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Abstract A hybrid finite-volume/finite-difference scheme
is proposed to solve the one-dimensional Boussinesq equa-
tions for wave attenuation by vegetation. The effect of
vegetation is included as a source term in a form of drag
force. The convective part of the equations is discretized by
the finite-volume method, while the finite-difference method
is used to discretize the remaining terms. The variable values
for the local Riemann problem at each cell face are calculated
by a fourth-orderMUSCLreconstructionmethod.The source
terms and the dispersion terms are discretized using the
centered finite-difference schemes up to fourth-order accu-
racy. The unsteady terms are discretized by the second-order
MUSCL-Hancock scheme. The discretized continuity equa-
tion is solved explicitly, while the discretized momentum
equation is solved using the Thomas algorithm. The devel-
opedBoussinesqmodel is testedwith analytical solutions and
reported experimental data. To further validate themodel, the
computed results are compared with the experimental data
observed in two vegetated wave flumes. It is demonstrated
that the developedmodel is suitable for predictingwave prop-
agation in vegetated water bodies.
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List of symbols
Av Projected area of a vegetation stem normal to

flow
bv Width of vegetation stem
CD Drag coefficient
F Convective flux vector
Fv Drag force per unit area
F Flux vector at an interface
FL Flux vector evaluated at the left-hand side of

a cell interface
FR Flux vector evaluated at the right-hand side

of a cell interface
g Gravitational acceleration
H Water surface level from a datum
h, hL, hR Flow depth, depths evaluated at the left- and

right sides of a cell
htol Water depth tolerance to define a dry cell
hv Length of vegetation stem
i Cell index
i ± 1/2 Cell interface indices
L , R Left and right sides of a cell interface
S Source term vector
S0 Bed slope
Sf Bed friction
t,�t Time and time step
tv Thickness of vegetation stem
U Vector of conserved variables
u Velocity
uL, uR Velocities evaluated at the left- and right-hand

sides of a cell interface
W Thickness of sponge layer
ω Angular velocity
x, y Cartesian coordinate
�x Cell length
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z Bed elevation from datum
η Deviation of water surface from still water

1 Introduction

Large amplitude waves induced by hurricanes and tsunamis
in coastal water can inundate low-lying areas, causing casu-
alties and damage to properties. The focus of recent trends for
protecting coastal areas from such hazards is on non-intrusive
measures, such as vegetation. Vegetation offers resistance
to the incident waves, dissipates wave energy and surge,
strengthens the soils through root systems and induces sed-
iment deposition in the vegetated regions. Thus, vegetation
plays an important role on attenuation of wave runup in a
beach and its shoreline stability. Therefore, there is a need to
improve knowledge onwave–vegetation interactions through
experimentation and numerical analysis.

Different types of vegetation produce different amount
of resistance to the shoreward propagating waves. A num-
ber of laboratory experiments and field measurements on
different vegetation species have been carried out by many
investigators over the time. The laboratory and fieldmeasure-
ments have been used to understand the physical processes
and to validate the mathematical models. Knutson et al.
(1982) conducted a field study on wave damping in two
Spartina alterniflora marshes located on the eastern shore
of the Chesapeake Bay in Virginia, USA. Asano et al.
(1988) and Kobayashi et al. (1993) conducted experiments
on wave attenuation due to vegetation in a flume using
flexible polypropylene strips as model vegetation. Schutten
et al. (2004) measured the hydraulic forces on submerged
aquatic vegetation by waves. Augustin et al. (2009) con-
ducted laboratory experiments on wave attenuation using
synthetic vegetation under a range of wave conditions and
plant stem densities. Li and Yan (2007) conducted exper-
iments on wave–current–vegetation interaction in a flume
using semi-rigid rubber rods as model vegetation. Ozeren
and Wren (2011) conducted a large number of experiments
in a laboratory wave flume to examine and measure the resis-
tance effect of artificial vegetation and live vegetation species
collected from the Louisiana and Mississippi Gulf coasts.
Their experimental conditions include various incident reg-
ular and random waves. These experiments have provided
knowledge and understanding of the physical phenomena
and the collected data have been widely used for validating
mathematical models.

Considerable research efforts have been devoted over the
years to the development of analytical and mathematical
models to predict wave runup and its attenuation by veg-
etation. Many simulation models predict wave attenuation
using time-averaged conservation equation of wave energy
and account for vegetation effect as an energy dissipation

term (Price et al. 1968). Knutson et al. (1982) concluded
that wave attenuation is caused by energy loss through the
work performed on the plants. Camfield (1983) considered
vegetation as a high friction area and studied wind-wave
growth over shallow flooded regions. Later on, the conserva-
tion of momentum approach was introduced to predict wave
attenuation by vegetation (Kobayashi et al. 1993). In these
studies, either analytical solutions of the governing equations
obtained from the linear wave theory have been exploited,
or simplified form of the momentum equation has been
solved.

