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In this paper, we establish a new formula that generalizes the Jackson trigono-

metric interpolation for a 2𝜋-periodic function. This generalization is done by

using various positive exponents in the basic nodal functions that gives a wide

variety of bases during approximation. For a Hölder continuous periodic func-

tion, we compute the uniform interpolation error bound of the corresponding

generalized Jackson interpolant and prove the convergence of the proposed

interpolant. We also show that the mentioned approximation procedure is sta-

ble. In the last part, we consider a family of fractal interpolants associated with

the generalized Jackson approximation functions under discussion.
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1 INTRODUCTION

In the ordinary interpolation formula, a trigonometric sum of nth order is provided by the values of a function at 2n + 1
evenly sampled points over the interval [−𝜋, 𝜋]. We know that the convergence is not sure when the sampling points
are indefinitely increased even for continuous functions. Jackson1 proposed an interpolation formula which converges
uniformly for every continuous function. This interpolation formula does not provide minimal errors for some periodic
functions. Thus, we propose to modify Jackson trigonometric interpolation1 by extending the class of the basic functions
with different positive exponents. This is done by defining a family of nodal mappings linked to a uniform partition of the
interval and assigning positive real exponents to eachmember of this family. In this way, we get a sequence of generalized
Jackson interpolants based on the partition points of the interval. For a prescribed 2𝜋-periodic Hölder continuous func-
tion, a bound for the uniform error with respect to its generalized Jackson interpolant is computed. In particular, if we
choose the positive exponents in a suitable manner, the uniform error will be bounded, and the sequence of generalized
Jackson interpolants will converge to the Hölder continuous function.
The content of this manuscript is described in the following order. In Section 2, we generalize the Jackson interpolation

formula. It is shown that this formula gives lower errors for some periodic functions. Then, we deduce the uniform error
bound for 2𝜋-periodic Hölder continuous function. Finally, in the same section, convergence and stability results are
proved for the new interpolant. We review some introductory results in Section 3. In Section 4, we consider a family of
fractal interpolants associated with the generalized Jackson approximants. We derive an error bound for the fractal case
as well, proving the convergence for suitable elections of a fractal parameter.

2 NEW TYPE OF FOURIER INTERPOLANT

Jackson1 used n-nodal basis functions and proposed the following interpolatory formula to a 2𝜋-periodic function f: given
n-points xi in the interval [−𝜋, 𝜋] such that xi+1 − xi = 2𝜋∕n and i ∈ ℕn, where ℕn is the first n natural numbers,
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he defined

Sn( 𝑓 )(x) =
1
n2

n∑
i=1

𝑓 (xi)

⎛
⎜⎜⎜⎝
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n
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2

)
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(
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. (1)

We extend the kernels (see, for instance, the works of Jackson2 and Szabados3) with the help of positive exponents 𝛽 i as

Qn,i,𝛽i (x) =

|||||||

sin
(
n
xi−x

2

)

sin
(
xi−x

2

)
|||||||

𝛽i

for x ≠ xi,

and

Qn,i,𝛽i (xi) = n𝛽i ,

where 𝛽i > 0, i ∈ Nn. Let 𝛽 = (𝛽1, 𝛽2, … , 𝛽n) with 𝛽1 ≥ 𝛽2… ≥ 𝛽n. Based on the above generalized kernels, we suggest
the following approximation to f:

In,𝛽( 𝑓 )(x) = Kn,𝛽(x)

n∑
i=1

𝑓 (xi)Qn,i,𝛽i (x), (2)

and

K−1
n,𝛽(x) =

n∑
i=1

Qn,i,𝛽i (x). (3)

The selection of the exponential parameters in the above trigonometric expression (2) provides a greater flexibility for
approximation of data sets, generating various types of periodic functions including the Jackson trigonometric interpo-
lation formula. In particular, the use of variant exponents for different kernel functions allows greater flexibility to treat
the data.
Several types of different trigonometric approximations can be found in other works.4-8

Proposition 1. The proposed approximation formula (2) interpolates f at grid points.

