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Abstract: Recently, Nair and Roy (2017) considered a linear regularization method for a parameter identifica-
tion problem in an elliptic PDE. In this paper, we consider similar procedure for identifying the diffusion coef-
ficient in the heat equation, modifying the Sobolev spaces involved appropriately. We derive error estimates
under appropriate conditions and also consider the finite-dimensional realization of the method, which is
essential for practical application. In the analysis of finite-dimensional realization, we give a procedure to
obtain finite-dimensional subspaces of an infinite-dimensional Hilbert space L?(0, T; H'(Q)) by doing dou-
ble discretization, that is, discretization corresponding to both the space and time domain. Also, we analyze
the parameter choice strategy and obtain an a posteriori parameter which is order optimal.
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1 Introduction and formulation of the problem

Let Q be a bounded domain in R? with Lipschitz boundary 0Q. For T > 0, we write Q = Q x [0, T] and
I' =0Q x [0, T]. Consider the PDE

us — div(g(x)Vu) = f(x, t) inQ (1.1)
along with the conditions
ou
Q(X)E =g(x,t) onT, (1.2)
u(x, 0) = h(x) in Q, (1.3)

where v is the unit outward normal to 9Q, f € L?(0, T; L>(Q)), h € L*(Q), g € H*(Q)and g: 0Q x [0, T] - R
is such that the integral

J g(x, OHY(x) dx dt

r
is well-defined for every 1 € H/?(0Q) and the map ¥ jm g(x, t)i(x) dx belongs to H~Y/2(0Q), the dual of
HY2(9Q), for each t € [0, T].

In the above, for a Banach space Y, we used the notation L2(0, T; Y) for the space of all Y-valued measut-
able functions ¢ on [0, T] such that jOTII(p(t)II%, dt < co. In the due course, we take Y as LZ(Q) or the Sobolev
spaces H1(Q), H-1/2(9Q) or W1-°°(Q). For details on Sobolev spaces, one may refer to [1, 6, 9]. Further, if Y is
a space of functions (or equivalence class of functions) on Qandif ¢: Q x [0, T] — R, thenby ¢ € L?>(0, T; Y)
we mean that the function t — ¢(t, -) belongs to € L?(0, T; Y).
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The forward problem associated with (1.1)—(1.3) is to find a solution u satisfying (1.1)-(1.3) in some
sense, for a given suitable data f, g, h and g. Under certain conditions on the data, the existence results are
well known (see, e.g., [10] or [3, Theorems 2.4 and 3.3]). For instance, the following theorem is a special case
of [3, Theorem 3.3].

Theorem 1.1 ([3]). Let h € HX(Q), f € L2(0, T; L%(Q)) and g € L?(0, T; HY/2(0Q)) be such that
g € L2(0, T; HV2(0Q)).

Ifq € L®(Q)issuchthat q > cq a.e.on Q for some constant co > 0, then there exists a unique u € L2(0, T; H*(Q))
with u; € L?(0, T; L*(Q)) satisfying

J[u[ v+ q(x)Vu - Vv]dxdt = jfv dx dt + jgv dxdt forallv e L*(0, T; HY(Q)) (1.4)
Q Q r

and
u(-,0)=h inQ. (1.5)

We observe that if u(x, t) satisfies (1.1)—(1.3), then it also satisfies (1.4)—(1.5). Following [8], for Robin bound-
ary conditions, we call the formulation (1.4)—(1.5) also as the weak form of (1.1)-(1.3).

In this paper, we are interested in the inverse problem of determining the diffusion coefficient function g
satisfying (1.4)—(1.5) from some knowledge of the temperature distribution u. This problem is clearly a non-
linear problem and is known to be ill-posed. For problems related to identification of diffusion coefficients
in a parabolic PDE, one may refer to [2, 5]. In [5], the authors have considered the identification of a diffu-
sion coefficient in the parabolic PDE (1.1) with homogeneous Dirichlet boundary condition and have used
the theory of regularization for nonlinear operator equations to tackle the problem. In [2], the authors have
considered a parameter identification problem in the quasi-linear case, that is, with the diffusion coefficient
as a function of the temperature distribution u, and carried out the analysis by converting it into an elliptic
PDE.

Motivated by the procedure used in [12] for parameter identification in an elliptic problem, we propose
a linear regularization method for obtaining stable approximate solutions for the above mentioned inverse
problem, and provide error estimates for same. Also, we consider approximations for the regularized solution
in a finite-dimensional setting by considering finite-dimensional subspaces of L?(0, T; H'(Q)). We would like
to mention that our formulation of the inverse problem involves perturbations in both the operators and the
data, and for obtaining stable approximate solutions, we considered Tikhonov regularization with noise in
the operator as well as in the right-hand side of the equation. For theory related to Tikhonov regularization
of a perturbed operator, one may refer to [4, 11].

Let us first formulate the inverse problem for which the proposed regularization method is going to be
applied.

Problem. From the knowledge of a function u € L?(0, T; W1 (Q)) with u; € L?(0, T; L?(Q)), identify q € H*(Q)
or L?(Q) satisfying (1.4)—(1.5).

We assume that a solution for the above problem exists. The weak form of the inverse problem, namely (1.4)-
(1.5), facilitates to state it as a linear operator equation in appropriate setting.
In (1.4), the integral jr gv dx dt is understood as follows:

T
ng dxdt = J(g(t), yv(t)) dt,
r 0

where y is the trace map and (-, - } denotes the duality action of H=1/2(0Q) on H'/2(0Q) as mentioned earlier.

Remark 1.2. We may observe that, in our formulation of the inverse problem associated with (1.4)-(1.5), we

assumed that u € L2(0, T; W*°(Q)), whereas Theorem 1.1 guarantees only that u € L%(0, T; H2(Q)). At this

point, we may recall that if k > g, then H*(Q) is continuously embedded in C(Q) (see [14, Corollary 7.19]).
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Therefore, for k > %l, L2(0, T; H1(Q)) is continuously embedded in L?(0, T; W'*°(Q)). In particular, ifd = 1,
then L?(0, T; H>(Q)) is continuously embedded in L?(0, T; WL (Q)).

In the next section (Section 2), we represent the inverse problem as an operator equation and prove some of
the properties of the operators involved. We also show that the inverse problem is ill-posed. In Section 3, we
consider the Tikhonov-type method as the regularization of the ill-posed operator equation and derive error
estimates under noisy measurements of u and u;. Section 4 is devoted to the finite-dimensional realization
of the method and the corresponding error estimates. In Section 5, we do the analysis on choosing the reg-
ularization parameter, thereby obtaining the parameter a posteriori that will give the order optimal rate. In
Section 6, we give numerical illustrations for the feasibility of our method.

2 Operator theoretic formulation

In the following, we denote X = L?(0, T; HY(Q))and W = {u € L?(0, T; WH°(Q)) : u; € L*(0, T; L?>(Q))}. Note
that here u; is the Banach space valued distributional derivative of u, that is, there exists 1 in L110 (0, T; L2(Q))
such that

T T
J(p'(t)u(t) = J¢(t)l/)(t) forall ¢ € C(0, T).
0 0

Also, it is known that X is a Hilbert space with the inner product
T
(v, W)y = J’(v( S0, Wi, ))pdt forallv,we X
0

and the associated norm

T
VIR = [IVC, O de forallywe .
0

We observe that if u € W is a solution of (1.1)-(1.3), then u is also a weak solution (as termed in [8]) of
(1.1)-(1.3), in the sense that it satisfies

Jq(x)Vu -Vvdxdt = va dx dt + Igv dx dt — J uvdxdt forallv e X. (2.1)
Q Q r Q

Throughout this paper, we take 3 = L%(Q) or H'(Q), and use the notation | - || for the norm on  and also for
the operator norms.