Wave attenuation due to vegetation can also be quantified
by numericalmodelling of free surface flows described by the
fully three-dimensional (3D) Navier–Stokes equations con-
sidering resistance due to vegetation as a source term (e.g.,
Li and Yan 2007; Zhan et al. 2014). However, those numer-
ical models based on the Navier–Stokes equations are very
time-consuming and are not efficient for practical applica-
tions. The computationally more efficient long-wave models
using the depth-averaged (or shallow water) equations are
often preferred over the models based on the Navier–Stokes
equations (Wu et al. 2013). Among them, the depth-averaged
shallow water equations are valid only for non-dispersive
long waves. For examples, Wu et al. (2001) and Thuy et al.
(2010) developed or applied the two-dimensional (2D) shal-
low water models to study the impact of mangroves, coastal
forests and instream vegetation on tsunami waves, tidal cur-
rent and river flow, which are typical long waves. Due to the
non-dispersive feature, the shallow water equations are also
not suitable for modelling wave deformation and transforma-
tion from relatively deep water to shallow water and when
the propagating waves are short in nature. This situation is
common, especially in the case of experiments conducted
in laboratory flumes. In these circumstances, another class
of numerical models based on the solution of the extended
Boussinesq equations is a suitable choice.

The pioneering work of Peregrine (1967) established the
foundation of many Boussinesq-type models used today.
However, the equations were restricted to relatively shallow-
water depths, i.e., thewater depth had to be less than one-fifth
of the wave-length to keep errors in the phase velocity to less
than 5%.Madsen et al. (1991) enhanced the classical Boussi-
nesq equations by introducing third-order terms with a free
parameter into the momentum equation. Nwogu (1993) was
the pioneer who derived a new set of governing equations
from the three-dimensional Euler equationswith the horizon-
tal velocity evaluated at a reference depth. These equations
have errors of less than 2% in the phase velocity from the
shallow-water depths up to the deep water limit. However,
Nwogu (1993) optimized form of the equations which limit
the ability of the equations to describe highly nonlinearwaves
in shallow water and this led Wei and Kirby (1995) to derive
a fully nonlinear form of the equations. The fully nonlinear
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equations are particularly useful for simulating highly asym-
metric waves in shallow water, wave-induced currents, wave
setup close to the shoreline and wave–current interaction.
Later, Nwogu (1993) extended the fully nonlinear Boussi-
nesq equations to the surf zone, by coupling the mass and
momentum equations with a one-equation turbulence model
for simulating the temporal and spatial evolution of the turbu-
lent kinetic energy produced bywave breaking. The resulting
numerical model and its unique capabilities were demon-
strated in numerous prototype applications by Nwogu and
Demirbilek (2001). The above two approaches have iden-
tical dispersion characteristics that show good agreement
with linear wave theory. Tonelli and Petti (2009) and Tonelli
and Petti (2010) proposed a hybrid scheme for the extended
Boussinesq equations of Madsen and Sørensen (1992) for
slowly varying bathymetry. Their numerical code combines
the finite-volume technique applied to solve the advective
part of the equations and the finite-difference method to dis-
cretize the dispersive and the source terms.

Shiach and Mingham (2009) explored the accuracy of
a second-order discretization of the unsteady term in the
extended Boussinesq equations unlike the fourth-order dis-
cretization of the unsteady term (Tonelli and Petti 2009).
They concluded that second-order accurate discretization for
time and up to fourth-order accurate discretization in space
provide sufficient accuracy for the Boussinesq equations pro-
posed in Madsen and Sørensen (1992). Meanwhile, Shi et al.
(2012) presented a high-order TVD solver using the HLL
scheme (Harten 1983) for the Boussinesq equations. The
study shows that the Riemann solver-based approach can
successfully simulate breaking and non-breaking wave prop-
agation. However, these Boussinesq equations-based models
did not consider the effects of vegetation. In recent years, the
Boussinesq-type models have been used to simulate decay
in wave height due to vegetation. The Riemann solver-based
solution approaches for the Boussinesq equations with veg-
etation effect are highly limited. The main advantage of
the Riemann-solver-based approaches is that the breaking-
wave propagation can be computedwithout considering extra
efforts for wave breaking phenomenon (Tonelli and Petti
2009, 2010). Therefore, the underlying motivation of this
research is to develop a Riemann solver-based computation-
ally stable and robust hybrid solution scheme for applications
of the Boussinesq models to wave dissipation in heavily veg-
etated coastal areas. To achieve this goal, the Boussinesq
equations presented in Shiach and Mingham (2009) were
modified to include a drag force term that represents the
resistance of vegetation as a source term in the momentum
equation. A hybrid finite-volume/finite-difference method
was used to solve the resulting governing equations for break-
ing and non-breakingwaves. Themodel has been verified and
validated with analytical solutions and experimental data.
The governing equations, numerical schemes, verification

Fig. 1 Definition sketch of free surface flow problem

and validation of the model are described in the following
sections.