Proof. First, we will show that

Qn,i,𝛽i (x𝑗) = n𝛽i𝛿i𝑗 , (4)

where 𝛿ij = 1 if i = j, and zero otherwise. As per our construction, Qn,i,𝛽i (x𝑗) = n𝛽i whenever i = j. For the case i ≠ j,
consider the natural number p such that j = i + p (or i = j + p), then

x𝑗 − xi =
2𝜋p

n
,

and thus,

sin
(
n
xi − x𝑗

2

)
= sin(𝜋p) = 0,

and hence, Qn,i,𝛽i (x𝑗) = 0. Consequently,

Kn,𝛽(x𝑗)
−1 = Qn,𝑗,𝛽𝑗 (x𝑗) = n𝛽𝑗 ,

and, for all j = 1, 2, … ,n,

In,𝛽(𝑓 )(x𝑗) = Kn,𝛽(x𝑗)

n∑
i=1

𝑓 (xi)Qn,i,𝛽i (x𝑗) = n−𝛽𝑗𝑓 (x𝑗)n
𝛽𝑗 = 𝑓 (x𝑗).
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TABLE 1 The pointwise approximation errors of various periodic continuous function for

the classical Jackson formula and our formula with different selections of n and 𝛽 i

Value of 2𝝅-periodic function Jackson (𝜷 i = 2) 𝜷 i = 2.5 𝜷 i = 3 𝜷 i = 4

n = 8
√| sin(2)| + 2

√| cos(2)| 0.2976 0.2850 0.2647 0.2110

n = 10 2sin3(−1.5) + 3cos2(−1.5) 1.0989 0.8293 0.6846 0.5135

n = 10 log
(
2 + cos

(
𝜋

2

))
0.0267 0.0205 0.0167 0.0135

n = 10 min(sin(1), cos(1)) 0.2891 0.2268 0.1989 0.1882

n = 12

√||||sin
(
3𝜋

8

)|||| 0.0574 0.0436 0.0405 0.0264

Remark 1. It is worth to note that for natural exponents 𝛽i ∈ ℕ, i = 1, 2, … ,n, the modulus is not required for the
nodal basis Qn,i,𝛽i , and for all 𝛽 i = 2, the proposed generalization (2) reduces to the original Jackson idea due to the
following:

In,2(𝑓 )(x) =
1
n2

n∑
i=1

𝑓 (xi)

⎛⎜⎜⎜⎝

sin
(
n
xi−x

2

)

sin
(
xi−x

2

)
⎞⎟⎟⎟⎠

2

, (5)

since

n∑
i=1

⎛⎜⎜⎜⎝

sin
(
n
xi−x

2

)

sin
(
xi−x

2

)
⎞⎟⎟⎟⎠

2

= n2. (6)

Now, we want to deduce the uniform error bound between a 2𝜋-periodic Hölder continuous function, and its gen-
eralized interpolant. In our computation, we need the following propositions that are readily available in the work of
Navascués et al.9 Table 1 collects the errors committed in several trigonometric approximations for different exponents
and values of n.

Proposition 2. Let 𝛽 > 0, and 𝑦 ∈ ℝ. Then for all m = 1, 2, … ,

||||
sinm𝑦

m sin 𝑦

||||
𝛽 ≤ 1. (7)

Proposition 3. Let 𝑦 ∈ [0, 𝜋
2
], then

sin 𝑦 ≥ 2𝑦

𝜋
. (8)

Let LipAd = {𝑓 ∈ (I) ∶ |𝑓 (x) − 𝑓 (𝑦)| ≤ A|x − 𝑦|d, ∀x, 𝑦 ∈ I}.

Theorem 1. Let f ∈ LipKd, where 0 < d ≤ 1. Then, for 𝛽n > d + 1

||𝑓 − In,𝛽(𝑓 )||∞ ≤ K
(
𝜋

n

)d(𝜋
2

)𝛽1
(
1 + 2d +

1
𝛽n − (d + 1)

+
1

𝛽n − 1

)
.

Proof. At first, we calculate the pointwise approximation error for the proposed method as

En,𝛽( 𝑓 )(x) ∶= In,𝛽(𝑓 )(x) − 𝑓 (x) = Kn,𝛽(x)

n∑
i=1

(𝑓 (xi) − 𝑓 (x))Qn,i,𝛽i (x).