Forz e L%(0, T; WH(Q)), w € L2(0, T; L2(Q)) and g € H, we define the linear functionals A,(g): X — R
and @, : X > Rby

A)(V) = I q(0)Vz - Vv dx dt forallv e X, 2.2)
Q
D, (v) = va dx dt + ng dx dt - I wvdxdt forallve X, (2.3)
Q r Q

respectively. Then equation (2.1) can be written as A,(q)(v) = ®@,,(v) for all v € X, or more compactly as an
operator equation

Au(q) = Dy,. (2.4)
Thus, the inverse problem that we investigate can be stated as follows.

Problem. Givenu € 'W, find q € H such that (2.4) is satisfied.
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In order to obtain stable approximations for g, we make use of some regularization methods. Here, we would
like to emphasize that our operator theoretic formulation allows us to use regularization theory for linear
operators. For this purpose, we shall use the well-known regularization, the Tikhonov regularization.

We now prove some of the properties of the linear functionals A,(g) and @,,. We shall denote the space
of all bounded linear functionals on normed linear space X by X*.

Theorem 2.1. Letz € L2(0, T; WH°(Q)) and A, be as defined in (2.2). Then, foreach q € H, A,(q) is a bounded
linear functional on X and

T
14:@I < gl [192(-, Ol q) de. (2.5)
0
In particular, A;: H — X* is a bounded linear operator with
T
I4:IP < [192C-, Ol g d. 2.6)
0
Proof. Letz € Wand g € 3. From (2.2), for all v € X, we have
T
1A()(V)| < jlq(X)VZ(x, t) - Vv(x, ) dx dt < J||Q(')VZ(',t)"LZ(Q)"VV(‘st)"Lz(Q) dt
Q 0
T T 172
< J||Q||L2(Q)||VZ( 5 Ollze@IVV(-, OllL2q) dt < IIQII%(JIIVZ( s Ol dt) Ivilx.
0 0

This shows that A,(q) is a bounded linear functional on X and (2.5) is satisfied. Also, from (2.2), we observe
that A,: H — X* is a linear operator, and from (2.5), we see that A,: H — X* is a bounded linear operator
with its norm satisfying (2.6). O

If 5 = H'(Q), then we have the following result.
Theorem 2.2. Letz € L%(0, T; W-®(Q)) and A, be as in (2.2). Then A,: HY(Q) — X* is a compact operator.

Proof. We know that the embedding H'(Q) — L?(Q)is compact[1, 9]. Also, by Theorem 2.1, A, : L?>(Q) — X*
is a bounded linear operator. Thus, A, : H(Q) — X* is a composition of two linear operators, of which one
is continuous and the other is compact. Hence A,: H'(Q) — X* is a compact operator. O

Using arguments similar to those used in the proof of [12, Theorem 2.4], we establish the following theorem.

Theorem 2.3. Letz e L*(0, T; W-*°(Q)) be such that |Vz(-, t)| > 0a.e.on Q forevery t € [0, T]. Let A,: H{ — X*
be as defined in (2.2). Then A, is of infinite rank.

Proof. For each n € N, let B,, be an open ball in Q such that B, n B, = ¢ for m # n. Also, for each n € N, let
BJ, and B]] be open balls in Q such that B}] ¢ B}, ¢ By, where the inclusion is strict. For n € N, let g, € CX(Q)
be such that supp g, < B}, g, = 1 on B and 0 < g, < 1. We now show that the set {4,(gn) : n € N} is lin-
early independent, which would show that A, is of infinite rank. For each n € N, let v, € C2°(Q) be such that
supp v, ¢ By and v, = 1 on B,. Then wy, = v,z € X and Vw,, = Vz on B,. Therefore,

T

AL (qn)(wp) = J j qnlVz|> dxdt foralln e N, (2.7)
0 B},

Az (qn)(wm) =0 for all m, n € N with m # n. (2.8)

Forn e N,letc;,i=1,...,n,bescalars such that Y ; ciA,(g;) = 0. Then, using (2.7) and (2.8), we obtain,
forj=1,...,n,cA,(q)wj) =0,ie,

T
¢j J j gjlVz|* dx dt = 0. (2.9)
0 B!

[y
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Now,

J |Vz|? dx dt > 0.

T T
j Iquzﬁ dxdt > J J gjIV2I? dx dt =
0 0 B}(l

"
B: Bi

o

Thus, from (2.9), we get ¢; = 0. This shows that {A,(gn) : n € N}is aninfinite linearly independent set. Hence
A, is of infinite rank. O

Next, we show that ®,,, as defined in (2.3), is a bounded linear functional on X, which in turn will ensure
that the operator equation A,(q) = @, is well-defined.

Theorem 2.4. Let w € L?(0, T; L?(Q)) and ®,,: X — R be as defined in (2.3). Then ®,, is a bounded linear
functional and

T 1/2 T 1/2 T 1/2
Dyl < ([uf( Ol dt) + c(jug( OB 0 dt) + (juw( O dt)
0 0 0

for some constant C > 0.

Proof. The linearity of ®,, is obvious; we prove only the continuity. Let v € X. Then, from (2.3), we have

Dy, (V)] < Ilf(x, Hv(x, t)| dx dt + Ilg(x, tyv(x, t)| dx dt + le(x, tyv(x, t)| dx dt.
Q r Q

Using the Schwarz inequality, we have

T 1/2
[, ovex, 1 dx e < (juf( Ol dt) i
Q 0

Similarly, we also have
T 1/2
j|w(x, HV(x, )] dx dt < (juw( -, t>||§2(0)) Vil
Q 0

Since, for t € [0, T], yv(-, t), i.e., the trace of v(-, t) belongs to HY2(3Q), using the property of g and the
Schwarz inequality, we have

1/2

T 1/2 T
[ 1g0x, e, 1 dxde < ( | [ dt) (juyv(- OB 00 dt)
0 0

r

Now, using the continuity of the trace map, there exists a constant C > 0 such that

T 1/2
(juyv(-,t)nip,zwm dt) < Clvilx,
0

and hence

T 1/2
150, e, o1 dxae < C<j||g< OB 00 dt) IVlix.
r 0
This completes the proof. O

Remark 2.5. By Theorem 2.2 and Theorem 2.3, we know that A, is a compact operator of infinite rank for
each z € W. Therefore, if { = H'(Q), then the ill-posedness of the operator equation (2.4) also follows from
the fact that A, does not have continuous inverse.