2 Governing equations

In this section, the Boussinesq equations (Shiach and Ming-
ham 2009) are extended to take into account the effect of
vegetation and rewritten in the conservative form so that a
hybrid finite-volume/finite-difference scheme can be used.
Figure 1 provides the definition sketch of the free surface flow
problem, in which ddenotes the still water depth, η the free
surface elevation above the still water level, h the water depth
(d + η), and zb the bed elevation from a datum. Including
the vegetation drag force term, the resulting one-dimensional
(1D) Boussinesq equations are given by

∂η

∂t
+ ∂(hu)

∂x
= 0 (1)

∂(hu)

∂t
+ ∂(hu2)

∂x
+gh

∂η

∂x
+ ∂ψ

∂x
+ghSf+FD + Fsp = 0 (2)

where u is the depth-averaged horizontal velocity, Sf is the
friction slope Sf = n2u |u|h4/3 with n being the Manning’s
roughness coefficient, FD denotes the drag force per unit area
induced by vegetation, Fsp is the energy dissipation in the
sponge layer that is described later, and the term ψ accounts
for wave dispersion:

∂ψ

∂x
= −

(
B + 1

3

)
d2

∂3(hu)

∂x2∂t
− Bgd3

∂3η

∂x3

−d
∂d

∂x

(
1

3

∂2(hu)

∂x∂t
+ 2Bgd

∂2η

∂x2

)
(3)

where B is a free parameter that determines the dispersion
properties of the system. Madsen and Sørensen (1992) has
suggested a value of B = 1/15.

By assuming that the bathymetry remains constant over
time or changes much slower than the water surface, the con-
tinuity and momentum equations, Eqs. (1) and (2), can be
rewritten in the conservative form as:
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∂U
∂t

+ ∂F(U)

∂x
= S (4)

whereU and F(U) are vectors containing the conserved vari-
ables and fluxes, respectively, and S is the vector of source
terms:

U =
[
h
�(hu)

]
;F =

[
hu
hu2 + 1

2gh
2

]
;

S =
[
0
gh(So − Sf) − FD − Fsp + Sd

]
(5)

where S0 is the bed slope. The provisional variable �(hu)

and the source term Sd are expressed as:

�(hu) = hu −
(
B + 1

3

)
d2

∂2(hu)

∂x2
− 1

3
d

∂d

∂x

∂(hu)

∂x

Sd = Bgd3
∂3η

∂x3
+ 2Bgd2

∂d

∂x

∂2η

∂x2

The quadratic vegetation drag force is determined by

FD = 1

2
CDNvAvuv |uv| (6)

where uv is the velocity acting on the vegetation elements
which is same as the depth-averaged velocity of the flow, CD

is the drag coefficient, Nv is the number of stems per unit
area, and Av is the projected area of a stem normal to the
flow direction. Because vegetation may be emergent or sub-
merged, the projected area and volume of the wetted portion
should be used in calculating the drag force. If the vegetation
element is approximated as a cylindrical stem, the wetted
projected area and volume are expressed as:

Av = Dv min(hv, h), Vv = πD2
v

4
min(hv, h) (7)

where Dv is the representative diameter of the vegetation
element, and hv is the vegetation height, and h is depth of
flow. Equation (7) makes sure that the projected area and vol-
ume for calculating drag force (Eq. 6) are calculated only for
the height of vegetation that is under water. For partially
submerged vegetation, Dv represents the diameter of the
wetted portion. In general, Dv can be interpreted as the nom-
inal diameter of the stem that is related to the stem volume
Vv by Dv = √

4Vv/π min(hv, h). More details on how to
approximate vegetation elements can be found inWu (2007).
For emergent vegetation, the acting flow velocity uv is the
depth-averaged flow velocity u. For submerged vegetation,
uv is the average velocity in the vegetation layer and can be
determined using Stone and Shen’s method (Stone and Shen
2002),

uv = ηvu

(
hv
h

)1/2

(8)

where ηv is a coefficient of about 1.0. The use of Eq. (8) is
explained in detail in Wu (2007).

3 Numerical methods

TheBoussinesq equations given in Eqs. (1) and (2) are solved
using a hybrid method in which a finite-volume scheme
is applied to the conservative part and a finite-difference
scheme is applied to the remaining terms. The hybridmethod
has fourth-order accuracy in space and second-order accu-
racy in time (Shiach and Mingham 2009). The spatial
integration of Eq. (4) over a cell with a length of �x and
applying the divergence theorem to the second term yields

∫
�x

∂U
∂t

dx +
∮
	

F · nmd	 =
∫

�x

Sdx (9)

where nm is the outward pointing normal vector of side m,
	 is the boundary of the cell. Equation (9) can be further
approximated as:

∂U
∂t

�x +
M∑

m=1

(F · nm) = S�x (10)

where M is the number of faces at each cell and is equal to 2
for the present 1Dmodel. The time integration, discretization
of the intercell fluxes and the source terms in Eq. (10) are
described in the following subsections.

