw w(t) + Du(t)

ytip = Cyx(t) + Dyw w(t) + DyvV (t) (38)

and estimating the unknown matrices Bw , Dvw , Cy , and

Dyv from the nonparametric data G11(jω), G12(jω), G13(jω),
G21(jω), and G31(jω). A Bode plot of this system is displayed

in Fig. 9. Here, the estimation is done using standard nonlinear

least squares. Using KIRC(s), the pole optimized feedback con-

troller, which is of the form (34), the complete 3 × 3 closed-loop



724 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 17, NO. 4, AUGUST 2012

Fig. 12. (a) Simulated magnitude plot of the transfer function, Gy t ip w =

[ytip (jω)/w(jω)] in open loop and in closed loop. (b) Experimentally deter-
mined magnitude plot of the transfer function, G = [ytip (jω)/w(jω)] in open
loop and in closed loop.

system is written in the form

Ẋ(t) = ĀX(t) + B̄w w(t)

ytip(t) = C̄yX(t) + Dyw w(t) (39)

with Ā, B̄, C̄, and X(t) appropriately defined. In Fig. 12, the

predicted closed-loop response G
(C l)
y t ip w (jω), which is the FRF

corresponding to (39), is plotted along with the model fitted for

Gy t ip w (jω) = G11(jω) plotted in Fig. 9. The closed-loop model

predicts a damping of 33 dB, 24 dB, and 20 dB in the first,

second, and the third resonant modes, respectively.

The optimized controller is tested experimentally on the

beam. In Fig. 12, plots of the FRF relating the ytip displace-

ment and the noise input w (see Fig. 7) both in open loop and

in closed loop are presented. It can be observed that a substan-

tial damping in all the three resonant modes is achieved. Also

plotted in Fig. 12 is the simulated or predicted closed-loop re-

Fig. 13. Magnitude plot of the transfer function, G = [ytip (jω)/w(jω)] in
open loop and closed loop with and without mass.

sponse G
(C l)
y t ip w (jω), the FRF corresponding to (39). It can be

observed that the predicted closed-loop response is reasonably

close to the experimentally determined closed-loop response,

except near the first resonance. This discrepancy is possibly due

to modeling errors, and is not substantial.

A good controller must be robust to variations in plant dynam-

ics. In practice, due to wear and tear and also due to variations in

the environmental conditions, the dynamics of the plant tend to

change. In particular, piezoelectric transducers are known to be

rather sensitive to temperature variations [40]. These variations

are known to result in a shift in resonance frequencies of the

base structure [41], [42]. A good controller must be robust to

these changes and provide sufficient damping even under these

changed circumstances. In order to check the robustness proper-

ties of our controller, artificial changes in resonance frequencies

were brought about by adding extra masses at the free end of the

beam. In Fig. 13, the measured open-loop and closed-loop fre-

quency response of the loaded system are presented. It must be

stressed here that the controller used here is identical to that used

for the unloaded cantilever beam in Fig. 12. The plots suggest

that the IRC is robust to perturbations in resonance frequencies.

Finally, to illustrate the controller performance in the time

domain, a pulse-shaped voltage signal was applied to the piezo-

electric patch corresponding to the disturbance input w of the

beam. The resulting tip velocities, ẏtip(t), in open and closed

loop were recorded for the beam. These time-domain results

are plotted in Fig. 14. They demonstrate the effectiveness of the

controller in rejecting disturbances.

VI. CONCLUDING DISCUSSION

In this paper, flexible structures with collocated sen-

sor/actuator pairs were considered. Collocated sensor/actuator

pairs lead to negative imaginary systems. Using the characteri-

zations presented in [25] on negative imaginary systems, a novel

identification scheme based on the frequency domain subspace

method was presented. The novelty is in the convexification



BHIKKAJI et al.: NEGATIVE IMAGINARY APPROACH TO MODELING AND CONTROL OF A COLLOCATED STRUCTURE 725

Fig. 14. Measured pulse response (a) in open loop, (b) in closed loop.

of the least squares estimation involved in the subspace method.