In the next section, we consider the regularization of the problem and carry out the error analysis under noisy
data.
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3 Regularization and error analysis

Letu € Whesuch that g € H is the unique solution of (2.4). Suppose that we have an approximate knowledge
of uand u;, i.e., z € L2(0, T; W (Q)) and w € L2(0, T; L2(Q)) such that

T
J1vuc 0= vaC 010 g de < &2, (3.1)
0
T
[l 0= w01, de < . (3.2)
0

respectively, for some € > Oand 6 > 0. Note that here we are having perturbations of both 4, and @,,, namely,
A, and @, respectively, that is, we are dealing with noise in both the operator A, and the data ®,,. So we
need to find stable approximation to g from the knowledge of these known data z and w satisfying the above
mentioned noise level. So we make use of some regularization method for obtaining stable approximations
to g. We use Tikhonov regularization to carry out our error analysis.
Fora > 0, let g4, € H be the Tikhonov regularized solution corresponding to the operator equation (2.4),
that is, g,y satisfies the equation
(AiAy + al)quy = AL Dy, (3.3)

andlet g4,7,w € H be the Tikhonov regularized solution when both the operator A4, and the functional ®,, are
replaced by the noisy operator A, and noisy functional ®,,, respectively, that is, g, -,w satisfies the equation

(AJA; +aD)qazw = A;Dy. (3.4)

Note that the linear operators A, and A, are from K into X*. So A;;A, and A} A are positive and self-
adjoint linear operators on H. Hence (3.3) and (3.4) are well-posed equations.

Before proceeding further, we make the following observations, which will help us to carry out the error
analysis. Let u; and u, be in L2(0, T; W*(Q)). Then, by Theorem 2.1, we have

T 1/2
lAu, ~ Ausl < <j||Vu1( ) = Vita(-, D2 dt) : (3.5)
0

Also, let wy, wy bein L2(0, T; L2(Q)). Then, from (2.3),

(D, — Dy, (V) = J(w1 “wy)vdxdt forallveX

Q
so that
T 1/2
[Dw, — Pw,l < <J||W1(',l‘) _WZ("t)"iz(Q) dt) . (3.6)
0
From (3.5) and (3.6), we have
Ay - ALl < &, (3.7)
Dy, — Dwll < 6. (3.8)

The following theorem, proved using standard techniques in regularization theory (see, e.g., Nair [11]),
shows that the solution of (3.3) is indeed stable under perturbations in u and u;.

Theorem 3.1. For a > 0, let qq,, and qa,z,w be as in (3.3) and (3.4), respectively. Let €, § > 0 be as in (3.1) and
(3.2), respectively. Then

£ 6
Igau = qa,zwl < —aIICIII +—

2va’
In particular,
lga,u — ga,z,wl = 0 ase —0 and 6 — 0.
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Proof. Let qq,, be the unique element in H such that
(A A, +al)qq, = AL Dy, (3.9)

We have
Gau — Gazw = ([Gau — Ga,z) + (Qa,z — Ga,z,w)-

Now, from (3.3), (3.9) and using the fact that ®,, = A, g, we have
Ga,z — Gau = (A7A; + aI)_lA;Auq - (A A, + aI)‘lA,’jAuq.
By appropriate modification, the above equation can be written as

da,z = qau = (A;Az + aI)ilA; (Ay - Az)A;Au(AZAu + aI)ilq
+a(ALA, +al) HAL - AD(ALAL + al) T Ayg.

We now make use of the following estimates (for more details, see [11]):

1
I(A; Ay +al) ' < E A Au(A; Ay +aD) T < 1,
1
AXAy +al) A s—, AyAL +a) Ay < ——.
(A, Ay )AL 2 II( ) Ayl a
Thus,
1Ay — Azl
(gau = Ga,zll < u\/_ “lqll.
Also, from (3.4) and (3.9), we have
da,z — qa,z,w = (A;Az + aI)_lA; (q)ut - Dy).
Thus,
Dy — Dy, |l
— < — "t
19a,z = qa,z,wll < 2va
Therefore, using the inequalities in (3.7) and (3.8), we have
19a,u = Ga,z,wll < 1Gau = Gzl + 19a,z — Ga,z,wll
||Au Azl Mu = A0 o1+ "(Dut - Dy
\/_ o 2va
gl + =
<@ e
The particular case follows immediately. O

From the above theorem, we obtain the following.

Theorem 3.2. Let qq,, and qq,z,w be as in (3.3) and (3.4), respectively. Let €, 6 > 0 be as in (3.1) and (3.2),

respectively. Then
19~ Gaznll < 10— Gl + cq 2
a,z,w a,u q \/—

. 1
where ¢4 := max{3, lql}.

Remark 3.3. Since g € K is the unique solution of (2.4), from the theory of Tikhonov regularization, we
know that ||g — ga,ull = 0 as a — O (cf. [4, 11]). Thus, choosing a depending on ¢, § such that a — 0 and
% — 0as &, § — 0, we have the convergence || — gq,z,wl — O as €, § — 0. For instance, if a := € + §, then
g - gess,z,wll — Oase, § — 0.

It is known that the best rate possible for the quantity |lg — gq,ull is O(a), and that is achieved if the

function g belongs to the range of the operator A% A, (see [4, 11]).
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4 Finite-dimensional realization

In practical applications, one would like to obtain approximate solutions using numerical methods. For this
purpose, we look for a Galerkin approximation for the solutions of (3.4) by using finite-dimensional spaces.

Let (-, -) denote the inner product on J. Let a > 0, z € L?(0, T; W>*°(Q)) and w € L?(0, T; L?>(Q)). Then
(3.4) holds if and only if

((A;Az + aDqa zw, @) = (A; Dy, @) forall p € K. (4.1)

For obtaining a finite-dimensional approximation of g4 ,,w, we consider equation (4.1) by varying ¢ in
a subspace of J. For this purpose, we consider a sequence (X,) of finite-dimensional subspaces of (. Let
P, : H — H be the orthogonal projection onto X,. In applications, one may have pointwise convergence of
(Py) to I, the identity operator. This property of (P,) is satisfied if, for example, X,,, n € N, are such that

(@) Xn<cXpiforallneNN,

(b) U2y X is dense in H.

Thus, we look for g'}.,, € X, such that

(A2Az + aD)q5s ., @) = (AZ Dy, @) forall g € X,. (4.2)
Also, (4.2) can be written as
(PRAL AP, +al)ql) . @) = (P AL D, @) forall g € X,. (4.3)
We observe that (4.3) can be represented as the operator equation
(PrA AP, + al)q).,, = PyALD,. (4.4)

Note that the operator P,A} A, P, is self-adjoint and positive definite. Therefore, equation (4.4) has a unique
solution qf;f_)z,w for each a > 0, n € N and z € L%(0, T; W-®(Q)), w € L2(0, T; L?(Q)). Let dim(X,,) = n and

{1, @2, ..., @n} be abasis of X,. Then the solution qf,'f;,w of (4.2), equivalently of (4.4), can be written as
n
aw = qip; (4.5)
i-1
for some scalars q;,i = 1, 2, ..., n. Then, from (4.2), we have

n n
Y qi(A;A:0), 0 +a ) qi(@), ¢i) = (A; Dy, 1), i=1,2,...,n,

j=i i
equivalently,
n n
ZQj(Aquj,Azfpi)x* + az qi{pj, Pi) = (DPw, Az@i)x-, 1=1,2,...,n. (4.6)
j=i j=1
Let

aij = (Az0j, A pi)x-,  dij ={@j, Pi), bi=(Dy,Api)x- fori,j=1,2,...,n.