3.1 Riemann fluxes and fourth-order MUSCL
reconstruction

To handle wave breaking, the finite-volume scheme requires
the solution of a local Riemann problem at each cell inter-
face and, therefore, the HLL approximate Riemann solver
(Harten 1983) is used to compute the convective fluxes. The
HLLRiemann solver is preferred because it can represent the
flux for dry bed situation and does not require any entropy fix.
Wei andKirby (1995) pointed out that a fourth-order accurate
treatment of the first-order spatial derivatives is required so
that the truncation error in the numerical scheme is smaller
than the dispersion terms present in the model. To calcu-
late the conserved variables at each cell interface for the
Riemann flux computation, the fourth-order MUSCL recon-
structionproposedbyYamamoto et al. (1998) is implemented
in this study. For smooth reconstruction of water surface at
a cell interface, the surface gradient method suggested by
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Zhou et al. (2001) is used, in which the water surface eleva-
tion rather than water depth is used as the state variable.

3.2 Source terms

A cell-centered discretization is used for the bed slope, bed
friction and vegetation drag force terms. The bed elevation
at the cell interface is obtained simply by linear interpola-
tion of the elevations at the two neighbouring cell centres.
A fourth-order central difference approximation is used for
the first derivative and second- and third-order central dif-
ferences for the second and third spatial derivatives in the
dispersion terms. The discretized source term of the momen-
tum equation for cell i takes the following form:

Si = −ghi

(
zb,i+1/2 − zb,i−1/2

�x

)
− ghi Sfi − FDi

+ Bgd3i
2�x3

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2)

+ Bgd3i
6�x3

(di−2 − 8di−1 + 8di+1 − di+2)

× (ηi−1 − 2ηi + ηi+1) + ωDs(hu)i (11)

3.3 Time integration

The time discretization is generally based on a high-
order predictor–corrector approach. According to Shiach
and Mingham (2009), the second-order accurate MUSCL-
Hancock scheme provides sufficient accuracy with less
computational cost and is thus adopted in this study. It uses
two-stage predictor and corrector method. The predictor step
determines the intermediate values over a half time step as:

Ut+1/2 = Ut − �t

2�x

[
M∑

m=1

F(Um)t · nm
]

(12)

where t and t +1/2 denote the current and intermediate values
and �t is the time step. The corrector steps provide the full
conservative solution over a time step, as given by

Ut+1=Ut− �t

�x

[
M∑

m=1

F(UL
m,UR

m)t+1/2 · nm
]

+ �tS (13)

where F(UL
m,UR

m) is the flux at the cell interface m, the val-
ues of which are obtained by the HLL Riemann solver and
UL
m and UR

m are the values of the conserved variables at the
cell interface obtained using the fourth-orderMUSCL recon-
struction method proposed in Yamamoto et al. (1998).

The value of the time step size, �t , is restricted using the
CFL condition as suggested in Shiach and Mingham (2009).

3.4 Evaluation of velocity

The velocity function �(hu) in Eq. (5) is discretized using
the second-order accurate central differences for the first- and
second-order derivatives, resulting in

�(hu)i = (hu)i −
(
B + 1

3

)
d2i

×
[
(hu)i−1 − 2(hu)i + (hu)i+1

�x2

]

−1

3
di

(−di−1 + di+1

2�x

) [−(hu)i−1 + (hu)i+1

2�x

]

(14)

which can be factorized to give

�(hu)i = ai (hu)i−1 + bi (hu)i + ci (hu)i+1 (15)

where

ai = − (B + 1/3)d2i
�x2

+ di
12�x2

(−di−1 + di+1)

bi = 1 + 2(B + 1/3)d2i
�x2

ci = − (B + 1/3)d2i
�x2

− di
12�x2

(−di−1 + di+1)

The coefficients ai , bi and ci in Eq. (14) are time independent
and hence they are evaluated once and used throughout the
simulation. Equation (15) forms a linear system of equation
with a tri-diagonal matrix, which can be efficiently solved
using the Thomas algorithm (Thomas 1979).

4 Boundary conditions

Various boundary conditions have been implemented in
the developed Boussinesq wave model, including a non-
reflecting wave boundary, a moving boundary due to wave
runup and rundown over a sloping beach, and a sponge layer
boundary to absorbwave energy at the end of the flume.Char-
acteristic boundary conditions have been used at subcritical
inlet or outlet where either water depth or velocity is known
and the unknown variable is calculated from the character-
istic equation (Kuiry et al. 2012). The non-reflecting wave
boundary, moving boundary and sponge layer boundary con-
ditions used in the present model are discussed briefly in the
following subsections.

4.1 Non-reflecting boundary condition at wave entrance

When incident waves are imposed as a time series of water
level, reflection may take place after they hit a land bound-
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ary at the other end of the domain. The reflected waves
may interfere with the incident waves. This is why a non-
reflecting wave inlet boundary condition as suggested in Hu
et al. (2000) is implemented to pass the reflectedwaves freely
through the inlet. In the characteristic equation while impos-
ing incident wave height, the reflected wave height is also
added in the expression for celerity. The reflectedwave height
is calculated assuming longwaves in shallowwater. This type
of boundary allows reflected waves to pass freely through the
inlet while imposing incident waves and this approach gener-
ally works well. Its accuracy and efficiency are demonstrated
in Hu et al. (2000).