Assume that ui ∈ [
−𝜋

2
,
𝜋

2
].2 Substituting xi = x + 2ui, we have

|En,𝛽( 𝑓 )(x)| ≤ Kn,𝛽(x)

n∑
i=1

|𝑓 (x + 2ui) − 𝑓 (x)| ||||
sin(nui)

sin(ui)

||||
𝛽i

. (9)

The numerator and denominator of the right side of (9) are multiplied by n𝛽i+1 .
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Let v0 be the smallest of the numbers |ui|, v1 the second, and continuing similarly (see the work of Jackson2(p454))
using f ∈ LipKd, (9) reduces to

||En,𝛽( 𝑓 )(x)|| ≤ Kn,𝛽(x)

n−1∑
i=0

n𝛽i+1K2dvdi
||||
sin(nvi)

n sin(vi)

||||
𝛽i+1

, (10)

where
𝜋i

2n
≤ vi ≤ 𝜋(i + 1)

2n
≤ 𝜋

2
, (11)

for i ∈ ℕn ∪ {0}. From Proposition 2 for i = 0, 1, we obtain

||||
sin(nvi)

n sin(vi)

||||
𝛽i ≤ 1. (12)

It can be verified easily that, for remaining values (i ≥ 2), after using the left inequality of (11), we get

n sin(vi) ≥ n
2vi
𝜋

≥ i,

where we used Proposition 3 to obtain the first inequality. Therefore, for i ≥ 2,

||||
sin(nvi)

n sin(vi)

||||
𝛽i ≤

(
1

n sin(vi)

)𝛽i ≤ (1
i

)𝛽i

. (13)

Collecting the inequalities from (12) for i = 0, 1 and (13) for i ≥ 2, we get

||En,𝛽( 𝑓 )(x)|| ≤ K2dKn,𝛽(x)n
𝛽1

(
vd0 + vd1 +

n−1∑
i=2

vdi

(1
i

)𝛽i+1

)

≤ K2dn𝛽1Kn,𝛽(x)

(
𝜋d

2dnd
+

(2𝜋)d

2dnd
+

n−1∑
i=2

𝜋d
(i + 1)d

2dndi𝛽i+1

)

≤ Kn𝛽1Kn,𝛽(x)
𝜋d

nd

(
1 + 2d +

n−1∑
i=2

id + 1
i𝛽n

)
, (14)

where, in the second step, we have applied (11) and, for the last step, the inequality (i+1)d ≤ (id+1), where 0 < d ≤ 1
is applied. For the functions 1

x𝛽n−d
and 1

x𝛽n
, we will use the lower Riemann sums in [1,+∞), where we have considered

unit step. Thus, the last two summands in the above expression are evaluated as

n−1∑
i=2

1

i𝛽n−d
≤

∞

∫
1

dx

x𝛽n−d
=

1
𝛽n − (d + 1)

,

and
n−1∑
i=2

1
i𝛽n

≤
∞

∫
1

dx

x𝛽n
=

1
𝛽n − 1

.

Adapting these bounds, we collect

||En,𝛽( 𝑓 )(x)|| ≤ Kn𝛽1Kn,𝛽(x)
(
𝜋

n

)d(
1 + 2d +

1
𝛽n − (d + 1)

+
1

𝛽n − 1

)
, (15)



NAVASCUÉS ET AL. 5 of 12

3 2 1 1 2 3

1

1

2

3

1 2 3
0.5

0.5

1.0

1.5

2.0

2.5

3.0

3 2 1 1 2 3
0.5

0.5

1.0

1.5

2.0

2.5

3.0

3 2 1 1 2 3
0.5

0.5

1.0

1.5

2.0

2.5

3.0

3 2 1

(A) (B)

(C) (D)

FIGURE 1 Graph of interpolated

function for different values of 𝛽 i. A,

Original function; B, Jackson interpolated

function; C, Generalized Jackson

interpolated function for each 𝛽 i = 3; D,

Generalized Jackson interpolated function

for each 𝛽 i = 4

if 𝛽n > d + 1. To estimate an upper bound for Kn,𝛽(x), we consider

Kn,𝛽(x)
−1 =

n−1∑
i=0

||||
sin(nvi)

sin(vi)

||||
𝛽i+1

>
||||
sin(nv0)

sin(v0)

||||
𝛽1

,

and

sinnv0 ≥ 2nv0
𝜋

.

Consequently,

Kn,𝛽(x)
−1 >

||||
2nv0
𝜋v0

||||
𝛽1

=
(2n
𝜋

)𝛽1

, (16)

which gives

n𝛽1Kn,𝛽(x) <
(
𝜋

2

)𝛽1
.