Then (4.6) is the same as the matrix equation
Aq+aDq=Db (4.7)

where
A =[ajlnxns D= I[dijlnxns b =1[b1,b2,...,bal", d=1q1,q2,..,qn]"
The above discussion also shows that (4.7) has a unique solution q = [q1, ¢, ..., gn]7, and in that case,
qg,')zyw as given in (4.5) is the solution of (4.2). Thus, for obtaining the solution qf,f)z,w of (4.2), we first solve
the matrix equation (4.7), and then obtain qﬁ{f;,w as given in (4.5).
We now write these a;; and b; explicitly. For doing that, we make use of the following well-known result

from functional analysis.
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Lemma 4.1. Let H be a real Hilbert space, and let R: H* — H be the Riesz representation map, that is, for
& e H*, &x) = (x, Ré)y for all x € H. Then (-, - )y defined by (&, )+ = (Rn, Ry, &, n € H*, is an inner
product on H* inducing the norm on H*, and the space H* with this inner product is a Hilbert space.

Let R: X* — X be the Riesz representation map. Then, for & € X*, 93¢ is the unique solution of the equation
(D, RE) . = &(D) for all D € X, that is,

T
j@( 0, RO+, O) iy dt = £(D).
0

Thus,

T
ajj = (RALQj, RA Qi) x = J((%Az%')(' ), RA0) (-, ) () dt,
0

T
bi = (RO, RAzpi)x := J((%®W)(',t)’ (RAz@i)(-, ) mr(o) dt
0

where RA, @y € X is the unique solution of

T
J(‘D( 5 0, RAz01)(-, D) () dt = (Az01)(D) (4.8)
0

and RD,, € X is the unique solution of
T
[@.0. @0 0 de - Ou@) (4.9)
0

forall ® € X and A,, @, are as defined in (2.2) and (2.3), respectively.
We now have the following result about the estimate for the error ||q - qf,,'f;,wll.

Theorem 4.2. Let g, , and qa 2w beasin(3.3) and (4.2), respectively. If n, > O is such that |A;(I - Pp)|l < 1n,

then

5 (e+ )
19~ 085l = 10 = Gl + 5 + <21 g1,

Proof. Following the similar calculations, as done in the proof of Theorem 3.1, with A, being replaced by
A,P,, we have

(n) 6 Ay, — APy "
+
l9au = ga,zwl < a 7a
Since [[Ay — AzPnll < 1Ay — Azl + 1Az = AzPy|l < € + n, We obtain

_ . 6 (e +1n)
lla Qa,z,wl < _2\/— N

Remark 4.3. By Theorem 2.2, A,: H'(Q) — X* isacompact operator, and hence its adjoint A} : X* — H(Q)
is also a compact operator. Then, using the pointwise convergence of P,,, we have (see [11, Theorem 2.13])
Az — A;Ppll = II(I - Py)AZ| — 0 as n — co. Hence if we take H = H'(Q), the estimate n,, of |A, — APy, can
be such that n, —» 0asn — oo.

llqll. O

Remark 4.4. From Theorem 4.2, we have
(6+e+nn)
\/a ’
where ¢g := max{1 5 lgll}. From the theory of Tikhonov regularization, we know that |g - gg,ull = Oasa — 0.

Thus, if we choose the parameter a, dependlng on é, &, n, such that « — 0 and ‘s*f/i”" —>0asd—>0,e—>0
and n — oo, we have the convergence ||q - Qa z W|| —0asd -0, »>0andn — oo.

Ig = g% wll < 19 - qaull + ¢4
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10 —— S.Mondal and M. T. Nair, Parameter identification problem in heat equation DE GRUYTER

We have already remarked that the best rate possible for the quantity ||g — g4l is O(a), and that is
achieved if g belongs to the range of the operator A} A, (see Remark 3.3). Thus, choosing a = (§ + £)?/3 and
taking n sufficiently large such that n, < & + £, we obtain the rate ||q - qf{f)z,wll < 0((6 + €)%/3) whenever g
is smooth enough such that it belongs to the range of the operator A;;A,. We have considered the issue of
parameter choice strategies more elaborately in Section 5.

4.1 Further discretization

We have seen that, in order to obtain qf;f)z,w, as given in (4.5), one has to solve the matrix equation (4.7) and
find the solution . Equation (4.7) involve

aij = (AzQj, Azpi)x- = (RA- @), RAz i),

bi = (Dy, Azpi)x+ = (RDy, RALPi)x,
where RA,p; and RD,, are the unique solutions of (4.8) and (4.9), respectively. We note that, in these equa-
tions, @ varies over the infinite-dimensional Hilbert space X. Thus, in order to obtain a numerical approx-

imation of RA,¢p; and RD,,, we may vary @ over a finite-dimensional subspace Xy of X for some N € IN.
In other words, we look for (%A, @)™ and (R®,,)™ in Xy such that

T
j<d>< ), RA00N (-, ) i) dt = (A, )(@) fork=1,2,...,n, (4.10)
0

T
j<ci>(- ,8), RPN (-, ) () dt = Dy (D) (4.11)
0

for all ® € Xy, where A,¢py and ®,, are as defined in (2.2) and (2.3), respectively. Let dim(Xy) = N and
{¥1,¥,..., ¥y} be a basis of Xy. Then (RA,0)™ =¥V, ck¥; and (RD,)M = YV, d;¥;, where the
scalars cf.‘ and d; are obtained by solving the equations

N T

> ok [HC. 0.9, )i de = Az (),
j=1 0

N T

> d; [0 0.9 Do) dE = Dy,

j=1 0

respectively, fori =1, ..., N. Let
aij = (RA0)N, (RAL0)V)y,
bi = (RD,)N, (RA0) M),
dij = (@), ¢i)

fori,j=1,...,n.Thus, an approximation to qf,[f,)zyw is obtained as
o) S
~(n ~
do,z,w *= z qiPi,
i=1

where q := [{1, ..., §n] is a solution of the matrix equation

Aq@+aDg=hb
with 4 = [d@], D = [d;], b = [b;].
We now propose a procedure for obtaining finite-dimensional subspaces of the space X. For this purpose,
let (P,,) be a sequence of finite rank orthogonal projections on H'(Q) such that it converges pointwise to the
identity operator on H'(Q). We assume that rank P,, = n for each n € N. Let {@1, ..., ¢n}bean orthonormal
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DE GRUYTER S. Mondal and M. T. Nair, Parameter identification problem in heat equation = 11

basis of X, = R(P,), the range of P,,. Further, let I = [0, T], and let (IT,,) be a sequence of finite rank orthogonal
projections on L2 (I) with rank(II,,) = nfor each n € N such that it converges pointwise to the identity operator
on L(I). For k, m € N, we define Q' : X — X as follows:

k
QE)(t) = Y (M) (O)Pi, WeX, tel, (4.12)

i=1
where ;(t) := (¥(t), p;yg for¥ e X, t e I,i=1,..., k. It can be easily seen that 1; € L>(I) forall ¥ € X and
i=1,...,kso that the operator Q,’(" is indeed well-defined. Also, Qf is a linear operator. We now show that
Qy' is, in fact, a finite rank orthogonal projection.