4.2 Moving boundary on the shoreline

Wave runup and rundown on a sloping beach is a moving
boundary problem that can be viewed as wetting and drying
of boundary cells. A threshold water depth, htol (generally,
10−3 m or less), is used to determine wetting or drying. At
each time step, the cells are checked for dry and wet defini-
tion. The cells having water depths less than htol are defined
as dry; otherwise, the cells are wet. The moving boundary is
defined as the line of separation between wet and dry cells. If
a cell that has at least one neighbouring wet cell is included
in the flux computation. However, the dry cells that do not
have any wet neighbouring cell are not considered in the
computation at a time step (Kuiry et al. 2012; Que and Xu
2005).

4.3 Sponge layer boundary

For many laboratory experiments, wave absorber is usually
installed in the downwave end of the flume to reduce the
wave reflection. In a numerical model, an equivalent concept
is to implement a sponge layer in the downwave end of the
computational domain. The energy dissipation in the sponge
layer is calculated as:

Fsp = ωDs(hu) (16)

where ω is the angular frequency which can be calculated
from the given wave period, and Ds is a coefficient defined
by

Ds =
{

exp(ws/W )−1
exp(1)−1 , inside the sponge layer

0, outside the sponge layer

wherews is the distance from the starting point of the sponge
layer, and W is the length of the sponge layer. In the test
examples presented herein, the W is set at 2.5 time the wave
length which reduces wave reflection significantly.

5 Tests and results

The present numerical Boussinesq model has been validated
in a two-step test approach: first, the proposed model is first
tested for regular wave propagation without considering veg-
etation in the flow domain. Then, the model is applied to
reproduce laboratory experiments on wave attenuation by
vegetation. In the following section, we present three valida-
tion results without vegetation by simulating solitary wave
propagation in a straight and flat wave flume, wave runup
in a sloping beach, and wave deformation over a submerged
bar. After the numerical model has been confirmed that it is
accurate enough to compute wave deformation and trans-
formation without vegetation, two model test cases with
vegetation have been conducted: one case is based on the
experimental results done by Asano et al. (1988); another is
the recent laboratory study by Ozeren and Wren (2011). All
the computational results of the proposed model presented
here are the convergent or best numerical results, for which
we have tested the effects of different time steps (�t) and
grid sizes (�x).

5.1 Solitary wave propagation in a horizontal channel

A solitary wave retains its amplitude, shape and speed as
it travels down a flat-bed channel due to balance between
the nonlinear terms that steepen the wave and the dispersion
terms that flatten the wave. This classical example is used
herein to test capability of the model to simulate such a phe-
nomenon. The initial values of η and u are defined as (Wei
and Kirby 1995):

η = A1 sec h
2 [B(x − Ct)] + A2 sec h

4 [B(x − Ct)] (17)

u = A sec h2 [B(x − Ct)] (18)

where

A = C2 − gd

C

B =
(

C2 − gd

4d2
[
(α + 1/3)gd − αC2

]
) 1

2

A1 = C2 − gd

3[(α + 1/3)gd − αC2]d

A2 = − (C2 − gd)2

2gdC2

[(α + 1/3)gd + 2αC2]
[(α + 1/3)gd − αC2] d

The channel is 450 m long, with a constant water depth d =
0.45 m. The channel is discretized using �x = 0.01 m and a
stable time step of �t = 0.001s is used for the simulation.
The solitary wave with an amplitude of 0.045 m is generated
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Fig. 2 Solitary wave propagation in a channel

at the inlet with a phase speed ofC = 2.203m/s. The solutions
obtained using the present Boussinesq model at times t =
40, 80, 120, 160 and 200 s are shown in Fig. 2. The shape
and amplitude of the computed solitary wave remain almost
constant. The error in peak at t = 200 s, after the solitary
wave has travelled a distance of 437 m, is 7%, indicating
that the numerical scheme successfully retains the dispersion
present in the governing equations.However, the results show
that a train of small waves is generated behind the solitary
wave. This is the consequence of specifying the low-order
approximation of the velocity obtained from the analytical
solution to the model as initial condition and can be avoided
if high-order approximation of velocity from the numerical
model is used as initial condition (Tonelli and Petti 2009).
Tonelli and Petti (2010), in their successive study, placed
a rightward moving solitary wave and used the numerical
solution as the initial conditionwhen thewave crestwas at the
distance of 100 m from the inlet. With this initial condition,
the wave starts propagating along the numerical channel and
they were able to eliminate oscillations to a great extent.