Applying (16) in (15), the uniform approximation error bound for the procedure is established as

‖‖𝑓 − In,𝛽(𝑓 )‖‖∞ ≤ K
(
𝜋

n

)d(𝜋
2

)𝛽1
(
1 + 2d +

1
𝛽n − (d + 1)

+
1

𝛽n − 1

)
. (17)

The following example illustrates the proposed procedure.
Example: Let the function 𝑓 (x) = 2sin3x + 3cos2x +

√| sin x| be given over the interval [−𝜋, 𝜋]. Figure 1A depicts
the graph of the function f on the interval [−𝜋, 𝜋]. Consider a partition of [−𝜋, 𝜋] with step length 𝜋

5
. The corresponding

interpolated function for Jackson interpolation is generated in Figure 1B. Using n = 10 and for each 𝛽 i = 3, the gener-
alized interpolated function is generated in Figure 1C. Finally, with the same number of points of [−𝜋, 𝜋] for 𝛽 i = 4, the
interpolated function is depicted in Figure 1D.

Corollary 1. Let f be periodic and f ∈ LipKd. Then, for 𝛽n ≥ r > (d + 1), the interpolating function In,𝛽(f) is uni-
formly convergent to f whenever n approaches infinity. The order of convergence is (n−d) and it can be noted that it is
independent of 𝛽.

In the concern for stability, first we review a result for the interpolant Im( f ) on a partition {xm
i
}m
i=1
.10

Definition 1. The interpolation Im( f ) is said to be stable if, for given 𝜀 > 0, there exists 𝛿 (depending on 𝜖) > 0 so
that max

1≤i≤m |𝑓 (xm
i
)| ≤ 𝛿 implies ||Im(f)||∞ ≤ 𝜀.
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Definition 2. For the interpolation Im( f ), the Lebesgue constant is defined as

Λm = sup
x∈I

m∑
i=1

|𝜙i(x)| , (18)

where I is the interval of definition and 𝜙i, i = 1, … ,m, are the associated nodal functions.

The next stability result can be recalled from the work of Hong.10

Theorem 2. An interpolation is stable if and only if, for any Lebesgue constant sequence {Λm}, there exists a positive

real number B satisfying Λm ≤ B for any natural number m.

From the definition of nodal functions and using this result, we can culminate that In,𝛽 is stable as the associated
Lebesgue constants verify the following equality:

Λn,𝛽 = sup
x∈[−𝜋,𝜋]

Kn,𝛽(x)

n∑
i=1

Qn,i,𝛽i (x) = 1.

Hence, we obtain that the interpolation is stable.
In the work of Navascués et al,11 we proposed a way of computation of optimal exponents of nodal functions. The

procedure consists of taking half of the sampled data to perform the interpolation and using the rest as target points. The
exponent is chosen such that the mean square error of the fitting process reaches minimum.

3 IFS THEORY AND 𝜶-FRACTAL FUNCTIONS

In this section, we review the concept of iterated function system (IFS) and the construction of fractal functions which
will be used in the sequel. Fractal interpolation function defined via IFS is a tool to approximate smooth and nonsmooth
functions generating from real-world data. More details can be read from the works of Barnsley12 and Navascués.13,14

Let X ⊂ ℝ
n,n ∈ ℕ and (X, dX) be a complete metric space with a metric dX. Let H(X) = {A ∶ A ≠ ∅, and A is

compact in X}. The Hausdorff distance between A and B in H(X) is defined as h(A,B) = max{dX(A,B), dX(B,A)}, where
dX(A,B) = sup

x∈A
inf
𝑦∈B

dX(x, 𝑦). The space (H(X), h) is called the space of fractals.12 Let {wi ∶ X → X; i ∈ ℕN} be a collection

of continuous maps on X. Then, {X; wi, i ∈ ℕN} is called an IFS on X. The above IFS is called hyperbolic if the maps
wi, i ∈ ℕN are contractive, ie, dX(wi(x),wi( y)) < |𝛼i|dX(x, y), 0 ≤ |𝛼i| < 1. For this hyperbolic IFS {X; wi, i ∈ ℕN}, the set
valued Hutchinson map ∶ H(X) → H(X) is defined as

(A) =
N
∪
i=1
wi(A).