Theorem 4.5. For k, m € NN, the linear operator Q;': X — X defined as in (4.12) is an orthogonal projection
of rank mk. In fact, if {g1, ..., gm} € L2(I) is any orthonormal basis of R(Il,;) and Y (t) = gj(t)@;, t € I, for
i=1,...,kj=1,...,mthen{¥V:i=1,...,k,j=1,...,m}isan orthonormal set in X and
k m
QY =) Y (¥, W)W, ¥el.
i=1j=1

Proof. Let{gi,...,gm}in L?(I) be an orthonormal basis of R(IT;). Then II,, is given by

m
Mwh =) (h, g2 g, h e L*(D.
j=1

Let WU(t) = gj()@;i fori=1,...,k, j=1,..., m. Then it can be easily seen that ¥V ¢ X foralli=1,...,k,
j=1,...,m,and

(P, W)y = (Pi, §r)mi(0)(8js 8s)12) = BirBjs,
where 6,4 = 1 when p = g and 6,4 = O for p # gq. Thus, wi.i=1,...,k, j=1,...,m}is an orthonormal
set in X. Next, we observe that, for ¥ €e X and ¢ € I,

k k /m
Q)(t) = Y (M) (O)Pi = Z(Zwi,gjmmgj(t))@ =Y ) ag¥i),
i=1 i=1\j=1 i=1j=1
where a;j = (i, gj)12(1)- By the definition of 1);, we have

a = Jl/if(t)gj(t) dt = jwu), Py gi(t) dt
I

I
- j<\P(t),g,-(t)¢i>H1 dt = jmf(t), W) g1 dt = (F, Wiy,
I I

Thus,
k m B 3
QY =) Y (¥, W)W, ¥el.
i=1j=1
In particular, Q) is an orthogonal projection of rank mk. O

Lemma 4.6. Let (Q,) be a uniformly bounded sequence of projection operators on H'(Q) such that Q, — I
pointwise as n — oco. For ¥ € X, let ¥,,(t) = Q,¥(t), t € [0, T]. Then ¥,, € X and |V, - ¥|]x - 0asn — oo
forall ¥ € X.

Proof. Let M > 0 be such that ||Q,|| < M for all n € N. Since ¥ € X, we obtain that ¥,, € X. Now,

T T
IWn - I3 = Ill‘i’n(t) ~ (Ol g dt = JIIQn‘P(t) - YOl g dt-
0 0

Since [|Q,¥(t) - \I’(t)||12q1(m —0asn — ocoforallt € I and
T
Q¥ (1) =¥ (Ol (o) < M+ DIY(Olg ), where JII‘P(OIIJZLF(Q) dt < oo,
0
=0

by the dominated convergence theorem, we have lim, [V, — ¥l . O
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12 —— S.Mondal and M. T. Nair, Parameter identification problem in heat equation DE GRUYTER

Theorem 4.7. Let Q;" be as defined in (4.12). Then, for each ¥ € X,
. . m B
Jim lim QY - ¥llx = 0
Proof. LetW e X. Note that, for t € I, ;(t)¢; € H'(Q) foralli = 1, 2, ..., k. Equivalently, the map t — y;(t)@;

is an element of X. We denote this map by y;(-)@; for all i=1,2,...,k. Since {¢;:i=1,...,k} is an
orthonormal set, we have

k k k
IQFY - Wl = | Y (Map) (@i =¥ < Y [Amthi)(-) = Wil DI @i+ || i )pi =¥
i=1 x M=t x M= X
k k
< Y I@illr @I Mmi = Wil + | Y. i) @i - ¥
i=1 i=1 X
k k
= Y i = illzy + || Y, i )pi - ¥
i=1 i=1 X
Since IT,, — I pointwise in L%(I), for each k € N, we have
k
Jim QY — Wl < | Y i )i - ¥
i=1 X
Since {@1, ..., @i} is an orthonormal basis of R(Py), for each t € I, we have
k k
P¥(t) = Y (¥ (D), piym @i = Y. Yi(DPi.
i=1 i=1
Since P, — I pointwise in H'(Q), taking Q, = P, in Lemma 4.6, we have
k
lim Yi()pi - =0,
k—o0 a x
and hence
. . m B
Jim  lim | Q¥ - ¥llx = 0
for each ¥ € X. This completes the proof. O

From the above theorem, we obtain the following corollary.

Corollary 4.8. Let Qf be as defined in (4.12). Then, for every € > 0 and for every ¥ € X, there exist N € N and
my € N for every k > N such that Q'Y — ¥|x < € for all m = my, k > N. In fact, my for k > N can be chosen
such that (my) is increasing and my > k for all k > N.

Let X} denote the range space of Q;" for m, k € N. We have already seen that X} is finite dimensional and
(wi.i=1,...,k, j=1,...,m}isabasis of DC? Then, following the arguments as given in the beginning of

this subsection, we may consider an approximation qg§’;7w to qf{f)z,w by defining

n
aukn, =Y g (4.13)
i=1

with g™k := [qT, ..., gI"¥] satisfying the matrix equation
Amkgm 1 aDq™* = ™, (4.14)
where A™ =[], D = [dyj], b™ = [b]""] with
afit = (RA @)™, RA0)™ ), dij = (@), 91), DI = (ROW)™, (RAp1)™ )

fori,j=1,...,n.

We now write the above considered discussion in operator theoretic setting and show that the matrix
equation (4.14) does, indeed, have a unique solution. More precisely, we show that qa”,’g’w, as defined in
(4.13), is a solution of some operator equation. For this, we shall make use of the following lemma associated

with Riesz representation theorem in Hilbert spaces.
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DE GRUYTER S. Mondal and M. T. Nair, Parameter identification problem in heat equation =— 13

Lemma 4.9. Let X be a real Hilbert space, and let X be a finite-dimensional subspace of X. Let P: X — X be an
orthogonal projection onto X. Let P': X* — X* be the transpose of P, that is, (P'&)(x) = &(Px) forall £ € X* and
x € X. Let R: X* — X be the Riesz representation map as defined in Lemma 4.1. Then

(1) P'is an orthogonal projection;

(2) ®P' = PA.

Proof. From the definition, we have P'(P'&)(x) = (P'&)(Px) = §(P?x) = &(Px) = (P'&)(x) forall § € X* and x € X.
Thus, P'?¢& = P'¢ for all £ € X*. This shows that P’ is a projection operator.
Now, using the orthogonality of P, we have

(RP'&, x) = (P'&)(x) = &(Px) = (RE, Px) = (PRE, x)  forall & € X* and x € X.

Thus, SRP' = PSR.
Let &, n € X*. Then, using Lemma 4.1, we have

(P'&,n) = (RP'E, M) = (PRE, M) = (RE, PRN) = (RE, RP'n) = (£, P'n).
This shows that P’ is an orthogonal projection. O

By Theorem 4.5 and Lemma 4.9, (QZ’)’ is an orthogonal projection and ER(Qk’")’ = (QL")ER. Hence we have that
PrA; (Qk’")’ A, P, is a positive self-adjoint operator so that the equation

(PnA;(Q?)’Aan +al){ = PnA;(Qg)’(DW (4.15)
has a unique solution { € R(P,) for each n € IN.

Theorem 4.10. Form,n,k € Nanda > 0,{ =Y, qlf""go,- is the solution of the operator equation (4.15) if and
only if @™ := [q™K, ..., qX] is the solution of the matrix equation (4.14).

Proof. Note that { € R(Py) is a solution of (4.15) if and only if
((PhAZ(QMY APy + aD(, @) = (PR AL QM) @y, i) foralli=1,...,n.