5.2 Sine wave runup on a sloping beach

Abenchmark test for the validation ofmoving boundary con-
dition is considered here. This case also helps to examine
the accuracy of the non-reflective inlet boundary condition.
The numerical model is applied to simulate runup/rundown
motion of a monochromatic wave train on a sloping beach.
The model parameters are identical to those used in Lynett
et al. (2002). This configuration has analytical solution,
whichwas derived in Carrier andGreenspan (1958) using the
hodograph transformation to solve the shallow water equa-
tions. A sine wave train with amplitude of 0.003 m and a
period of 10 s propagates in a channel with initial water
depth of 0.5 m and climbs up a 1:25 sloping beach. The

Fig. 3 Maximum and minimum sine wave runup on a sloping beach.
Grey area represents the beach in distorted scale

domain is discretized using a grid size of �x = 0.045
m. A constant stable time step size of �t = 0.005s is
used for the entire simulation. At the inlet, non-reflecting
boundary condition is imposed to reduce the wave reflec-
tivity and at the downstream moving boundary condition is
used. Figure 3 compares the computed free surface against
the analytical solution presented in Carrier and Greenspan
(1958) for the maximum and minimum runup. The agree-
ment between computed and analytical solutions is good.

5.3 Regular wave propagation over a submerged bar

A laboratory test case introduced by Dingemans (1987) is
selected herein to examine the accuracy of the present model.
The experiments were conducted in a 23 m long straight
flume with a submerged bar and initial still water depth d
= 0.4 m. The bar consisted of a 1:20 front slope and a 1:10
back slope separated by a level plane of 2 m in length, as
shown in Fig. 4. The waves were generated with three dif-
ferent wave configurations (Table 1). Configurations A and
C generated non-breaking waves, whereas Configuration B
generated spilling breakers over the plane surface of the bar.
Waves steepened along the front slope due to the nonlinear
effects, whilst the back slope caused waves to break up into
individual waves travelling at their own speeds. Water sur-
face elevations over time were recorded at gages placed at
x = 2.0m (G1), x = 5.7m (G2), x = 10.5m (G3), x = 13.5
m (G4), x = 15.7 m (G5) and x = 19.0 m (G6).

The computational flume is discretized using a spatial step
of �x = 0.01 m and a time step of �t = 0.001s for all
the cases. Manning’s roughness coefficient is 0.001 m−1/3s
considering the smooth bottom surface. The regular waves
are generated at the inlet boundary and a sponge layer is
employed at the downstream end. Figures 5, 6 and 7 compare
the water surface elevations at different gages obtained from
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Fig. 4 Bed topography definition for regular wave propagation over a submerged bar

Table 1 Laboratory wave configurations used by Dingemans (1987)

Configuration Wave height (m) Period (s) d/L

A 0.020 2.020 0.11

B 0.029 2.525 0.08

C 0.041 1.010 0.27

the experiments, the present model and Shiach and Ming-
ham (2009) for the wave configurations A–C. It appears that
there is phase error at gauge G2 but similar results have been
reported in literature (on pages 41–42, Shiach and Mingham
2009), and they suggest that the error is associated with the
recording of the experiments at this gauge.

The computed time series of water surface elevation at
different gauges have been analyzed by calculating the mean
absolute percentage error (MAPE) and mean absolute error
(MAE), except G2,

MAPE = 1

N

N∑
i=1

∣∣∣∣ηobs − ηcal

ηobs

∣∣∣∣, (19)

MAE = 1

N

N∑
i=1

|ηobs − ηcal|, (20)

where N is the total number of data, ηobs the observed water
level, and ηcal the computed water level. The data at 0.1 s
interval are compared for the experimental, Shiach andMing-
ham (2009) and the present model. The analysis indicates
how closely the numerical model predicts the experimen-
tal water surface elevations (Tables 2, 3, 4). The gauges
G4 and G6 show maximum MAPE errors for all the three
configurations. This is due to the fact that there are consid-
erable differences between the observed and simulated data
for some time intervals though these differences are in mm

scale and the water surface elevations are very small. Again,
there are differences between Shiach and Mingham (2009)
and the simulated results but the differences are in mm scale.
Therefore, though theMAPE andMAE differences are large,
the differences in magnitudes are very small. However, the
modelling of wave configuration (b) shows the worst agree-
ment. This might be due to breaking of very small amplitude
waves and we may need a vertical 2D or 3D model.

5.4 Wave attenuation due to vegetation in a laboratory
flume (Asano et al. 1988)

The experiments conducted by Asano et al. (1988) are used
here to test the accuracy of the Boussinesq wave model
for wave attenuation caused by vegetation. The experiments
were conducted in a wave tank of 27 m long, 0.5 m wide and
0.7mhigh. The artificial vegetationwasmade of 0.25m long,
0.052 m wide and 0.3 mm thick polypropylene strips, with a
specific gravity of 0.9. The strips were bound to a wire net at
the bottom of the wave flume. The length of vegetation field
was 8 m. The capacitance wave gages were used to measure
the free surface oscillations at four locations. A series of 60
test runs were conducted, out of which two are chosen for
testing the present model. The following experimental con-
ditions are selected: (a) wave height (Hw) = 0.113m, period
(T ) = 1.25 s, d = 0.52 m and NV = 1490 m−2; and (b)
Hw = 0.086 m, T = 2 s, d = 0.45 m and NV = 1110 m−2.
These conditions were also considered by Li and Yan (2007)
and their results are also presented for comparison.