The rudimentary IRC presented in [26] was reviewed and a

formal mathematical framework for analyzing the control tech-

nique was presented. The IRC technique was generalized to

MIMO systems with collocated sensors/actuators. The gen-

eralization from SISO systems (with one collocated sensor-

actuator pair) to the MIMO systems (with several collocated

sensor-actuator pairs), though a natural progression, was a

result of the mathematical framework provided for analyzing

IRC. It was shown that for collocated resonant structures IRC

controller guarantees closed-loop stability subject to certain

LMI constraints, thereby making the class of such stabilizing

controllers a convex set. A constrained optimization procedure

was proposed for designing multivariable IRCs which can de-

liver sufficient damping. A multivariable IRC was designed for

and implemented on an active structure with two pairs of col-

located piezoelectric sensor/actuator pairs. The controller were

shown to add significant damping to the active structure.

The procedure presented in this paper for designing IRCs

involves minimizing a nonlinear nonconvex cost function over

a convex set. The nonconvex nature of the cost function makes

the control design reliant on the initial guess or the starting point

of the nonlinear search used for minimizing the cost function.

A convex optimization approach to IRC design is still an open

question.

APPENDIX

In the following, it will be shown that

K(s) = [sI − ΓDf ]−1 Γ (40)

belongs to the set

C1
△
=

{

R(s) ∈ RHn×n
∞ : j [R(jω) − R∗(jω)] > 0

∀ω ∈ (0,∞)} (41)

for

Γ > 0 (42)

and

−Df > 0. (43)

In order to show that K(s) ∈ C2 , it is enough to shown that

K(s) is stable and

j [K(jω) − K∗(jω)] > 0. (44)

Note that (42) and (43) imply that the product−ΓDf has strictly

positive eigenvalues. Hence, stability of K(s) follows directly

from (40). As Γ and −D−1
f are symmetric and positive definite,

there exists a nonsingular n × n matrix X such that

X⊤D−1
f X = Λ (45)

and

X⊤ΓX = I (46)

where Λ is a diagonal matrix and I is the identity matrix. The

elements of Λ are eigenvalues of Γ−1D−1
f (see [43]). As Γ

and −Df are positive definite, every eigenvalue of the product

ΓDf , and hence (ΓD)−1
f , is negative (see [44]). Therefore, Λ =

diag (−λ11 ,−λ22 , . . . ,−λnn ), for some λkk ’ strictly positive.

Note that Γ = X−⊤X−1 and D−1
f = X−⊤ΛX−1 , which im-

plies Df = XΛ−1X⊤ and ΓDf = X−⊤Λ−1X⊤ . Hence,

K(s) = [sI − ΓDf ]−1Γ

= [sI − X−⊤Λ−1X⊤]−1X−⊤X−1

= X−⊤[sI − Λ−1 ]−1X−1 . (47)

This, in turn, implies

K(jω) = X−⊤[jωI − Λ−1 ]−1X−1 (48)

and

K∗(jω) = X−⊤[−jωI − Λ−1 ]−1X−1 . (49)
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Hence,

j[K(jω) − K∗(jω)] = jX−⊤([jωI − Λ−1 ]−1

−[−jωI − Λ−1 ]−1)X−1 . (50)

Setting αk = 1
λk k

, k = 1, 2, . . . , n, it can be seen that

[jωI − Λ−1 ]−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

jω + α1
0 . . . 0

0
1

jω + α2
. . . 0

0 0
. . . 0

0 0 . . .
1

jω + αn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−jω + α1

ω2 + α2
1

0 . . . 0

0
−jω + α2

ω2 + α2
2

. . . 0

0 0
. . . 0

0 0 . . .
−jω + αn

ω2 + α2
n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(51)

It is evident from (50) and (51) that j [K(jω) − K∗(jω)] is

strictly positive definite. Thus, for Γ and −Df positive definite

K(s) ∈ C1 .
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