We note that
(PnAZ(Q) AzPnd, i) = (PrAZ(QR)' AzPn, 01)
= ((QF)' AzPn§, Az i) x-
= ((QP)' AzPn§, (Q7) Azpi)
= (R(QP) APl RQP) Az 1) x
= (QRALPn(, QU RA Qi) x.
Also,

(PnAi(QT)'CDw, i) = ((Qf)'(Dw,Az(POx’f = ((Q,'f')'(Dw, (ka)’Az‘Pi>x*
= (%(Q?)'wa, SR(QZ')'Az(Pi)x = (QFRDy, QY RA P x.
Now, using (4.10) and (4.11), we have

n n
(PrAZ(Q AzPr + al)§, @i) = Y g™ (RAp)™, (RA00)™)x + @ Y a™(pj, p1),
j=1 j=1

(PrAL Q) D, @i} = (RDY)™, (RAL0)™ )

foralli=1,...,n. Thus, { = Y7, q{"’%p,- is the solution of (4.15) if and only if g™ := [qT", ..o, @M is the
solution of (4.14). O

Hereafter, the solution of (4.15) is denoted by qu’Z’W, that is,
n
arsn, = g e,
i=1
where q"X := [¢T, ..., gI™¥] is the solution of the matrix equation (4.14).
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14 — S.Mondaland M.T. Nair, Parameter identification problem in heat equation DE GRUYTER

Our next result gives an estimate for the quantity [|g — CI,'X",'Z'WH-

Theorem 4.11. Let g4, and qgf’g‘w be as defined in (3.3) and (4.13), respectively. Let n, > 0 and Nmi > O be
such that

Az = AzPull < 1, "(Q?)’Az = Azl < Nk
Lete > 0and 6 > 0 be as in (3.1) and (3.2), respectively. Then

mkn

E+6+ Nmk +
Ig = g™ < 11q - Gaull + cp o Imk * In

2+a ’

1
where ¢, = max{|qll, 5}.

Proof. Following the similar calculations, as done in the proof of Theorem 3.1, with A, being replaced by
(QP)' APy, we have

Ay — (Q") APyl 6
190 — a0 < vka lgl+ 5 7=
Now,
Ay - (Q;T),Azpn =Ay-A;+[I- (Q}T),]Az + (Q?)’[AZ(I - Pp)].
Therefore,

Ay - (Q]r(n)’Aan” < E+ Nmk + Nn-

Thus, we have

mkn

E+6+ +
I - gl < 1q - Gl + cq ot mk T n

2~a
If 1 = HY(Q), then we know from Theorem 2.2 that A, is a compact operator. Using this fact and Corollary 4.8,
we deduce the following result.

O

Theorem 4.12. Let A,: HY(Q) — X* and Qp': X — X be as defined in (2.2) and (4.12), respectively, and let
€ > 0 be given. Then there exists N € N and my € N for every k > N such that

IQ'Az - Azll < € forallm > my, k > N.
Proof. Since A,: HY(Q) — X* is a compact operator, R4, is also a compact operator. Hence
S=cliRA.q : g € H'(Q), gl < 1}
is a compact subset of X. Since %(Q?)’ = (Qf)i)%, we also observe that, for any g € H'(Q),

I(QF) Azq — Azqllx- = IR(QY)' A2q — RAzqllx = (Q)RAzq — RA-qlx.

Therefore,

Q) Az - Azl = sup [(QF)'Azq — Azqllx+ = supl(QF)E — &lx.

lql<1 £eS

Let & € Sand € > 0. Since S is a compact subset of X, there exists &1, ..., ¢, € Ssuch that S ¢ Ule B(é&;, %),
where B(;, £) denotes the open ball in X centered at & and radius £. Let j € {1, ..., p} be such that
1€ - &llx < % Now, using Corollary 4.8, for each i € {1, ..., p}, there exists N; € N and m; j € N for each
k > N; such that [[(Q}")&; - &illx < § for all m > m;x, k > N;. Let N =max{N;:i=1,...,p}, and for k > N,
let my = max{m;x:i=1,...,p}. Then, for every k > N and m > my, we have ||(Qf)§,~ =&illx < % for all
ie{1,...,p} Thus, for every k > N, there exists my € IN such that, for all m > my,

Q& = &l < 1QHE = QY &illc + 1(QHE = &jllx + 11 — &llx

< 208 - gl + 1QE - §lx < 5+ 5 =& o
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DE GRUYTER S. Mondal and M. T. Nair, Parameter identification problem in heat equation = 15

Remark 4.13. From the above theorem, it follows that, for the case 3 = H'(Q), nmk can be small for some
large enough m, k. Thus, combining the above theorem and Remark 4.3, it follows that, for large enough
m, k, n € N, n, and n,yx can be small. Suppose that 1, + nmk < € + 6 for some large enough m, k, n € N. Then
the estimate in Theorem 4.11 takes the form

mkn

e+6
llg - Qa,z,w" <g - qaull + qu;

where ¢4 = max{||qll, 3}.

5 Parameter choice strategy

We have seen in Theorem 4.11, our bound for the error ||g - QZ",IZ'W" is given by quantities depending on the
parameter a along with the noise levels €, §, and the estimates 1,,, nmx depending on the natural numbers
k, m and n. Also, in Remark 4.3 and Theorem 4.12, we have observed that, in certain cases, 17, and mk can
be small enough for some large n, m, k € N. In our subsequent analysis, we will show that if we can choose
k, m, n € N depending on the noise level &, § appropriately, then we can choose the parameter a depending
on ¢, § such that |lg - g'%", || > Oas e, 6 — 0.

Since g,y is a Tikhonov regularized solution, it is known that ||g — gq,ull = 0 as @ — 0. In order to obtain
an estimate for ||g — qq,ull, it is necessary to assume some source condition on g. As in the classical theory of

Tikhonov regularization, we assume the following general source condition on q.

Source condition: Assume that
q=9AA)NE 18l <p, (5.1)

for some p > 0 and for some monotonically increasing positive function ¢ defined on (0, y], where y > || 4.,

such that limy_,0 ¢(A) = 0 and

ap(A)

sup 2 <@(a) foralla > 0.

0<A<y A+

Note that, under these assumptions, ||g|l < pp(y).
Under the above assumptions, we have

q-qau=aA A, +al) g = a(ALA, +al) tp(ALA,)E

so that

ap(A
10 - daall = (A2 Ay + aD  o(As A0 < sup LN e < po(@).
osisy A+ a

A typical case of such a situation is when g is in the range of ¢(A};A,), where @(A) := A” for some v € (0, 1]
or p(A) := [log(%)]’p for some p > O (see, for example, [4, 11]).
Under the above source condition on g, by Theorem 4.11, we obtain

X E+0+Nmk+1
lg - azs'll < po(a) + Cq# (5.2)
For the simplicity of presentation, we use the notation w := € + §.
Now, suppose there exists n,, m, and k, € N such that
Nmyk, + Mn, < W. (5.3)
Then, from (5.2), we have
MokoNe w
lg —qazw “l <ppla)+ Cq%- (5.4)
Next, we observe that the estimate pp(a) + ¢4 \/% in (5.4) attains a minimum at a,, for which
Cqg w
(ay) = 4 =
play p iy
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16 —— S.Mondal and M. T. Nair, Parameter identification problem in heat equation DE GRUYTER

Let Y(A) = "_"V‘gl“’

, 0 < A <y. Then we have

w= p—““_i"’(““') — P(e(aw))
q

so that @, = @~ [1p~}(w)]. Therefore, from (5.4), it follows that ||q — qanf,ﬁ?‘;,’“ I < 2pp(ay) = 201~ (w). Thus,
we have the following result with an a priori choice of the parameter a.