The numerical model is set up to replicate the experi-
mental conditions using a shorter length channel to reduce
computation time by specifying the observed data as inlet
and outlet boundary conditions. The computational domain
is 12 m long and 1 m wide, �x = 0.01 m, �t = 0.001 s
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Fig. 5 Comparison of water surface elevations at different gages for Case 1: a G1, b G2, c G3, d G4, e G5 and f G6

and value of Manning’s n = 0.01 are used. A non-reflecting
boundary condition is specified at the inlet and a sponge
layer is defined at the outlet. A sine wave train is introduced
at the inlet and the simulation is carried out for sufficiently

long time so that a well-developed flow situation is obtained
in the flow domain. The wave height at a point is obtained
by subtracting the minimum water level from the maximum
water level when dynamic steady state is reached at that
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Fig. 6 Comparison of water surface elevations at different gages for Case 2: a G1, b G2, c G3, d G4, e G5 and f G6

point. The longitudinal wave height profiles obtained from
the present model are compared with the numerical results
of Li and Yan (2007) and experimental data (Asano et al.
1988) as shown in Fig. 8. While plotting, the origin is con-

sidered to be at the seaward side of the vegetation field. The
Cd values for the plotted results are 0.18 and 0.15 for the
cases (a) and (b), respectively. It should be noted that the Cd

values are slightly larger than those in Li and Yan (2007)
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Fig. 7 Comparison of water surface elevations at different gages for Case 3: a G1, b G2, c G3, d G4, e G5 and f G6

and the probable reason is explained in the next test case.
Figure 8 shows that the wave attenuation predicted by the
present model closely follows the experimental observation

with insignificant error (Table 5). The present model results
exhibit slight wave reflection in the second case, which was
also reported by Li and Yan (2007).
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Table 2 Comparison of errors in predicting water surface elevations at
different gages for wave configuration (A)

Gage Shiach and Mingham (2009) Present model

MAPE MAE MAPE MAE

G1 3.76 0.0004 7.71 0.0008

G3 3.52 0.0004 9.32 0.0012

G4 49.72 0.0039 48.64 0.0044

G5 6.70 0.0008 17.16 0.0017

G6 53.37 0.0048 54.84 0.0048

Table 3 Comparison of errors in predicting water surface elevations at
different gages for wave configuration (B)

Gage Shiach and Mingham (2009) Present model

MAPE MAE MAPE MAE

G1 12.91 0.0016 13.55 0.0017

G3 6.44 0.0011 13.28 0.0022

G4 87.98 0.0049 83.30 0.0040

G5 43.27 0.0031 47.51 0.0035

G6 106.17 0.0011 90.31 0.0009

Table 4 Comparison of errors in predicting water surface elevations at
different gages for wave configuration (C)

Gage Shiach and Mingham (2009) Present model

MAPE MAE MAPE MAE

G1 8.99 0.0018 7.04 0.0014

G3 11.70 0.0020 6.62 0.0011

G4 15.54 0.0027 12.77 0.0023

G5 10.47 0.0021 15.62 0.0031

G6 38.13 0.0071 19.19 0.0037

5.5 Wave attenuation due to vegetation in a laboratory
flume (Ozeren et al. 2011)

The 1-DBoussinesqwavemodel is also testedwith data from
the experiments conducted in a 20.6 m long, 0.5 m wide, and
1.22 m high wave flume at the USDA-ARS, National Sed-
imentation Laboratory, Oxford, Mississippi, USA (Ozeren
andWren 2011). A flap-type wave maker was used to gener-
ate waves of different amplitudes and periods (Table 6). At
the downstream of the experimental setup, wave reflection
was significantly reduced using a porous plastic cover and
cottons below it. Such arrangements in the setup act as wave
absorber. Themodel vegetationwas constructed using 0.63m
long and 9.5 mm diameter wooden dowels. The dowels were
fixed to the bottom of the flume by sliding them through the
holes of perforated PVC sheets in a staggered pattern. The
length of the vegetation field was LV = 3.66 m, the stem den-

Fig. 8 Wave attenuation by vegetation (a) compared with Asano et al.
(1988)

Table 5 Error values in predicting wave height

Test case Experimental values

G1 G2 G3 G4

Case (a) 0.114 0.097 0.091 0.081

Case (b) 0.087 0.082 0.071 0.064

% Error in wave height

Case (a) 2.24 2.03 1.71 0.26

Case (b) 0.15 0.52 1.00 1.08

sity was 350 m−2 and the still water depth in the wave flume
was,d = 0.7m.All the test caseswerewellwithin the limit of
the Boussinesq approximation, i.e., the depth to wave length
(d/L) ratio was less than 0.5. Five gages were placed at dif-
ferent locations at x = 3 m (G1), x = 11 m (G2), x = 12.5
m (G3), x = 14 m (G4) and x = 15.5 m (G5) to record the
water surface elevations over time, as shown in Fig. 9.