It can be checked easily that  is a contraction and a contractive factor is |𝛼|∞ = max{|𝛼i| ∶ i = 1, 2, … ,N}. Thus,
Banach fixed point theorem ensures the existence of a unique fixed point G ∈H(X) such that G = (G). This G is said to
be the attractor or the deterministic fractal of the corresponding IFS.
Now, we briefly describe 𝛼-fractal function stem from IFS. Consider the partition of I = [a, b] as Δ = {x0, x1, … , xN}

satisfying a = x0 < x1 < … < xN = b. Suppose the set of data points {(xi, 𝑦i), i ∈ ℕN ∪ {0}} be given. Let Ii = [xi−1, xi].
Consider N contractive homeomorphisms Li ∶ I → Ii such that

Li(x0) = xi−1, Li(xN) = xi. (19)

Suppose = I ×ℝ and Fi ∶  → ℝ are N continuous mappings such that

Fi(x0, 𝑦0) = 𝑦i−1,Fi(xN , 𝑦N) = 𝑦i, |Fi(x, 𝑦) − Fi(x, 𝑦
∗)| ≤ |𝛼i||𝑦 − 𝑦∗|, (20)

where (x, 𝑦), (x, 𝑦∗) ∈ , |𝛼i| < 1, i ∈ ℕN . Consider wi ∶  →  as wi(x, 𝑦) = (Li(x),Fi(x, 𝑦)) ∀ i ∈ NN . Let us recall the
principal theorem for the construction of FIFs.
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Theorem 3. Let (I) = {𝑓 ∶ I → ℝ, 𝑓 iscontinuous} be associated with the uniform norm ||g||∞ ∶= sup{|g(x)| ∶

x ∈ I}. Consider the subspace 𝑦0,𝑦N
(I) ∶= {g ∈ (I) ∶ g(x0) = 𝑦0, g(xN) = 𝑦N}, which is a closed subspace of (I).

Barnsley12 proved the following:

1. The IFS {K;wi, i = ℕN} gives a unique attractor G which is the graph of a continuous real valued function 𝑓 and

interpolates at the grid points.

2. The Read-Bajraktarević operator T ∶ 𝑦0,𝑦N
(I) → 𝑦0,𝑦N

(I) defined by

(Tg)(x) = Fi
(
L−1i (x), g◦L−1i (x)

)
, x ∈ Ii, i ∈ ℕN

determines 𝑓 as its fixed point.

The function 𝑓 obtained in Theorem 3 is said to be a FIF associated with {Li(x),Fi(x, 𝑦)}
N
i=1

and it is a unique implicit
function verifying

𝑓 (x) = Fi
(
L−1i (x), 𝑓◦L−1i (x)

)
∀x ∈ Ii, i ∈ ℕN . (21)

Until now, most of the researchers studied FIF from the IFS

Li(x) = aix + bi, Fi(x, 𝑦) = 𝛼i𝑦 + qi(x), (22)

where 𝛼i ∈ (−1, 1) is the IFS parameter, namely, vertical scale factor of the map wi, qi ∶ I → ℝ are continuous functions
obeying

qi(x0) = 𝑦i−1 − 𝛼i𝑦0, qi(xN) = 𝑦i − 𝛼i𝑦N

due to conditions (20). The vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼N) ∈ (−1, 1)N is the corresponding vertical scaling factor.
Let 𝑓 ∈ (I). Select a partition {a = x0 < x1 < … < xN = b} of I, and let qi(x) = 𝑓◦Li(x) − 𝛼ib(x), i ∈ ℕN , where b is a

continuous map satisfying b(x0) = f(x0) and b(xN) = f(xN).

Definition 3. For 𝑓 ∈ (I), base function b, scale vector 𝛼, the IFS (21)-(22) determines a continuous function f 𝛼
and this f 𝛼 is named as the 𝛼-fractal function corresponding to f.

According to (21) and (22), f 𝛼 verifies the fixed point equation

𝑓 𝛼(x) = 𝑓 (x) + 𝛼i(𝑓
𝛼 − b)◦L−1i (x), x ∈ Ii, i ∈ ℕN . (23)

The uniform distance between f 𝛼 and f can be bounded as (see for instance the work of Navascués13)

||𝑓 𝛼 − 𝑓 ||∞ ≤ |𝛼|∞
1 − |𝛼|∞ ||𝑓 − b||∞, (24)

where |𝛼|∞ = max{|𝛼i|; i ∈ ℕN}.