Theorem 5.1. Forw = ¢ + 6, let k,, my, n, € N be as in (5.3). Let ¢ be as in the source condition (5.1) and

ArJ@~1(A
zp(/l)zl*() forO< A<y,
q

wherey := |Ay|1> and cq = max{liqll, 3}. Then, with the choice of a := ¢~ [p(w)],

lg - qiske™ Il < 20~ (w).

Note that, in the above theorem, for the choice of the regularization parameter a, an a priori knowledge of gq
through the function ¢ is required. But, in practical situations, we may not have an a priori knowledge of ¢.
In such a case, we need to apply some a posteriori parameter choice strategies which do not need any prior
information about such a function ¢. An adaptive method for a posteriori parameter choice is given in [7, 13].
In the following, we use the same technique for choosing the regularization parameter a posteriori.

5.1 A posteriori parameter choice

In order to obtain an a posteriori parameter choice, we assume that C > % is a constant such that

po(y) <C, (5.5)

where y, p and ¢ are as given in (5.1). Further assume that w? < y, where w = € + 6.
Let ap = w?, and let u > 1 be any fixed real number. Let

a; = ulag, i=1,2,...,N forsomeN e N. (5.6)
Clearly,wehaveO < g < a1 < a3 < --- < ayand v/a; < u~/a;_; foralli =1, 2, ..., N.Since ¢ isan increasing

function and by our assumption ag < y, we have pp(ap) < pe(y) < C. Let
l=max{i€{0,1,...,N -1} : pu'op(a;) < C}. (5.7)
Then, for allj € {0, 1, ..., I}, we have
P p(ay) < pp'p(ay). (5.8)
We now prove the following lemma.
Lemma 5.2. Letl be asin (5.7). Then, foranyj € {0, 1, ..., 1}, we have

wkony " < 4_(?.
yl

Mykyny m
” Qal,z,w - Qaj,z,w

Proof. Note that, by our assumption in (5.5), we have ¢4 < C. Now, using the definition of [, (5.4) and (5.8),
we have, forany j < [,
u)kul w ulkw w u)kul w wkw w
||qg11,z,wn - qz:—,z,wn [ < ||qg11,z,wn -qll+lq - q:rxr;,z,wn I
Cq 2C 2C - E

€q . = 2
sp(p(a1)+ﬁ+p(p(a])+ Y < o + S

This completes the proof. O
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DE GRUYTER S. Mondal and M. T. Nair, Parameter identification problem in heat equation = 17

Let
= max{i : gekeme — grekone) < 2 2 i=0.1, i} fori e {0,1,...,N}. (5.9)

Then, by Lemma 5.2, it is clear that | < k. Thus, k is 1ndeed well-defined.
Following the idea used in the proof of [7, Theorem 4.3], we now prove the following theorem.

Theorem 5.3. Let k be as in (5.9). Then, with the notations as in Theorem 5.1,
lg - gikame| < 12Cupyp (w),
where C > % and p > 1 are as in (5.5) and (5.6), respectively.

Proof. Sincel < k, by (5.4), (5.7), (5.9) and Lemma 5.2, we have

mykyn mykyn mykyn mykyn
llg - Qa,-(u:z,www" <lg- da'z'w “II + ||Qa1?z,u|:v i Qasz Wl
Cq mykyn mykyn
<polap) + ﬁ + ||Qm(:}z,a\jv ¢ - qasz Wl
C 4 6C
sp<p(a1)+—1+—ls —-
T TURY

Let a, be such that pp(ay) =
definition of I, we have

=Cqg—= F Then pop(a) + cq attains its minimum at a,,. Therefore, from the

PlaEy = Lo 2 S <" pla) = p(aron) V.
Since ¢ is an increasing function, from the above inequality, it follows that a,, < a;;+1. Hence
V& < Vag = pvar = wp't?
Thus, we have

-1
mokonoy _ 6C _ (o B HPP(0) _ HPYT (@)

g - qaziw” Il < u_ N e ca
Recall that ¢4 > 3, so we have
lg - gaesarll < 12Cppyp~ (w).
This completes the proof. O

Remark 5.4. Note that the parameter a; is chosen without any prior knowledge of ¢. Also, Theorem 5.3
shows that the parameter a;, gives an order optimal rate guaranteed by the a priori case.

6 Numerical illustration

In this section, we numerically compute an approximation for the diffusion coefficient g, applying our method

for two simple examples. In Section 4, we have seen in detail how to obtain qu’gw, where z and w are the noisy

data corresponding to u and u;, respectively. Also, if € and § are the corresponding noise levels as described

in (3.1) and (3.2), then Theorem 4.11 gives us an estimate for the quantity |q - qa",’Z'WII}c. We first write the

algorithm for obtaining qﬁ’;?w and then, as an illustration, consider two examples to see how the functions g
mkn

and qZ‘,’;’fW are close to each other, and also to see the decrease in the computed values of error [|g — gz*7", ll5¢
by appropriately choosing a, m, k, n.

Algorithm 6.1. The procedure for obtaining q('f”g'wz
(a) Construct finite-dimensional subspaces X, of 7, X of H1(Q) and Y,, of L2(0, T) such that

UX,,:CH, UXk=H1(Q) and UY,,,:LZ(O, 7).
n k m
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(b) Consider orthonormal bases {1, ..., @a}, {@1,..., Pxtand {g1, ..., gm} of Xn, Xy and Yy, respectively,
and construct the orthonormal basis {¥'¥ : 1 <i < k, 1 < j < m} for the finite-dimensional subspace Xy
of X using the formula ¥V = g;@;.

(c) Compute (SRAz(pl)’"k = fozl Zj"ll cﬁj‘I’U foreachl € {1,..., n} by solving the equations

k m T
Y Y J(\prq(-,t), W, ) g dt = (Az@)(¥P9) forl<ps<k, 1<g<m.
i=1j=1 §

(d) Compute (RD,,)"k := ¥ Y7, e;¥V by solving the equations

k m T
XD J(\qu(-, ), YI(-, ) ) dt = D, (¥PI) forl<ps<k, 1<qg<m.
i=1j=1 0

(e) For1 <i,j<n,compute

k m
aglk i= (RA )™, (RA0)™ )y = z Z ChaChq»
p=1qg=1
k m .
Z €pqCpg>
=1¢g=1

bk = (RD,)™, (RA0)™ ) =
p

dij := {@j, Pi)ac.
(f) Solve the matrix equation (A™ + aD)q™ = bk, where A™k = [ag.‘k]nxn, D = [dijlnxn, b™ = [BI™ ] 1.

Having obtained g™ = [q]%, ..., K], k", is given by
X -k
anshw =) " pi.
i=1

In the following two examples, we take Q = (0, 1) x (0, 1) and ¢ as the noise level for both u and u;, and
we take k = n. All numerical computations are done using MATLAB.

Example 6.2. Let u(x, t) = sin 7ixt. Then, for g(x) = x(1 - x) in H'(0, 1), u is the solution of (1.1)—(1.3) with
g=0,h=0and
f(x, t) = mx cos xt — (1 — 2x)mt cos mxt + x(1 — x)m*t? sin mxt.