The first gage shows some discrepancywith the prescribed
wave parameters to the wave maker and hence the computa-
tional domain is set to 15.5m long and1mwide.The inlet is at
the location of the second gage and a sponge layer is provided
after the fifth gage, thus the computational domain is 7.2 m
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long including the sponge layer. Since the wave flume bed
was made of glass, the value of Manning’s roughness coeffi-
cient at the bottom is set to 0.012m−1/3s. The spatial domain
is represented by a uniform mesh with �x = 0.01m and a
constant time step of �t = 0.001s is used for all the simu-
lations. Regular waves are generated at the upwave end and
a non-reflecting wave boundary condition is also specified.
At the downwave end, a sponge layer is specified to reduce
wave reflection. Six test conditions are selected to validate
the model. The wave height at a gage is calculated from the
recorded data using zero up-crossing method (Nwogu and
Demirbilek 2001). In each simulation, the drag coefficient,
Cd, is the only parameter that needs to be calibrated. By trial
and error and following MAPE, the calibrated values of the
drag coefficient for all the test cases are determined. Figure 10
shows the comparisons of the calculated and measured wave
heights for all the six cases. In Fig. 10, the origin is located
at G2. The calculated wave heights show wave reflection in
the front of the vegetation zone, declining subsequently due
to the resistance of vegetation. An error analysis on predict-
ing wave heights at different gage points is summarized in
Table 7. It should be noted that gauges G3 and G4 showmore
errors, but these errors are in a millimetre scale.

Figure 10 shows that the drag coefficients used in the
present model are significantly high. The same Boussinesq

Table 6 Laboratory wave configurations used in the simulation

Configuration Wave height (m) Period (s) d/L

(a) 0.066941 1.2 0.322428

(b) 0.065852 1.4 0.249571

(c) 0.065327 1.6 0.204288

(d) 0.067961 1.4 0.249571

(e) 0.085179 1.6 0.204288

(f) 0.080980 1.2 0.322428

model was applied to simulate different sets of experimen-
tal observations in Wu (2007) and exactly similar trend was
found.The1DBoussinesqmodel requires significantly larger
value of Cd when compared to the analytical models of Dal-
rymple et al. (1984) and Méndez and Losada (2004), and
the vertical 2D model of Wu et al. (2013). If the drag force
due to vegetation term used by different models is carefully
analysed, it can be found that the analytical and the verti-
cal 2D models use the local velocity squared to compute the
drag force, whereas the 1DBoussinesqmodel uses the depth-
averaged velocity squared. Therefore, it is obvious that the
calibrated Cd value in the depth-averaged model should be
larger than that in the analytical and vertical 2Dmodels to get
the same amount of total drag force and energy dissipation
in the vertical line.

6 Conclusions

This paper presents a shock-capturing scheme based one-
dimensional Boussinesq wave model to simulate wave atten-
uation due to vegetation. The model uses the extended
Boussinesq equations proposed by Madsen and Sørensen
(1992). The system of equations is arranged in such a way
that shock-capturing capability can be achieved in the model
using an approximate Riemann solver (Shiach and Ming-
ham 2009). The governing equations are discretized using a
second-order explicit scheme in time and up to fourth-order
accurate method in space through a piecewise linear recon-
struction of the conserved variables. The effect of vegetation
is included in the momentum equation as a source term in
the form of a drag force. The drag force expression con-
siders plant characteristics, such as geometry, stem density
and spatial coverage, to properly represent the physics of the
processes.

Fig. 9 Definition sketch of the experiment setup
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Fig. 10 Variation of wave heights along the flume for wave configurations (a–f)

The numerical model is first verified against the analytical
solutions reported in literature and validated with the labora-
tory data on wave propagation over a submerged bar. Good

agreement between observed and computed water surface
elevations at different observation stations is obtained. The
model is then validated with the laboratory data on wave
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Table 7 Error values in predicting wave height

Experiment % Error in wave height

G2 G3 G4 G5

(a) 1.94 1.83 3.65 0.71

(b) 1.39 4.60 3.20 0.77

(c) 1.95 4.45 3.22 0.43

(d) 0.69 4.54 4.15 0.45

(e) 0.94 3.31 1.06 0.17

(f) 0.99 2.25 1.28 0.30

attenuation by vegetation and applied to reproduce wave
attenuation by cylindrical vegetation in a wave flume. Six
more laboratory test cases are presented and thewave heights
at several gauges are compared with the observed values.
Results indicate that the model can predict wave attenua-
tion due to vegetation with reasonable accuracy. However, it
is found that the 1D Boussinesq model requires larger drag
coefficient value compared to analytical and vertical 2Dmod-
els mainly due to the difference in depth-averaged and local
velocities. This study opens up a future scope to study the
importance of vertical velocity profile on the drag coefficient.
The study can be carried out for different vegetation density
and types and for different incident wave conditions. Fur-
ther improvements to the model will consider propagation of
breaking waves in real world scenarios and extension to 2D
model.
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