Remark 2. The map f 𝛼 is interpolatory.

Remark 3. It can be checked from the inequality (24) that, if 𝛼 = 0 or f = b, then f 𝛼 = f.

4 FRACTAL INTERPOLANTS OF JACKSON TYPE

In this section, to obtain the fractal analogue of the generalized Jackson interpolant, we will perturb the basis func-
tions Qn,i,𝛽i (x) with suitable IFS parameters such as base functions bn,i,𝛽i (x), scale vector 𝛼, and partition of the interval as
delineated in Section 3. We define the generalized fractal Jackson trigonometric interpolation as

I𝛼n,𝛽( 𝑓 )(x) = Kn,𝛽(x)

n∑
i=1

𝑓 (xi)Q
𝛼

n,i,𝛽i
(x). (25)

Using Remark 2 and (4), we obtain

Q𝛼

n,i,𝛽i
(x𝑗) = Qn,i,𝛽i (x𝑗) = n𝛽i𝛿i𝑗 forall 𝑗 = 1, 2, … ,n.
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Thus, expression (25) interpolates at the grid points.

Theorem 4. Let f ∈ LipKd, where 0 < d < 1. Then, for 𝛽n > d + 1,

‖‖‖I
𝛼
n,𝛽( 𝑓 ) − 𝑓

‖‖‖∞ ≤ K
(
𝜋

n

)d(𝜋
2

)𝛽1
(
1 + 2d +

1
𝛽n − (d + 1)

+
1

𝛽n − 1

)
+ n

(
𝜋

2

)𝛽1 ||𝑓 ||∞ |𝛼|∞
1 − |𝛼|∞ ,

where 𝛼 is a suitable IFS parameter used for the construction of the fractal perturbation of Qn,i,𝛽i in the interval [−𝜋, 𝜋].

Proof. Consider the following triangle inequality:

‖‖‖I
𝛼
n,𝛽( 𝑓 ) − 𝑓

‖‖‖∞ ≤ ‖‖‖I
𝛼
n,𝛽(𝑓 ) − In,𝛽( 𝑓 )

‖‖‖∞ + ‖‖In,𝛽( 𝑓 ) − 𝑓‖‖∞. (26)

The bound for the second term was treated in Theorem 1. From (16), we have Kn,𝛽(x) <
(

𝜋

2n

)𝛽1
, and this bound can

be applied for the error in the first term of (26) since

|||I
𝛼
n,𝛽( 𝑓 )(x) − In,𝛽( 𝑓 )(x)

||| =
|||||
Kn,𝛽(x)

n∑
i=1

𝑓 (xi)
(
Q𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x)

)|||||
≤ Kn,𝛽(x)

n∑
i=1

|𝑓 (xi)| |||Q
𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x)

|||

≤ Kn,𝛽(x)||𝑓 ||∞
n∑
i=1

|||Q
𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x)

|||

≤ (
𝜋

2n

)𝛽1
n||𝑓 ||∞max

1≤i≤n
‖‖‖Q

𝛼

n,i,𝛽i
− Qn,i,𝛽i

‖‖‖∞
≤ (

𝜋

2n

)𝛽1
n||𝑓 ||∞ |𝛼|∞

1 − |𝛼|∞max
1≤i≤n

‖‖Qn,i,𝛽i − bn,i,𝛽i
‖‖∞,

(27)

where we employed (24) for the last step. bn,i,𝛽i are the corresponding base functions required to construct the 𝛼-fractal
functions Q𝛼

n,i,𝛽i
. These functions may be selected such that

||Qn,i,𝛽i − bn,i,𝛽i ||∞ ≤ ||Qn,i,𝛽i ||∞.

Hence,

max
1≤i≤n ||Qn,i,𝛽i − bn,i,𝛽i ||∞ ≤ max

1≤i≤n ||Qn,i,𝛽i ||∞ = n𝛽i ≤ n𝛽1 .

Finally, collecting the preceding bound, (17) and (27) altogether in (26), we obtain the required error evaluation.

Remark 4. It can be noted that, in the process of nonsmooth generalization, to obtain more flexibility, one can define
the fractal version of generalized interpolant using different scale vector 𝛼i for each nodal function Qn,i,𝛽i separately.