Let
£ . €
z(x, t) = u(x, t) + 3n sinmxt, w(x,t) = uqx,t)+ §X cos rixt.

Example 6.3. Let u(x, t) = sin ixt. Then, for q(x) = sin 27tx in H'(0, 1), u is the solution of (1.1)-(1.3) with
g=0,h=0and
f(x, t) = mx cos mxt — 2>t cos 27tx cos mxt + > t* sin 27x sin 7xt.

Let
£ . £
z(x, t) = u(x, t) + 3 sinzmxt, w(x,t) = uqx,t)+ §x cos mxt.

Illustration: We now give a brief illustration of the numerical procedure for the above two examples. Let

G100 =1, Gn(x) = __ Yz cos(n-1mx, nz2,xe(0,1),

-1
and
gm(t) := \/Esinmnt, meN, te(0,1).

Then it can be seen that {(,, : n € N} is an orthonormal basis of H(0, 1) and {g,, : m € N} is an orthonor-
mal basis of L?(0, 1). If } = H'(Q), then we take @, = @, n € N, as above, and if H{ = L?(Q), then we take
{on:neN}as{1}u{vV2cos(n-1)ax : n > 1}.
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Error

n=k=30 n=k=40 n=k=50 n=k=60
£ L2 H! L2 H! L2 H! L2 H*

9x107% 0.0029 0.2911 0.0028 0.2850 0.0028 0.2810 0.0028 0.2781
9x107° 0.0012 0.2107 0.0009 0.2011 0.0008 0.1945 0.0008 0.1897
9x107° 0.0011 0.1698 0.0007 0.1572 0.0006 0.1475 0.0005 0.1416
9x1077 0.0011 0.1462 0.0007 0.1328 0.0006 0.1214 0.0005 0.1180
9x10°8 0.0011 0.1321 0.0007 0.1178 0.0006 0.1070 0.0005 0.1060
9x107° 0.0011 0.1269 0.0007 0.1108 0.0006 0.1004 0.0005 0.0971
9x1071°® 0.0011 0.1256 0.0007 0.1088 0.0006 0.0983 0.0005 0.0928
9x107!!  0.0011 0.1253 0.0007 0.1084 0.0006 0.0979 0.0005 0.0917
9x10712  0.0011 0.1253 0.0007 0.1083 0.0006 0.0978 0.0005 0.0914

Table 1: Values of g — g7%", ll,2(0,1) and Ilg — g7 lly1(0,1) for m = 20, k = n and for different values of &, n

corresponding to Example 6.2.

Error

n=k=30 n=k=40 n=k=50 n=k=60
£ L? H! L2 H! L2 H* L2 H*

9x107% 0.0105 2.2842 0.0095 2.2520 0.0092 2.2314 0.0090 2.2165
9x107° 0.0065 1.4271 0.0047 1.3670 0.0040 1.3258 0.0036 1.2978
9x107° 0.0063 1.0908 0.0043 1.0054 0.0035 0.9384 0.0031 0.9055
9x1077 0.0063 0.9471 0.0043 0.8520 0.0035 0.7629 0.0031 0.7509
9x1078 0.0063 0.8505 0.0043 0.7627 0.0035 0.6756 0.0031 0.6830
9x107° 0.0063 0.7948 0.0043 0.7017 0.0035 0.6321 0.0031 0.6280
9x1071° 0.0063 0.7782 0.0043 0.6785 0.0035 0.6163 0.0031 0.5883
9x10711  0.0063 0.7744 0.0043 0.6729 0.0035 0.6124 0.0031 0.5745
9x10712  0.0063 0.7736 0.0043 0.6716 0.0035 0.6115 0.0031 0.5713

Table 2: Values of [|g — g7, ll,2(0,1) and Ilg — g7&% lly1(0,1) for m = 20, k = n and different values of €, n

corresponding to Example 6.3.

To obtain integrals numerically, we have used Simpson’s 1/3 rule. For that, we have considered partitions
with uniform mesh for the space and time variables as

O=Xxp<x1<---<xy1=1 and O=ty<t;<---<tyy=1.

We have taken N1 = N2 = 100, x; = ih, t; = jh with h = 35.
After obtaining qg”’g‘w as described in Algorithm 6.1, for k = n, we have calculated ||q - qg{’;j1W|| H1(0,1) and

lq - q;ﬁ’g’w lz2(0,1) numerically using Simpson’s 1/3 rule for nine different values of the noise level £ which are
given in Table 1 and Table 2, namely, fore =9 x 1075, s € {4, ..., 12}

From the theory of Tikhonov regularization, it is known that if g is smooth enough and m, k, n are large
enough such that 1, + nmi < € and if we choose a = £%/3, then the estimate || — g%", |l is of the order £2/3.
So we have done the computations by taking a = £2/3 for different values of €. From both the tables, we

observe that errors in L2-norm are much smaller than errors in H!-norm.

Remark 6.4. While performing numerical computations, we have observed that if m is increased for a fixed n
and k, then the change in the value of |g - qu’Z’W l#1(0,1) is very negligible. So, in both the examples, we have

presented all the numerical computations by taking m = 20.

Figure 1 and Figure 2 correspond to Example 6.2 for the cases H'(0, 1) and L?(0, 1), respectively. Figure 3
and Figure 4 correspond to Example 6.3 for the cases H' (0, 1) and L?(0, 1), respectively. In all the figures,
the curve corresponding to the label “q” is for the function g(x), and fori = 1, 2, 3, 4, the curves with labels

€; correspond to the function q{,’}’g‘ w;» Where qZ";I” w; 18 as obtained using the Algorithm 6.1 for the noise level
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Figure 1: Graphs of g and q,’,",’z‘f’w for different noise levels corresponding to Example 6.2 for the case 3 = H(0, 1).
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Figure 2: Graphs of g and q,’,",’g’w for different noise levels corresponding to Example 6.2 for the case 3 = L?(0, 1).
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Figure 2 (continued)
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Figure 3: Graphs of g and q{,"f}f’w for different noise levels corresponding to Example 6.3 for the case 3 = H1(0, 1).
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Figure 4: Graphs of g and q{,",’z‘f’w for different noise levels corresponding to Example 6.3 for the case 3 = L?(0, 1).

£ =9 x 1073 From the figures, it is evident that, as the noise level & gets smaller, the computed function
qg"’g?w gets closer and closer to the actual function q.

7 Concluding remarks

Motivated by the idea used in [12], we have converted our inverse problem of determining the parameter
function g (also known as diffusion coefficient) from an approximate knowledge of the solution u and u; into
an operator equation by means of a weak formulation of the given parabolic PDE. We have formulated the
inverse problem as an operator equation with data as the operator and the right-hand side and used Tikhonov
regularization for obtaining stable approximations to g.

Also, we have given a procedure to obtain finite-dimensional subspaces of the infinite-dimensional
Hilbert space X = L2(0, T; H'(Q)) from the knowledge of finite-dimensional subspaces of H*(Q) and L2(0, T)
in a natural way. Using these finite-dimensional subspaces and finite-dimensional subspaces of 3, we have
obtained approximations to g, which are obtained using solutions of certain matrix equations.

Acknowledgment: The authors thank the anonymous referee for many useful suggestions on the first version
of this paper, which helped greatly to improve the contents as well as presentation of this paper.
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