Figure 2 represents the graph of a fractal interpolant of the function 𝑓 (x) = 2sin3 x+ 3cos2 x+
√| sin x|, on the interval

[−𝜋, 𝜋]. The number of subintervals is 10, the scale vector is (0.14, −0.27, 0.1, −0.24, 0.05, −0.08, 0.1, −0.13, 0, 0.08) and
all the exponents 𝛽 i are equal to 2.

FIGURE 2 Graph of a fractal interpolant
1 2 3

1

2

3

3 2 1
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5 CONVERGENCE AND STABILITY OF THE FRACTAL CASE

The convergence and stability of generalized Jackson interpolation process were checked in Section 2. The convergence
and stability of the generalized fractal Jackson trigonometric interpolant (25) are proven in the following.

Theorem 5. Let f be 2𝜋 periodic and f ∈ LipKd such that 0 < d ≤ 1. If 𝛽n ≥ r > (d + 1), and if we select the sequence
of IFS parameters 𝛼n as 𝛼n =  (

n−(d+1)
)
, then the interpolating function I𝛼

n

n,𝛽
( 𝑓 ) is uniformly convergent to f whenever n

approaches infinity. The order of convergence is (n−d) and, consequently, it is independent of 𝛽.
Now, adapting similar computation that we used at the end of Theorem 4 ( take f = 1),

Λ𝛼
n,𝛽 = sup

x∈[−𝜋,𝜋]
Kn,𝛽(x)

n∑
i=1

|||Q
𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x) + Qn,i,𝛽i (x)

|||

≤ sup
x∈[−𝜋,𝜋]

Kn,𝛽(x)

(
n∑
i=1

|||Q
𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x)

|||
)

+ sup
x∈[−𝜋,𝜋]

Kn,𝛽(x)

n∑
i=1

||Qn,i,𝛽i (x)
||

≤ sup
x∈[−𝜋,𝜋]

Kn,𝛽(x)

(
n∑
i=1

|||Q
𝛼

n,i,𝛽i
(x) − Qn,i,𝛽i (x)

|||
)

+ Λn,𝛽

≤ 1 + sup
x∈[−𝜋,𝜋]

n𝛽1Kn,𝛽(x)n
|𝛼|∞

1 − |𝛼|∞
≤ 1 +

(
𝜋

2

)𝛽1
n

|𝛼|∞
1 − |𝛼|∞ .

As a result, one can check that if we choose the sequence of IFS parameter 𝛼n as 𝛼n = (n−1), then the interpolation
I𝛼

n

n,𝛽
(𝑓 ) is stable for any 𝛽n ≥ r > (d + 1).
Let us study the fractal nodal basis

k𝛼n,i,𝛽i
(x) = Kn,𝛽(x)Q

𝛼

n,i,𝛽i
(x). (28)

These functions are continuous as the denominator K−1
n,𝛽

(x) is not null for every x ∈ I due to (16). Let us look at the space
spanned by these mappings

𝛼
n,𝛽 = span

(
k𝛼n,i,𝛽i

)n
i=1

.

For a partition of the interval such that

xi+1 − xi =
2𝜋
n
,

let us define the bilinear form in [−𝜋, 𝜋]

(𝑓 𝛼 , g𝛼) =

n∑
i=1

𝑓 𝛼(xi)g
𝛼(xi) =

n∑
i=1

𝑓 (xi)g(xi).

The mappings (k𝛼
n,i,𝛽i

)n
i=1

are orthonormal with respect to this product and hence independent. Therefore,

dim
(𝛼

n,𝛽

)
= n.

Let us consider the functionals of point evaluation

n,i( 𝑓 ) = 𝑓 (xi).

The systems {n,i} and {k𝛼n,i,𝛽i
} are biorthonormal since

n,i

(
k𝛼n,𝑗,𝛽i

)
= k𝛼n,𝑗,𝛽i

(xi) = Kn,𝛽(xi)Q
𝛼
n,𝑗,𝛽i

(xi) = 𝛿i𝑗 .

The next result is obvious from the definition of the interpolation I𝛼
n,𝛽

( 𝑓 ).
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Lemma 1. If 𝑓, g ∈ [−𝜋, 𝜋] agree at the nodes

𝑓 (xi) = g(xi),

for i = 1, 2, … ,n, then I𝛼
n,𝛽

( 𝑓 ) = I𝛼
n,𝛽

(g).

Proposition 4. The operator I𝛼
n,𝛽

∶ [−𝜋, 𝜋] → [−𝜋, 𝜋] is a projection, that is to say,

I𝛼n,𝛽◦I
𝛼
n,𝛽 = I𝛼n,𝛽 .

Proof. For any 𝑓 ∈ [−𝜋, 𝜋], f agrees with I𝛼
n,𝛽

( 𝑓 ) at the nodes. Thus, applying Lemma 1,

I𝛼n,𝛽( 𝑓 ) = I𝛼n,𝛽

(
I𝛼n,𝛽( 𝑓 )

)
,

and the result is achieved.

Proposition 5. The function g ∈ [−𝜋, 𝜋] is a fixed point of I𝛼
n,𝛽

if and only if g ∈ 𝛼
n,𝛽
.

Proof. If g ∈ 𝛼
n,𝛽
, then

g =

n∑
i=1

𝜆ik
𝛼

n,i,𝛽i
.

Due to the orthogonality of k𝛼
n,i,𝛽i

,

g(x𝑗) = 𝜆𝑗 ,

for any 𝑗 ∈ ℕn, and then g = I𝛼
n,𝛽

(g), in view of the definition of I𝛼
n,𝛽
. The other implication is a direct consideration

from the definition of the interpolation.

The Lebesgue constant of the partition is in this case

Λ𝛼
n,𝛽 = sup

x∈[−𝜋,𝜋]

n∑
i=1

|||k
𝛼
n,i,𝛽i

(x)
||| .

The norm of the nth interpolation can be acquired considering that, due to the definition (25),

‖‖‖I
𝛼
n,𝛽( 𝑓 )

‖‖‖∞ ≤ ||𝑓 ||∞ sup
x∈[−𝜋,𝜋]

n∑
i=1

|||k
𝛼

n,i,𝛽i
(x)

||| = Λ𝛼
n,𝛽 ||𝑓 ||∞, (29)

and thus,
‖‖‖I

𝛼
n,𝛽

‖‖‖ ≤ Λ𝛼
n,𝛽 .

For f = 1, we obtain the equality.
The Lebesgue constant can be viewed as a condition number with respect to the uniform norm of the interpolation,

relative to changes in function values, since due to (29),

‖‖‖I
𝛼
n,𝛽( 𝑓 ) − I𝛼n,𝛽(𝑓 )

‖‖‖∞ ≤ Λ𝛼
n,𝛽 ||𝑓 − 𝑓 ||∞,

where f and 𝑓 are the original and any perturbed function of f, respectively.
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This number measures as well the separation of the interpolant with respect to the closest function in 𝛼
n,𝛽
. If we denote

as 𝑓 ∗
n,𝛽

the closest function to f in this space, and d∗
n,𝛽

( 𝑓 ) as the minimum distance from f to 𝛼
n,𝛽
,

‖‖‖𝑓 − I𝛼n,𝛽( 𝑓 )
‖‖‖∞ ≤ ‖‖‖𝑓 − 𝑓 ∗

n,𝛽
‖‖‖∞ +

‖‖‖𝑓
∗
n,𝛽 − I𝛼n,𝛽(𝑓 )

‖‖‖∞ ≤ (
1 + Λ𝛼

n,𝛽

)‖‖‖𝑓 − 𝑓 ∗
n,𝛽

‖‖‖∞ =
(
1 + Λ𝛼

n,𝛽

)
d∗n,𝛽( 𝑓 ),

since 𝑓 ∗
n,𝛽

∈ 𝛼
n,𝛽
, and thus, by Proposition 5, 𝑓 ∗

n,𝛽
= I𝛼

n,𝛽
(𝑓 ∗

n,𝛽
). Following the same theorem and the properties of the

modulus of continuity, we obtain a theorem of Jackson type for the spaces 𝛼
n,𝛽

in the case 𝛼 = 0.

Proposition 6. For 𝛽n > d + 1, the distance of 𝑓 ∈ [−𝜋, 𝜋] to the space 0
n,𝛽

verifies the following inequality:

d0n,𝛽(𝑓 ) ≤ K𝛽,d

(
𝜋

n

)d
,

where K𝛽,d is determined by the values of 𝛽 and f.

Proof. The result is a consequence of Theorem 1 since

d0n,𝛽( 𝑓 ) ≤ ‖‖𝑓 − In,𝛽(𝑓 )‖‖∞.
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